Abstract

A low-loss suspended core As38Se62 fiber with core diameter of 4.5 μm and a zero-dispersion wavelength of 3.5 μm was used for mid-infrared supercontinuum generation. The dispersion of the fiber was measured from 2.9 to 4.2 μm and was in good correspondence with the calculated dispersion. An optical parametric amplifier delivering 320 fs pulses with a peak power of 14.8 kW at a repetition rate of 21 MHz was used to pump 18 cm of suspended core fiber at different wavelengths from 3.3 to 4.7 μm. By pumping at 4.4 μm with a peak power of 5.2 kW coupled to the fiber a supercontinuum spanning from 1.7 to 7.5 μm with an average output power of 15.6 mW and an average power >5.0 μm of 4.7 mW was obtained.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber

Weiqing Gao, Mohammed El Amraoui, Meisong Liao, Hiroyasu Kawashima, Zhongchao Duan, Dinghuan Deng, Tonglei Cheng, Takenobu Suzuki, Younès Messaddeq, and Yasutake Ohishi
Opt. Express 21(8) 9573-9583 (2013)

Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers

Irnis Kubat, Christian Rosenberg Petersen, Uffe Visbech Møller, Angela Seddon, Trevor Benson, Laurent Brilland, David Méchin, Peter M. Moselund, and Ole Bang
Opt. Express 22(4) 3959-3967 (2014)

Mid-infrared supercontinuum generation to 4.5  μm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550  nm

