Abstract

Picosecond-pulse III-V-on-silicon mode-locked lasers based on linear and ring extended cavity geometries are presented. In passive mode-locked operation a 12 kHz −3dB linewidth of the fundamental RF tone at 4.7 GHz is obtained for the linear cavity geometry and 16 kHz for the ring cavity geometry. Stabilization of the repetition rate of these devices using hybrid mode-locking is also demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Narrow line width frequency comb source based on an injection-locked III–V-on-silicon mode-locked laser

Sarah Uvin, Shahram Keyvaninia, Francois Lelarge, Guang-Hua Duan, Bart Kuyken, and Gunther Roelkens
Opt. Express 24(5) 5277-5286 (2016)

III–V-on-silicon anti-colliding pulse-type mode-locked laser

S. Keyvaninia, S. Uvin, M. Tassaert, Z. Wang, X. Fu, S. Latkowski, J. Marien, L. Thomassen, F. Lelarge, G. Duan, G. Lepage, P. Verheyen, J. Van Campenhout, E. Bente, and G. Roelkens
Opt. Lett. 40(13) 3057-3060 (2015)

Characterization of a fully integrated heterogeneous silicon/III-V colliding pulse mode-locked laser with on-chip feedback

Songtao Liu, Tin Komljenovic, Sudharsanan Srinivasan, Erik Norberg, Gregory Fish, and John E. Bowers
Opt. Express 26(8) 9714-9723 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  2. T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
    [Crossref]
  3. J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  4. V. Moskalenko, S. Latkowski, S. Tahvili, T. de Vries, M. Smit, and E. Bente, “Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser,” Opt. Express 22(23), 28865–28874 (2014).
    [Crossref] [PubMed]
  5. S. Latkowski, V. Moskalenko, S. Tahvili, L. Augustin, M. Smit, K. Williams, and E. Bente, “Monolithically integrated 2.5 GHz extended cavity mode-locked ring laser with intracavity phase modulators,” Opt. Lett. 40(1), 77–80 (2015).
    [Crossref] [PubMed]
  6. S. Srinivasan, M. Davenport, M. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. Bowers. “Low phase noise hybrid silicon mode-locked lasers.” Frontiers in Optoelectronics 14010-SS.3d (2014).
    [Crossref]
  7. S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3(1), 35–46 (2013).
    [Crossref]
  8. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013).
    [Crossref] [PubMed]
  9. D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for Silicon-on-Insulator photonic integrated circuits,” Opt. Express 20(20), 22278–22283 (2012).
    [Crossref] [PubMed]
  10. Y. Li, D. Vermeulen, Y. De Koninck, G. Yurtsever, G. Roelkens, and R. Baets, “Compact grating couplers on silicon-on-insulator with reduced backreflection,” Opt. Lett. 37(21), 4356–4358 (2012).
    [Crossref] [PubMed]
  11. F. Laghezza, F. Scotti, P. Ghelfi, and A. Bogoni, “Photonics-Assisted Multiband RF Transceiver for Wireless Communications,” J. Lightwave Technol. 32(16), 2896–2904 (2014).
    [Crossref]

2015 (1)

2014 (2)

2013 (2)

2012 (2)

2009 (1)

2007 (1)

2002 (1)

T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[Crossref]

Abeles, J.

T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[Crossref]

Augustin, L.

Baets, R.

Bente, E.

Bogaerts, W.

Bogoni, A.

Bordel, D.

De Koninck, Y.

de Vries, T.

Delfyett, P.

T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[Crossref]

DePriest, C.

T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[Crossref]

Duan, G.-H.

Fedeli, J.-M.

Ghelfi, P.

Jany, C.

Keyvaninia, S.

Laghezza, F.

Lambert, E.

Lamponi, M.

Latkowski, S.

Le Liepvre, A.

Lelarge, F.

Li, Y.

Make, D.

Moskalenko, V.

Muneeb, M.

Roelkens, G.

Scotti, F.

Smit, M.

Stankovic, S.

Tahvili, S.

Turpin, T.

T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[Crossref]

Valley, G. C.

Van Thourhout, D.

