Abstract

In this article, we propose a large bandwidth mode-order converter design by dielectric waveguides with equal lengths but different cross-sectional areas. The efficient conversion between even and odd modes is verified by inducing required phase difference between the equal length waveguides of different widths. Y-junctions are composed of both tapered mode splitter and combiner to connect mono-mode waveguide to multi-mode waveguide. The converted mode profiles at the output port show that the device operates successfully at designed wavelengths with wide bandwidth. This study provides a novel technique to implement compact mode order converters and direction selective/sensitive photonic structures.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers

Daigao Chen, Xi Xiao, Lei Wang, Yu Yu, Wen Liu, and Qi Yang
Opt. Express 23(9) 11152-11159 (2015)

Reflectionless compact plasmonic waveguide mode converter by using a mode-selective cavity

Joonsoo Kim, Seung-Yeol Lee, Hyeonsoo Park, Kyookeun Lee, and Byoungho Lee
Opt. Express 23(7) 9004-9013 (2015)

Ultra-compact broadband mode converter and optical diode based on linear rod-type photonic crystal waveguide

Han Ye, Donglin Wang, Zhongyuan Yu, Jinqiannan Zhang, and Zhihui Chen
Opt. Express 23(8) 9673-9680 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. C. Ruege and R. M. Reano, “Multimode waveguide-cavity sensor based on fringe visibility detection,” Opt. Express 17(6), 4295–4305 (2009).
    [Crossref] [PubMed]
  2. V. Liu, D. A. Miller, and S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express 20(27), 28388–28397 (2012).
    [Crossref] [PubMed]
  3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  4. H. Kurt, B. B. Oner, M. Turduev, and I. H. Giden, “Modified Maxwell fish-eye approach for efficient coupler design by graded photonic crystals,” Opt. Express 20(20), 22018–22033 (2012).
    [Crossref] [PubMed]
  5. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
    [Crossref]
  6. R. C. Alferness and L. L. Buhl, “Electro-optic waveguide TE TM mode converter with low drive voltage,” Opt. Lett. 5(11), 473–475 (1980).
    [Crossref] [PubMed]
  7. Y. Huang, G. Xu, and S.-T. Ho, “An ultracompact optical mode order converter,” Photon. Technol. Lett. 18(21), 2281–2283 (2006).
    [Crossref]
  8. M. W. Pruessner, J. B. Khurgin, T. H. Stievater, W. S. Rabinovich, R. Bass, J. B. Boos, and V. J. Urick, “Demonstration of a mode-conversion cavity add-drop filter,” Opt. Lett. 36(12), 2230–2232 (2011).
    [Crossref] [PubMed]
  9. J. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express 13(11), 4180–4184 (2005).
    [Crossref] [PubMed]
  10. J. E. Castillo, J. M. Castro, R. K. Kostuk, and D. F. Geraghty, “Study of multichannel parallel anti-symmetric waveguide Bragg gratings for telecom applications,” Photon. Technol. Lett. 19(2), 85–87 (2007).
    [Crossref]
  11. B. B. Oner, M. Turduev, I. H. Giden, and H. Kurt, “Efficient mode converter design using asymmetric graded index photonic structures,” Opt. Lett. 38(2), 220–222 (2013).
    [Crossref] [PubMed]
  12. M. Turduev, B. Oner, I. Giden, and H. Kurt, “Mode transformation using graded photonic crystals with axial asymmetry,” J. Opt. Soc. Am. B 30(6), 1569–1579 (2013).
    [Crossref]
  13. J. R. Kurz, J. Huang, X. Xie, T. Saida, and M. M. Fejer, “Mode multiplexing in optical frequency mixers,” Opt. Lett. 29(6), 551–553 (2004).
    [Crossref] [PubMed]
  14. N. Erim, I. Giden, M. Turduev, and H. Kurt, “Efficient mode-order conversion using a photonic crystal structure with low symmetry,” J. Opt. Soc. Am. B 30(11), 3086–3094 (2013).
    [Crossref]
  15. Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” Photon. Technol. Lett. 20(7), 520–522 (2008).
    [Crossref]
  16. P. Qu, C. Liu, W. Dong, W. Chen, F. Li, H. Li, Z. Gong, S. Ruan, X. Zhang, and J. Zhou, “Design of a vector-sum integrated microwave photonic phase shifter in silicon-on-insulator waveguides,” Appl. Opt. 50(17), 2523–2530 (2011).
    [Crossref] [PubMed]
  17. L. H. Frandsen, Y. Elesin, L. F. Frellsen, M. Mitrovic, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material,” Opt. Express 22(7), 8525–8532 (2014).
    [Crossref] [PubMed]
  18. J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
    [Crossref]
  19. N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012).
    [Crossref] [PubMed]
  20. S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18(8), 8430–8439 (2010).
    [Crossref] [PubMed]
  21. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [Crossref] [PubMed]
  22. N. Riesen and J. D. Love, “Tapered Velocity Mode-Selective Couplers,” J. Lightwave Technol. 31(13), 2163–2169 (2013).
    [Crossref]
  23. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
    [PubMed]
  24. D. Ohana and U. Levy, “Mode conversion based on dielectric metamaterial in silicon,” Opt. Express 22(22), 27617–27631 (2014).
    [Crossref] [PubMed]
  25. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [Crossref] [PubMed]
  26. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  28. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
    [Crossref]