Irnis Kubat, Christian S. Agger, Peter Morten Moselund, and Ole Bang
J. Opt. Soc. Am. B 30(10) 2743-2757 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, N. Picqué, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 40–449 (2012).
    [Crossref]
  2. R. Wilson and H. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” TRAC-Trend. Anal. Chem. 18, 85–93 (1999).
    [Crossref]
  3. P. Werle, F. Slemr, and K. Maurer, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser. Eng. 37, 101–114 (2002).
    [Crossref]
  4. B. Guo, Y. Wang, C. Peng, H. Zhang, G. Luo, H. Le, C. Gmachl, D. Sivco, M. Peabody, and A. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12, 208–219 (2004).
    [Crossref] [PubMed]
  5. N. Savage, “Supercontinuum sources,” Nat. Photonics 3, 114–115 (2009).
    [Crossref]
  6. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
    [Crossref] [PubMed]
  7. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, Y. Ohishi, and Yasutake, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
    [Crossref]
  8. C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power did-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quant. 15, 422–434 (2009).
    [Crossref]
  9. R. Buczynski, H. Bookey, M. Klimczak, D. Pysz, R. Stepien, T. Martynkien, J. McCarthy, A. Waddie, A. Kar, and M. R. Taghizadeh, “Two Octaves Supercontinuum generation in lead-bismuth glass based photonic crystal fiber,” Materials 7, 4658–4668 (2014).
    [Crossref]
  10. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  11. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
    [Crossref]
  12. P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
    [Crossref]
  13. R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm,” Proc. SPIE 8898, 889808 (2013).
    [Crossref]
  14. C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 06057 (2014).
    [Crossref]
  15. V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
    [Crossref]
  16. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146 (2004).
    [Crossref]
  17. H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mat. Express 4, 1444–1455 (2014).
    [Crossref]
  18. I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
    [Crossref] [PubMed]
  19. D. D. Hudson, M. Baudisch, D. Werdehausen, B. J. Eggleton, and J. Biegert, “1.9 octave supercontinuum generation in a As2S3 step-index fiber driven by mid-IR OPCPA,” Opt. Lett. 39, 5752–5755 (2014).
    [Crossref] [PubMed]
  20. F. Théberge, N. Thiré, J.-F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallée, and F. Légaré, “Multi-octave infrared supercontinuum generation in large-core As2S3 fibers,” Opt. Lett. 39, 6474 (2014).
    [Crossref]
  21. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  22. A. Al-kadry, C. Baker, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects,” Opt. Lett. 38, 1185–1187 (2013).
    [Crossref] [PubMed]
  23. O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
    [Crossref] [PubMed]
  24. T. Cheng, Y. Kanou, X. Xue, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a novel AsSe 2-As 2S 5 hybrid microstructured optical fiber,” Opt. Express 22, 23019–23025 (2014).
    [Crossref] [PubMed]
  25. I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. David Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
    [Crossref] [PubMed]
  26. Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
    [Crossref]
  27. M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-octave-spanning supercontinuum generation in fluoride glass,” Appl. Phys. Express 6, 032503 (2013).
    [Crossref]
  28. J. J. Pigeon, S. Y. Tochitsky, C. Gong, and C. Joshi, “Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO2 laser pulses,” Opt. Lett. 39, 3246–3249 (2014).
    [Crossref] [PubMed]
  29. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010).
    [Crossref] [PubMed]
  30. M. D. Nielsen, G. Vienne, J. R. Folkenberg, and A. Bjarklev, “Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber,” Opt. Lett. 28, 236–238 (2003).
    [Crossref] [PubMed]
  31. N. A. Mortensen and J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibres,” J. Opt. A - Pure Appl. Opt. 5, 163–167 (2003).
    [Crossref]
  32. P. Roberts, F. Couny, H. Sabert, B. Mangan, T. Birks, J. Knight, and P. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13, 7779–7793 (2005).
    [Crossref] [PubMed]
  33. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18, 26647–26654 (2010).
    [Crossref] [PubMed]
  34. J. Adam, J. Trolès, and L. Brilland, “Low-loss mid-IR microstructured optical fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3D.2.
    [Crossref]
  35. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  36. S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles verification of GAM,” Opt. Express 20, 10635–10645 (2012).
    [Crossref]
  37. M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright solitonpairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005).
    [Crossref] [PubMed]
  38. Amorphous Materials Inc., “AMTIR-2,” (2014). Online at http://www.amorphousmaterials.com/ .
  39. C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers,” Materials 7, 6120–6129 (2014).
    [Crossref]
  40. D. Deng, D. Sega, T. Cheng, W. Gao, X. Xue, T. Suzuki, and Y. Ohishi, “Dispersion characterization of two orthogonal modes in a birefringence tellurite microstructured optical fiber,” Opt. Express 22, 23920–23927 (2014).
    [Crossref] [PubMed]
  41. P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc, Rapid Publ. 7, 12017 (2012).
    [Crossref]
  42. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
    [Crossref] [PubMed]
  43. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
    [Crossref]
  44. E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
    [Crossref]
  45. B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
    [Crossref] [PubMed]
  46. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
    [Crossref] [PubMed]
  47. I. Shavrin, S. Novotny, and H. Ludvigsen, “Mode excitation and supercontinuum generation in a few-mode suspended-core fiber,” Opt. Express 21, 32141–32150 (2013).
    [Crossref]
  48. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Su-percontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [Crossref]
  49. R. Khakimov, I. Shavrin, S. Novotny, M. Kaivola, and H. Ludvigsen, “Numerical solver for supercontinuum generation in multimode optical fibers,” Opt. Express 21, 14388–14398 (2013).
    [Crossref] [PubMed]

2014 (15)

R. Buczynski, H. Bookey, M. Klimczak, D. Pysz, R. Stepien, T. Martynkien, J. McCarthy, A. Waddie, A. Kar, and M. R. Taghizadeh, “Two Octaves Supercontinuum generation in lead-bismuth glass based photonic crystal fiber,” Materials 7, 4658–4668 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mat. Express 4, 1444–1455 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

D. D. Hudson, M. Baudisch, D. Werdehausen, B. J. Eggleton, and J. Biegert, “1.9 octave supercontinuum generation in a As2S3 step-index fiber driven by mid-IR OPCPA,” Opt. Lett. 39, 5752–5755 (2014).
[Crossref] [PubMed]

