Abstract

We report the design and fabrication of a compact multi-core fiber fan-in/fan-out using a grating coupler array on the SOI platform. The grating couplers are fully-etched, enabling the whole circuit to be fabricated in a single lithography and etching step. Thanks to the apodized design for the grating couplers and the introduction of an aluminum reflective mirror, a highest coupling efficiency of −3.8 dB with 3 dB coupling bandwidth of 48 nm and 1.5 dB bandwidth covering the whole C band, together with crosstalk lower than −32 dB are demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimising apodized grating couplers in a pure SOI platform to −0.5 dB coupling efficiency

Angelo Bozzola, Lee Carroll, Dario Gerace, Ilaria Cristiani, and Lucio Claudio Andreani
Opt. Express 23(12) 16289-16304 (2015)

Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides

Daniel Benedikovic, Pavel Cheben, Jens H. Schmid, Dan-Xia Xu, Boris Lamontagne, Shurui Wang, Jean Lapointe, Robert Halir, Alejandro Ortega-Moñux, Siegfried Janz, and Milan Dado
Opt. Express 23(17) 22628-22635 (2015)

Single step etched two dimensional grating coupler based on the SOI platform

Jinghui Zou, Yu Yu, and Xinliang Zhang
Opt. Express 23(25) 32490-32495 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, “New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond,” in OptoElectronics and Communications Conference2009, paper FT4.
  2. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in European Conference on Optical Communication2012, paper Th.3.C.1.
    [Crossref]
  3. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
    [Crossref] [PubMed]
  4. T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2×344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” in European Conference on Optical Communication2013, paper PD3.E.4.
  5. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, “12-core×3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference2014, paper Th5B.2.
  6. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19×100×172-Gb/s SDM-WDM-PDM-QPSK signals at 305 Tb/s,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference2012, paper PDP5C.1.
  7. Y. Abe, K. Shikama, S. Yanagi, and T. Takahashi, “Low-loss physical-contact-type fan-out device for 12-core multicore fiber,” in European Conference on Optical Communication2013, paper P.1.7.
    [Crossref]
  8. R. R. Thomson, R. J. Harris, T. A. Birks, G. Brown, J. Allington-Smith, and J. Bland-Hawthorn, “Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics,” Opt. Lett. 37(12), 2331–2333 (2012).
    [Crossref] [PubMed]
  9. H. Takara, H. Ono, Y. Abe, H. Masuda, K. Takenaga, S. Matsuo, H. Kubota, K. Shibahara, T. Kobayashi, and Y. Miaymoto, “1000-km 7-core fiber transmission of 10 x 96-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber,” Opt. Express 20(9), 10100–10105 (2012).
    [Crossref] [PubMed]
  10. Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
    [Crossref] [PubMed]
  11. Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
    [Crossref]
  12. P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. dissertation (University of Ghent, 2001).
  13. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 27, 612–618 (2009).
  14. W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
    [Crossref]
  15. H. Lin, J. T. M. Stevenson, A. M. Gundlach, C. C. Dunare, and A. J. Walton, “Direct Al–Al contact using low temperature wafer bonding for integrating MEMS and CMOS devices,” Microelectron. Eng. 85(5-6), 1059–1061 (2008).
    [Crossref]
  16. F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27(5), 612–618 (2009).
    [Crossref]

2014 (1)

2013 (1)

2012 (3)

2010 (1)

2009 (2)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 27, 612–618 (2009).

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27(5), 612–618 (2009).
[Crossref]

2008 (1)

H. Lin, J. T. M. Stevenson, A. M. Gundlach, C. C. Dunare, and A. J. Walton, “Direct Al–Al contact using low temperature wafer bonding for integrating MEMS and CMOS devices,” Microelectron. Eng. 85(5-6), 1059–1061 (2008).
[Crossref]

Abe, Y.

Allington-Smith, J.

Awaji, Y.

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

Baets, R.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 27, 612–618 (2009).

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27(5), 612–618 (2009).
[Crossref]

Birks, T. A.

Bland-Hawthorn, J.

Bogaerts, W.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 27, 612–618 (2009).

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27(5), 612–618 (2009).
[Crossref]

Brown, G.

Claes, T.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 27, 612–618 (2009).

Dimarcello, F. V.

Ding, Y.

Dumon, P.

Dunare, C. C.

H. Lin, J. T. M. Stevenson, A. M. Gundlach, C. C. Dunare, and A. J. Walton, “Direct Al–Al contact using low temperature wafer bonding for integrating MEMS and CMOS devices,” Microelectron. Eng. 85(5-6), 1059–1061 (2008).
[Crossref]

Fini, J. M.

Fishteyn, M.

Gundlach, A. M.

H. Lin, J. T. M. Stevenson, A. M. Gundlach, C. C. Dunare, and A. J. Walton, “Direct Al–Al contact using low temperature wafer bonding for integrating MEMS and CMOS devices,” Microelectron. Eng. 85(5-6), 1059–1061 (2008).
[Crossref]

Harris, R. J.