Van Veldhoven, P. J.

Vermeulen, D.

Williams, K.

Yao, J.

Yilmaz, T.

T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[Crossref]

Yurtsever, G.

IEEE Photon. Technol. Lett. (1)

T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Other (1)

S. Srinivasan, M. Davenport, M. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. Bowers. “Low phase noise hybrid silicon mode-locked lasers.” Frontiers in Optoelectronics 14010-SS.3d (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Cross-section of the III-V-on-silicon waveguide structure.
Fig. 2
Fig. 2 Schematic top-view (a) and longitudinal cross-section (b) of the linear cavity colliding pulse mode-locked laser geometry. A microscope image of the fabricated device is shown in (c).
Fig. 3
Fig. 3 Light-current curve for the linear cavity arrangement as a function of the saturable absorber reverse bias (fiber coupled output power).
Fig. 4
Fig. 4 (a) High resolution optical spectrum using a resolution bandwidth of 20 MHz; (b) intensity autocorrelation trace of the pulse train; (c) wide span electrical spectrum of the generated pulse train; (d) zoom of the electrical spectrum from baseband to the second harmonic illustrating strong suppression of the tone at half the repetition rate of the colliding pulse mode-locked laser. Resolution bandwidth, video bandwidth and sweep time used to obtain the RF spectra were 500 kHz, 50 kHz, and 1.5 s for (c), and 100 kHz, 10 kHz, and 7.5 s for (d) respectively. The laser gain section was biased at 160 mA, while the saturable absorber had a reverse bias of −1.2 V.
Fig. 5
Fig. 5 (a) Zoom of the main RF tone, indicating a 36 kHz −10dB bandwidth; (b) phase noise spectrum of the main RF tone at 4.69 GHz. The timing jitter is 2.56 ps when integrated from 50 kHz to 10 MHz. Resolution bandwidth, video bandwidth and sweep time used to obtain the RF spectra in (a) were 2 kHz, 20 Hz, and 40 s respectively.
Fig. 6
Fig. 6 (a) Wide band electrical spectrum under hybrid mode-locking; (b) phase noise spectrum of the main RF tone at 4.7 GHz under hybrid mode-locking. The timing jitter is 353 fs when integrated from 50 kHz to 10 MHz. Resolution bandwidth, video bandwidth and sweep time used to obtain the RF spectra in (a) were 500 kHz, 50 kHz, and 1.5 s respectively.
Fig. 7
Fig. 7 Schematic top-view (a) and longitudinal cross-section (b) of the ring cavity mode-locked laser geometry. A microscope image of the fabricated device is shown in (c).
Fig. 8
Fig. 8 Light-current curve for the ring cavity arrangement as a function of the saturable absorber reverse bias (fiber coupled output power).
Fig. 9
Fig. 9 (a) High resolution (20 MHz) optical spectrum; (b) autocorrelation trace of the optical output; (c) wide span electrical spectrum of the generated pulse train; (d) zoom of the electrical spectrum from baseband to the second harmonic illustrating a clean spectrum between the RF harmonics in the case of a ring-cavity mode-locked laser geometry. Resolution bandwidth, video bandwidth and sweep time used to obtain the RF spectra were 500 kHz, 50 kHz, and 1.5s for (c), and 100 kHz, 10 kHz, and 7.5 s for (d) respectively. The laser gain section was biased at 179 mA, while the saturable absorber had a reverse bias of −1.3 V.
Fig. 10
Fig. 10 (a) Zoom of the main RF tone, indicating a 49 kHz −10dB bandwidth; (b) phase noise spectrum of the main RF tone at 4.72 GHz. Resolution bandwidth, video bandwidth and sweep time used to obtain the RF spectra in (a) were 2 kHz, 20 Hz, and 40 s respectively.
Fig. 11
Fig. 11 (a) Wide band electrical spectrum under hybrid mode-locking; (b) phase noise spectrum of the main RF tone at 4.65 GHz under hybrid mode-locking. Resolution bandwidth, video bandwidth and sweep time used to obtain the RF spectra in (a) were 500 kHz, 50 kHz, and 1.5 s respectively.

Metrics