F. Théberge, N. Thiré, J.-F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallée, and F. Légaré, “Multi-octave infrared supercontinuum generation in large-core As2S3 fibers,” Opt. Lett. 39, 6474 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
[Crossref] [PubMed]

T. Cheng, Y. Kanou, X. Xue, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a novel AsSe 2-As 2S 5 hybrid microstructured optical fiber,” Opt. Express 22, 23019–23025 (2014).
[Crossref] [PubMed]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. David Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref] [PubMed]

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

J. J. Pigeon, S. Y. Tochitsky, C. Gong, and C. Joshi, “Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO2 laser pulses,” Opt. Lett. 39, 3246–3249 (2014).
[Crossref] [PubMed]

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 06057 (2014).
[Crossref]

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers,” Materials 7, 6120–6129 (2014).
[Crossref]

D. Deng, D. Sega, T. Cheng, W. Gao, X. Xue, T. Suzuki, and Y. Ohishi, “Dispersion characterization of two orthogonal modes in a birefringence tellurite microstructured optical fiber,” Opt. Express 22, 23920–23927 (2014).
[Crossref] [PubMed]

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

2013 (6)

I. Shavrin, S. Novotny, and H. Ludvigsen, “Mode excitation and supercontinuum generation in a few-mode suspended-core fiber,” Opt. Express 21, 32141–32150 (2013).
[Crossref]

R. Khakimov, I. Shavrin, S. Novotny, M. Kaivola, and H. Ludvigsen, “Numerical solver for supercontinuum generation in multimode optical fibers,” Opt. Express 21, 14388–14398 (2013).
[Crossref] [PubMed]

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-octave-spanning supercontinuum generation in fluoride glass,” Appl. Phys. Express 6, 032503 (2013).
[Crossref]

A. Al-kadry, C. Baker, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects,” Opt. Lett. 38, 1185–1187 (2013).
[Crossref] [PubMed]

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

2012 (5)

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 40–449 (2012).
[Crossref]

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc, Rapid Publ. 7, 12017 (2012).
[Crossref]

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[Crossref]

2011 (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

2010 (4)

2009 (5)

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
[Crossref] [PubMed]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

N. Savage, “Supercontinuum sources,” Nat. Photonics 3, 114–115 (2009).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, Y. Ohishi, and Yasutake, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power did-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quant. 15, 422–434 (2009).
[Crossref]

2008 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (2)

2004 (2)

2003 (2)

M. D. Nielsen, G. Vienne, J. R. Folkenberg, and A. Bjarklev, “Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber,” Opt. Lett. 28, 236–238 (2003).
[Crossref] [PubMed]

N. A. Mortensen and J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibres,” J. Opt. A - Pure Appl. Opt. 5, 163–167 (2003).
[Crossref]

2002 (2)

1999 (1)

R. Wilson and H. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” TRAC-Trend. Anal. Chem. 18, 85–93 (1999).
[Crossref]

Abdel-Moneim, N.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mat. Express 4, 1444–1455 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

Adam, J.

J. Adam, J. Trolès, and L. Brilland, “Low-loss mid-IR microstructured optical fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3D.2.
[Crossref]

Adam, J. L.

Adam, J.-L.

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers,” Materials 7, 6120–6129 (2014).
[Crossref]

Aggarwal, I. D.

Agger, C.

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[Crossref]

Agger, C. S.

Al-kadry, A.

Amrani, F.

Andersen, T. V.

Baker, C.

Bang, O.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mat. Express 4, 1444–1455 (2014).
[Crossref]

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 06057 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. David Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref] [PubMed]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[Crossref]

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[Crossref]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[Crossref]

M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright solitonpairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005).
[Crossref] [PubMed]

Baudisch, M.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. David Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref] [PubMed]

Benson, T. M.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mat. Express 4, 1444–1455 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

Biegert, J.

Birks, T.

Bjarklev, A.

Bookey, H.