Klaus, W.

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

Kobayashi, T.

Kubota, H.

Lin, H.

H. Lin, J. T. M. Stevenson, A. M. Gundlach, C. C. Dunare, and A. J. Walton, “Direct Al–Al contact using low temperature wafer bonding for integrating MEMS and CMOS devices,” Microelectron. Eng. 85(5-6), 1059–1061 (2008).
[Crossref]

Masuda, H.

Matsuo, S.

Miaymoto, Y.

Monberg, E. M.

O’Faolain, L.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 27, 612–618 (2009).

Ono, H.

Ou, H.

Peucheret, C.

Puttnam, B. J.

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

Roelkens, G.

Sakaguchi, J.

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

Scheerlinck, S.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 27, 612–618 (2009).

Schrauwen, J.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 27, 612–618 (2009).

Shibahara, K.

Stevenson, J. T. M.

H. Lin, J. T. M. Stevenson, A. M. Gundlach, C. C. Dunare, and A. J. Walton, “Direct Al–Al contact using low temperature wafer bonding for integrating MEMS and CMOS devices,” Microelectron. Eng. 85(5-6), 1059–1061 (2008).
[Crossref]

Taillaert, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 27, 612–618 (2009).

Takara, H.

Takenaga, K.

Taunay, T. F.

Thomson, R. R.

Van Laere, F.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 27, 612–618 (2009).

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27(5), 612–618 (2009).
[Crossref]

Van Thourhout, D.

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol. 27(5), 612–618 (2009).
[Crossref]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 27, 612–618 (2009).

Wada, N.

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

Walton, A. J.

H. Lin, J. T. M. Stevenson, A. M. Gundlach, C. C. Dunare, and A. J. Walton, “Direct Al–Al contact using low temperature wafer bonding for integrating MEMS and CMOS devices,” Microelectron. Eng. 85(5-6), 1059–1061 (2008).
[Crossref]

Watanabe, M.

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

Yan, M. F.

Yvind, K.

Zhu, B.

IEEE Photon. Technol. Lett. (2)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 27, 612–618 (2009).

W. Klaus, J. Sakaguchi, B. J. Puttnam, Y. Awaji, N. Wada, T. Kobayashi, and M. Watanabe, “Free-space coupling optics for multicore fibers,” IEEE Photon. Technol. Lett. 24(21), 1902–1905 (2012).
[Crossref]

J. Lightwave Technol. (1)

Microelectron. Eng. (1)

H. Lin, J. T. M. Stevenson, A. M. Gundlach, C. C. Dunare, and A. J. Walton, “Direct Al–Al contact using low temperature wafer bonding for integrating MEMS and CMOS devices,” Microelectron. Eng. 85(5-6), 1059–1061 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Other (7)

T. Morioka, “New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond,” in OptoElectronics and Communications Conference2009, paper FT4.

H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in European Conference on Optical Communication2012, paper Th.3.C.1.
[Crossref]

T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2×344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” in European Conference on Optical Communication2013, paper PD3.E.4.

T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, “12-core×3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference2014, paper Th5B.2.

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19×100×172-Gb/s SDM-WDM-PDM-QPSK signals at 305 Tb/s,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference2012, paper PDP5C.1.

Y. Abe, K. Shikama, S. Yanagi, and T. Takahashi, “Low-loss physical-contact-type fan-out device for 12-core multicore fiber,” in European Conference on Optical Communication2013, paper P.1.7.
[Crossref]

P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. dissertation (University of Ghent, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the grating coupler-based FI/FO. (b) Structure of the grating coupler.
Fig. 2
Fig. 2 (a) Calculated required refractive index ni of the artificial material of a scattering cell and the corresponding power leakage factor as a function of the cell length li. li and ni distributions of the grating couplers designed for coupling to (b) an SSMF and (c) a single core of an MCF.
Fig. 3
Fig. 3 Simulated coupling efficiency as a function of wavelength for the SSMF and a single core of the MCF, with hd = 1600 nm, and hu = 1000 nm.
Fig. 4
Fig. 4 (a) Fabricated device. (b) Details of the grating coupler array for directly coupling with an MCF. (c) Scanning electron microscopy (SEM) image of the apodized PhC grating coupler.
Fig. 5
Fig. 5 Measured transmission of a single 45°-slant. The inset shows the 3D finite-difference time-domain (FDTD) simulated field distribution when light gets reflected by the 45°-slant.
Fig. 6
Fig. 6 Measurement setup of the grating coupler array-based on-chip MCF FI/FO.
Fig. 7
Fig. 7 Measured coupling efficiency and crosstalk for the MCF FI/FO. The inset shows details of the coupling efficiency over the C-band.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2α( z )= G 2 ( z ) / [ 1 0 z G 2 ( z )dz ]

Metrics