2014 (2)

2013 (5)

2012 (4)

2011 (2)

2010 (2)

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18(8), 8430–8439 (2010).
[Crossref] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

2009 (2)

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[Crossref]

A. C. Ruege and R. M. Reano, “Multimode waveguide-cavity sensor based on fringe visibility detection,” Opt. Express 17(6), 4295–4305 (2009).
[Crossref] [PubMed]

2008 (1)

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” Photon. Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

2007 (1)

J. E. Castillo, J. M. Castro, R. K. Kostuk, and D. F. Geraghty, “Study of multichannel parallel anti-symmetric waveguide Bragg gratings for telecom applications,” Photon. Technol. Lett. 19(2), 85–87 (2007).
[Crossref]

2006 (1)

Y. Huang, G. Xu, and S.-T. Ho, “An ultracompact optical mode order converter,” Photon. Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

2005 (1)

2004 (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

J. R. Kurz, J. Huang, X. Xie, T. Saida, and M. M. Fejer, “Mode multiplexing in optical frequency mixers,” Opt. Lett. 29(6), 551–553 (2004).
[Crossref] [PubMed]

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

2001 (1)

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[Crossref]

1980 (1)

Alferness, R. C.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Argyros, A.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Bass, R.

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Blair, J.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[Crossref]

Bland-Hawthorn, J.

Boos, J. B.

Bowers, J. E.

Buhl, L. L.

Castillo, J. E.

J. E. Castillo, J. M. Castro, R. K. Kostuk, and D. F. Geraghty, “Study of multichannel parallel anti-symmetric waveguide Bragg gratings for telecom applications,” Photon. Technol. Lett. 19(2), 85–87 (2007).
[Crossref]

Castro, J.

Castro, J. M.

J. E. Castillo, J. M. Castro, R. K. Kostuk, and D. F. Geraghty, “Study of multichannel parallel anti-symmetric waveguide Bragg gratings for telecom applications,” Photon. Technol. Lett. 19(2), 85–87 (2007).
[Crossref]

Chen, W.

Chen, Y.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[Crossref]

Cho, Y. B.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” Photon. Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Citrin, D. S.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[Crossref]

Dai, D.

Ding, Y.

Dong, W.

Elesin, Y.

Erim, N.

Fan, S.

Fejer, M. M.

Feng, J.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[Crossref]

Frandsen, L. H.

Frellsen, L. F.

Geraghty, D. F.

J. E. Castillo, J. M. Castro, R. K. Kostuk, and D. F. Geraghty, “Study of multichannel parallel anti-symmetric waveguide Bragg gratings for telecom applications,” Photon. Technol. Lett. 19(2), 85–87 (2007).
[Crossref]

J. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express 13(11), 4180–4184 (2005).
[Crossref] [PubMed]

Giden, I.

Giden, I. H.

Gong, Z.

Greiner, C. M.

Hao, R.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[Crossref]

Ho, S.-T.

Y. Huang, G. Xu, and S.-T. Ho, “An ultracompact optical mode order converter,” Photon. Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

Honkanen, S.

Huang, J.

Huang, Y.

Y. Huang, G. Xu, and S.-T. Ho, “An ultracompact optical mode order converter,” Photon. Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

Iazikov, D.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Joannopoulos, J.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S.

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Khurgin, J. B.

Kostuk, R. K.

J. E. Castillo, J. M. Castro, R. K. Kostuk, and D. F. Geraghty, “Study of multichannel parallel anti-symmetric waveguide Bragg gratings for telecom applications,” Photon. Technol. Lett. 19(2), 85–87 (2007).
[Crossref]

Kurt, H.

Kurz, J. R.

Lee, J. H.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” Photon. Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Leon-Saval, S. G.

Levy, U.

Li, F.

Li, H.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Liu, C.

Liu, V.

Love, J. D.

Miller, D. A.

Mitrovic, M.

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Mossberg, T. W.

Ohana, D.

Oner, B.

Oner, B. B.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Pruessner, M. W.

Qu, P.

Rabinovich, W. S.

Reano, R. M.

Riesen, N.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Ruan, S.

Ruege, A. C.

Saida, T.

Shi, Y.

Shin, S. Y.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” Photon. Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Sigmund, O.

Stievater, T. H.