R. Buczynski, H. Bookey, M. Klimczak, D. Pysz, R. Stepien, T. Martynkien, J. McCarthy, A. Waddie, A. Kar, and M. R. Taghizadeh, “Two Octaves Supercontinuum generation in lead-bismuth glass based photonic crystal fiber,” Materials 7, 4658–4668 (2014).
[Crossref]

Brilland, L.

Buczynski, R.

R. Buczynski, H. Bookey, M. Klimczak, D. Pysz, R. Stepien, T. Martynkien, J. McCarthy, A. Waddie, A. Kar, and M. R. Taghizadeh, “Two Octaves Supercontinuum generation in lead-bismuth glass based photonic crystal fiber,” Materials 7, 4658–4668 (2014).
[Crossref]

Caillaud, C.

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers,” Materials 7, 6120–6129 (2014).
[Crossref]

Calvez, L.

Canat, G.

Chartier, T.

Chau, A. H. L.

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, Y. Ohishi, and Yasutake, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Chavez-Pirson, A.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Cheng, T.

Cho, A.

Choi, D.-Y.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Churbanov, M.

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

Ciprian, D.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc, Rapid Publ. 7, 12017 (2012).
[Crossref]

Coen, S.

Cordeiro, C. M. B.

Coulombier, Q.

Couny, F.

Cronin-Golomb, M.

Daigle, J.-F.

Dantanarayana, H. G.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mat. Express 4, 1444–1455 (2014).
[Crossref]

David Moselund, P. M.

Debbarma, S.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Deng, D.

Désévédavy, F.

Domachuk, P.

Duan, Z.

M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-octave-spanning supercontinuum generation in fluoride glass,” Appl. Phys. Express 6, 032503 (2013).
[Crossref]

Dudley, J. M.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Duhant, M.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[Crossref]

Eggleton, B. J.

El Amraoui, M.

Falk, P.

Farries, M.

Fatome, J.

Folkenberg, J. R.

N. A. Mortensen and J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibres,” J. Opt. A - Pure Appl. Opt. 5, 163–167 (2003).
[Crossref]

M. D. Nielsen, G. Vienne, J. R. Folkenberg, and A. Bjarklev, “Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber,” Opt. Lett. 28, 236–238 (2003).
[Crossref] [PubMed]

Freeman, M. J.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power did-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quant. 15, 422–434 (2009).
[Crossref]

Frosz, M.

Frosz, M. H.

Fuhrberg, P.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mat. Express 4, 1444–1455 (2014).
[Crossref]

Gadret, G.

Gai, X.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Gao, W.

D. Deng, D. Sega, T. Cheng, W. Gao, X. Xue, T. Suzuki, and Y. Ohishi, “Dispersion characterization of two orthogonal modes in a birefringence tellurite microstructured optical fiber,” Opt. Express 22, 23920–23927 (2014).
[Crossref] [PubMed]

M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-octave-spanning supercontinuum generation in fluoride glass,” Appl. Phys. Express 6, 032503 (2013).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

George, A. K.

Gmachl, C.

Gong, C.

Guizard, S.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

Guo, B.

Hansch, T. W.

A. Schliesser, N. Picqué, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 40–449 (2012).
[Crossref]

Harvey, J. D.

Hlubina, P.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc, Rapid Publ. 7, 12017 (2012).
[Crossref]

Hodelin, J.

Horak, P.

Houizot, P.

Hudson, D. D.

Islam, M. N.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power did-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quant. 15, 422–434 (2009).
[Crossref]

Jakobsen, C.

Johansen, J.

Joshi, C.

Jules, J.-C.

Kadulová, M.

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc, Rapid Publ. 7, 12017 (2012).
[Crossref]

Kaivola, M.

Kanou, Y.

Kar, A.

R. Buczynski, H. Bookey, M. Klimczak, D. Pysz, R. Stepien, T. Martynkien, J. McCarthy, A. Waddie, A. Kar, and M. R. Taghizadeh, “Two Octaves Supercontinuum generation in lead-bismuth glass based photonic crystal fiber,” Materials 7, 4658–4668 (2014).
[Crossref]

Kawashima, H.

M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-octave-spanning supercontinuum generation in fluoride glass,” Appl. Phys. Express 6, 032503 (2013).
[Crossref]

Keiding, S. R.

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[Crossref]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[Crossref]

Khakimov, R.

Kibler, B.

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, Y. Ohishi, and Yasutake, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Klimczak, M.

R. Buczynski, H. Bookey, M. Klimczak, D. Pysz, R. Stepien, T. Martynkien, J. McCarthy, A. Waddie, A. Kar, and M. R. Taghizadeh, “Two Octaves Supercontinuum generation in lead-bismuth glass based photonic crystal fiber,” Materials 7, 4658–4668 (2014).
[Crossref]

Knight, J.

Knight, J. C.

Konyukhov, A. I.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

Kubat, I.

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. David Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 06057 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mat. Express 4, 1444–1455 (2014).
[Crossref]

Kuzyutkina, Y. S.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

Lamrini, S.

Larsen, C.

Le, H.

Légaré, F.

Lenz, G.

Leonhardt, R.

Liao, M.

M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-octave-spanning supercontinuum generation in fluoride glass,” Appl. Phys. Express 6, 032503 (2013).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, Y. Ohishi, and Yasutake, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Ludvigsen, H.

Luo, G.

Luther-Davies, B.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Lyngsø, J. K.

Ma, P.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Madden, S.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Mangan, B.

Markos, C.

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 06057 (2014).
[Crossref]

Martynkien, T.

R. Buczynski, H. Bookey, M. Klimczak, D. Pysz, R. Stepien, T. Martynkien, J. McCarthy, A. Waddie, A. Kar, and M. R. Taghizadeh, “Two Octaves Supercontinuum generation in lead-bismuth glass based photonic crystal fiber,” Materials 7, 4658–4668 (2014).
[Crossref]

Mathieu, P.

Matsumoto, M.

Maurer, K.

P. Werle, F. Slemr, and K. Maurer, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser. Eng. 37, 101–114 (2002).
[Crossref]

Mauricio, J.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power did-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quant. 15, 422–434 (2009).
[Crossref]

McCarthy, J.

R. Buczynski, H. Bookey, M. Klimczak, D. Pysz, R. Stepien, T. Martynkien, J. McCarthy, A. Waddie, A. Kar, and M. R. Taghizadeh, “Two Octaves Supercontinuum generation in lead-bismuth glass based photonic crystal fiber,” Materials 7, 4658–4668 (2014).
[Crossref]

Mechin, D.

Méchin, D.

Messaddeq, Y.

Misumi, T.

Møller, U.

Møller, U. V.

Monteville, A.

Mortensen, N. A.

N. A. Mortensen and J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibres,” J. Opt. A - Pure Appl. Opt. 5, 163–167 (2003).
[Crossref]

Moselund, P. M.

Mouawad, O.

Mouskeftaras, A.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

N’Guyen, T. N.

Napier, B.

Nguyen, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Nielsen, M. D.

Novotny, S.

Ohishi, Y.

Omenetto, F. G.

Orain, H.

Pain, T.

Peabody, M.

Peng, C.

Petersen, C.

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[Crossref]

Petersen, C. R.

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. David Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Picot-Clémente, J.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 40–449 (2012).
[Crossref]

Pigeon, J. J.

Poletti, F.

Pysz, D.

R. Buczynski, H. Bookey, M. Klimczak, D. Pysz, R. Stepien, T. Martynkien, J. McCarthy, A. Waddie, A. Kar, and M. R. Taghizadeh, “Two Octaves Supercontinuum generation in lead-bismuth glass based photonic crystal fiber,” Materials 7, 4658–4668 (2014).
[Crossref]

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, Y. Ohishi, and Yasutake, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Renard, W.