Summers, C. J.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[Crossref]

Tang, Y.

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Turduev, M.

Urick, V. J.

Wang, J.

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Xie, X.

Xu, G.

Y. Huang, G. Xu, and S.-T. Ho, “An ultracompact optical mode order converter,” Photon. Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

Yang, B. K.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” Photon. Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Yoon, J. B.

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” Photon. Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Yvind, K.

Zhang, X.

Zhou, J.

Zhou, Z.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[Crossref]

Appl. Opt. (2)

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Electron. Lett. (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[Crossref]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. B (1)

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27(2), 568–572 (2009).
[Crossref]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (9)

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref] [PubMed]

J. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express 13(11), 4180–4184 (2005).
[Crossref] [PubMed]

A. C. Ruege and R. M. Reano, “Multimode waveguide-cavity sensor based on fringe visibility detection,” Opt. Express 17(6), 4295–4305 (2009).
[Crossref] [PubMed]

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18(8), 8430–8439 (2010).
[Crossref] [PubMed]

L. H. Frandsen, Y. Elesin, L. F. Frellsen, M. Mitrovic, Y. Ding, O. Sigmund, and K. Yvind, “Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material,” Opt. Express 22(7), 8525–8532 (2014).
[Crossref] [PubMed]

D. Ohana and U. Levy, “Mode conversion based on dielectric metamaterial in silicon,” Opt. Express 22(22), 27617–27631 (2014).
[Crossref] [PubMed]

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
[PubMed]

H. Kurt, B. B. Oner, M. Turduev, and I. H. Giden, “Modified Maxwell fish-eye approach for efficient coupler design by graded photonic crystals,” Opt. Express 20(20), 22018–22033 (2012).
[Crossref] [PubMed]

V. Liu, D. A. Miller, and S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express 20(27), 28388–28397 (2012).
[Crossref] [PubMed]

Opt. Lett. (5)

Photon. Technol. Lett. (3)

Y. Huang, G. Xu, and S.-T. Ho, “An ultracompact optical mode order converter,” Photon. Technol. Lett. 18(21), 2281–2283 (2006).
[Crossref]

J. E. Castillo, J. M. Castro, R. K. Kostuk, and D. F. Geraghty, “Study of multichannel parallel anti-symmetric waveguide Bragg gratings for telecom applications,” Photon. Technol. Lett. 19(2), 85–87 (2007).
[Crossref]

Y. B. Cho, B. K. Yang, J. H. Lee, J. B. Yoon, and S. Y. Shin, “Silicon photonic wire filter using asymmetric sidewall long-period waveguide grating in a two-mode waveguide,” Photon. Technol. Lett. 20(7), 520–522 (2008).
[Crossref]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) 3D schematic view of the designed mode order converter device. (b) Frequency dependence of the difference between propagation wave-vectors (Δk). Almost negligible frequency dependency at the proximity of the peak point enables large bandwidth conversion. The symbol R represents the reference point that the waveguide length is determined accordingly. The phase shift error between the peak point (P) and R is 5°. Phase shift error between R and the upper limit (U) equals to the error between R and the lower limit (L) that is also 5°.
Fig. 2
Fig. 2 (a) The top view of the converter design. Part I and III enables splitting and combining of the propagating beams. Phase shifting occurs in Part II. (b) Zoom-in views of the Part I and III are given with structural parameters in detail.
Fig. 3
Fig. 3 (a) Forward and backward transmission efficiencies are given. The shaded region represents the operating frequency regime. (b) Contrast ratio of the design with the given efficiencies is plotted.
Fig. 4
Fig. 4 Single frequency time domain snapshots for different operating frequencies are given. Lower frequency (a) forward, (b) backward propagation. Optimum frequency (c) forward, (d) backward propagation. Upper frequency (e) forward, (f) backward propagation. Electric field profiles along the out-of-plane are also given as insets for backward propagation cases.
Fig. 5
Fig. 5 Frequency and width difference (Δw = w1- w2) dependency of Δk is plotted. One of the waveguide thickness is fixed at w1 = 0.75a for varying values of w2 = [0.72a-0.78a].
Fig. 6
Fig. 6 Dispersion diagrams of the waveguides utilized in the design are computed and plotted for (a) w = 0.70a (b) w = 0.75a, (c) w = 0.77a and (d) w = 1.54a. Zoom-in part of the operating band dispersion curves is given as an inset. The thickness and dielectric values of the waveguides with SiO2 under-cladding are t = 0.70a and n = 3.46. The normalized frequencies of ωa/2πc = 0.2887, ωa/2πc = 0.3117 and ωa/2πc = 0.3401 (lower limit, center and upper limit of the operating bandwidth, respectively) are also indicated in the figure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J= ω min ω max (1 p ω ) 2 ( ω max ω min ) dω ,

Metrics