Renversez, G.

Rhonehouse, D.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Roberts, P.

Rochette, M.

Romanova, E. A.

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

Russell, P.

Russell, P. S. J.

Sabert, H.

Sanghera, J.

Sangleboeuf, J.-C.

Savage, N.

N. Savage, “Supercontinuum sources,” Nat. Photonics 3, 114–115 (2009).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 40–449 (2012).
[Crossref]

Schmidt, B. E.

Scholle, K.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. David Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref] [PubMed]

Seddon, A. B.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mat. Express 4, 1444–1455 (2014).
[Crossref]

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

Sega, D.

Shavrin, I.

Shaw, L. B.

Shiryaev, V.

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

Sivco, D.

Skorobogatiy, M.

Slemr, F.

P. Werle, F. Slemr, and K. Maurer, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser. Eng. 37, 101–114 (2002).
[Crossref]

Slusher, R. E.

Smektala, F.

Smith, C.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Sojka, L.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mat. Express 4, 1444–1455 (2014).
[Crossref]

Sørensen, S. T.

Steffensen, H.

Stepien, R.

R. Buczynski, H. Bookey, M. Klimczak, D. Pysz, R. Stepien, T. Martynkien, J. McCarthy, A. Waddie, A. Kar, and M. R. Taghizadeh, “Two Octaves Supercontinuum generation in lead-bismuth glass based photonic crystal fiber,” Materials 7, 4658–4668 (2014).
[Crossref]

Strutynski, C.

Sujecki, S.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mat. Express 4, 1444–1455 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Suzuki, T.

T. Cheng, Y. Kanou, X. Xue, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a novel AsSe 2-As 2S 5 hybrid microstructured optical fiber,” Opt. Express 22, 23019–23025 (2014).
[Crossref] [PubMed]

D. Deng, D. Sega, T. Cheng, W. Gao, X. Xue, T. Suzuki, and Y. Ohishi, “Dispersion characterization of two orthogonal modes in a birefringence tellurite microstructured optical fiber,” Opt. Express 22, 23920–23927 (2014).
[Crossref] [PubMed]

M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-octave-spanning supercontinuum generation in fluoride glass,” Appl. Phys. Express 6, 032503 (2013).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, Y. Ohishi, and Yasutake, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Taghizadeh, M. R.

R. Buczynski, H. Bookey, M. Klimczak, D. Pysz, R. Stepien, T. Martynkien, J. McCarthy, A. Waddie, A. Kar, and M. R. Taghizadeh, “Two Octaves Supercontinuum generation in lead-bismuth glass based photonic crystal fiber,” Materials 7, 4658–4668 (2014).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mat. Express 4, 1444–1455 (2014).
[Crossref]

Tapp, H.

R. Wilson and H. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” TRAC-Trend. Anal. Chem. 18, 85–93 (1999).
[Crossref]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

Terry, F. L.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power did-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quant. 15, 422–434 (2009).
[Crossref]

Thapa, R.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Théberge, F.

Thiré, N.

Thøgersen, J.

Thomsen, C. L.

Tochitsky, S. Y.

Toupin, P.

Troles, J.

Trolès, J.

Ung, B.

Vallée, R.

Vienne, G.

Waddie, A.

R. Buczynski, H. Bookey, M. Klimczak, D. Pysz, R. Stepien, T. Martynkien, J. McCarthy, A. Waddie, A. Kar, and M. R. Taghizadeh, “Two Octaves Supercontinuum generation in lead-bismuth glass based photonic crystal fiber,” Materials 7, 4658–4668 (2014).
[Crossref]

Wadsworth, W. J.

Wang, A.

Wang, R.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Wang, Y.

Ward, J.

Werdehausen, D.

Werle, P.

P. Werle, F. Slemr, and K. Maurer, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser. Eng. 37, 101–114 (2002).
[Crossref]

Wiersma, K.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Wilson, R.

R. Wilson and H. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” TRAC-Trend. Anal. Chem. 18, 85–93 (1999).
[Crossref]

Wolchover, N. A.

Xia, C.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power did-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quant. 15, 422–434 (2009).
[Crossref]

Xu, Z.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power did-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quant. 15, 422–434 (2009).
[Crossref]

Xue, X.

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, Y. Ohishi, and Yasutake, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Yang, Z.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Yasutake,

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, Y. Ohishi, and Yasutake, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Yu, Y.

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Zakel, A.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power did-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quant. 15, 422–434 (2009).
[Crossref]

Zhang, H.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Zong, J.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Appl. Phys. Express (1)

M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, and Y. Ohishi, “Five-octave-spanning supercontinuum generation in fluoride glass,” Appl. Phys. Express 6, 032503 (2013).
[Crossref]

Appl. Phys. Lett. (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, Y. Ohishi, and Yasutake, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power did-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quant. 15, 422–434 (2009).
[Crossref]

J. Eur. Opt. Soc, Rapid Publ. (1)

P. Hlubina, M. Kadulová, and D. Ciprian, “Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength,” J. Eur. Opt. Soc, Rapid Publ. 7, 12017 (2012).
[Crossref]

J. Non-Cryst. Solids (1)

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

J. Opt. A - Pure Appl. Opt. (1)

N. A. Mortensen and J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibres,” J. Opt. A - Pure Appl. Opt. 5, 163–167 (2003).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Photon. Rev. (1)

Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. Madden, and B. Luther-Davies, “A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide,” Laser Photon. Rev. 8, 792–798 (2014).
[Crossref]

Materials (2)

R. Buczynski, H. Bookey, M. Klimczak, D. Pysz, R. Stepien, T. Martynkien, J. McCarthy, A. Waddie, A. Kar, and M. R. Taghizadeh, “Two Octaves Supercontinuum generation in lead-bismuth glass based photonic crystal fiber,” Materials 7, 4658–4668 (2014).
[Crossref]

C. Caillaud, G. Renversez, L. Brilland, D. Mechin, L. Calvez, J.-L. Adam, and J. Troles, “Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers,” Materials 7, 6120–6129 (2014).
[Crossref]

Nat. Photonics (5)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[Crossref]

N. Savage, “Supercontinuum sources,” Nat. Photonics 3, 114–115 (2009).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 40–449 (2012).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-IR supercontinuum covering the molecular fingerprint region from 2 μm to 13 μm using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Opt. Eng. (1)

E. A. Romanova, Y. S. Kuzyutkina, A. I. Konyukhov, N. Abdel-Moneim, A. B. Seddon, T. M. Benson, S. Guizard, and A. Mouskeftaras, “Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses,” Opt. Eng. 53, 071812 (2014).
[Crossref]

Opt. Express (16)

B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
[Crossref] [PubMed]

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
[Crossref] [PubMed]

I. Shavrin, S. Novotny, and H. Ludvigsen, “Mode excitation and supercontinuum generation in a few-mode suspended-core fiber,” Opt. Express 21, 32141–32150 (2013).
[Crossref]

D. Deng, D. Sega, T. Cheng, W. Gao, X. Xue, T. Suzuki, and Y. Ohishi, “Dispersion characterization of two orthogonal modes in a birefringence tellurite microstructured optical fiber,” Opt. Express 22, 23920–23927 (2014).
[Crossref] [PubMed]

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[Crossref]

M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright solitonpairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005).
[Crossref] [PubMed]

R. Khakimov, I. Shavrin, S. Novotny, M. Kaivola, and H. Ludvigsen, “Numerical solver for supercontinuum generation in multimode optical fibers,” Opt. Express 21, 14388–14398 (2013).
[Crossref] [PubMed]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
[Crossref] [PubMed]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

T. Cheng, Y. Kanou, X. Xue, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a novel AsSe 2-As 2S 5 hybrid microstructured optical fiber,” Opt. Express 22, 23019–23025 (2014).
[Crossref] [PubMed]

I. Kubat, C. R. Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. David Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref] [PubMed]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010).
[Crossref] [PubMed]

P. Roberts, F. Couny, H. Sabert, B. Mangan, T. Birks, J. Knight, and P. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13, 7779–7793 (2005).
[Crossref] [PubMed]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18, 26647–26654 (2010).
[Crossref] [PubMed]

B. Guo, Y. Wang, C. Peng, H. Zhang, G. Luo, H. Le, C. Gmachl, D. Sivco, M. Peabody, and A. Cho, “Laser-based mid-infrared reflectance imaging of biological tissues,” Opt. Express 12, 208–219 (2004).
[Crossref] [PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
[Crossref] [PubMed]

Opt. Laser. Eng. (1)

P. Werle, F. Slemr, and K. Maurer, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Laser. Eng. 37, 101–114 (2002).
[Crossref]

Opt. Lett. (6)

Opt. Mat. Express (1)

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mat. Express 4, 1444–1455 (2014).
[Crossref]

Proc. SPIE (2)

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012).
[Crossref]

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm,” Proc. SPIE 8898, 889808 (2013).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Sci. Rep. (1)

C. Markos, I. Kubat, and O. Bang, “Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms,” Sci. Rep. 4, 06057 (2014).
[Crossref]

TRAC-Trend. Anal. Chem. (1)

R. Wilson and H. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” TRAC-Trend. Anal. Chem. 18, 85–93 (1999).
[Crossref]

Other (2)

J. Adam, J. Trolès, and L. Brilland, “Low-loss mid-IR microstructured optical fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3D.2.
[Crossref]

Amorphous Materials Inc., “AMTIR-2,” (2014). Online at http://www.amorphousmaterials.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup. (b) MCT detector responsivity.

Fig. 2
Fig. 2

Optical properties of the suspended core fiber. (a) Measured fiber loss of a 6-hole suspended core fiber with a core diameter of a 20 μm (black solid) and estimated fiber loss of a suspended core fiber with a core diameter of 4.5 μm (red dashed). Inset: SEM image of the 4.5 μm suspended core fiber and a zoom-in on the core indication the fast and slow polarization axis. (b) Measured (red) and calculated dispersion for the slow (black) and fast (blue) axis.

Fig. 3
Fig. 3

Pumping at different input powers at (a) 3.3 μm and (b) 3.5 μm. The given powers are the estimated peak power delivered to the fiber.

Fig. 4
Fig. 4

Comparison between simulations (black) and experiments (red) at six different pump wavelengths (vertical dotted line). The ZDW is indicated as the vertical solid line.

Fig. 5
Fig. 5

Comparison between experiments and simulations (5 ensamble average) for three different input powers pumped at 3.5 μm. (a)–(c): Numerical (black) and experimental (red) spectrum after 18 cm of fiber. (d)–(f): Numerical spectral evolution as a function of the fiber length. (g)–(i): Numerical temporal evolution as a function of the fiber length.

Fig. 6
Fig. 6

Simulations with and without Raman contribution pumped at 3.5 μm. (a) Spectra after 18 cm of propagation. (b)–(c) Spectral evolution as a function of fiber length including and excluding the Raman contribution, respectively. (d)–(e) Temporal evolution as a function of fiber length including and excluding the Raman contribution, respectively.

Fig. 7
Fig. 7

Simulations with and without Raman contribution pumped at 4.4 μm. (a) Spectra after 18 cm of propagation. (b)–(c) Spectral evolution as a function of fiber length including and excluding the Raman contribution, respectively. (d)–(e) Temporal evolution as a function of fiber length including and excluding the Raman contribution, respectively.

Tables (1)

Tables Icon

Table 1 Pumping at 3.5 μm. Measured long and short wavelength edges at −20 dB, group-velocity matched short wavelength edges and the short wavelength edge difference at different input peak powers coupled to the fiber.

Metrics