Abstract

We present the fabrication and characterization of channel waveguides based on composites containing silver nanoparticles. The substrate employed is silica and the nanoparticles were produced by a masked ion-implantation technique. Multiple implantation processes were made at different energies in order to produce waveguides with an appropriate width. We also present results for the characterization of the waveguiding properties of the devices produced.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna
Opt. Express 15(14) 8513-8520 (2007)

Reconfigurable optical channel waveguides in lithium niobate crystals produced by combination of low-dose O3+ ion implantation and selective white light illumination

Yang Tan, Feng Chen, Milutin Stepić, Vladimir Shandarov, and Detlef Kip
Opt. Express 16(14) 10465-10470 (2008)

A tunable channel waveguide array fabricated by the implantations of He+ ions in an electrooptical KLTN substrate.

Alexander Gumennik, Galina Perepelitsa, Abraham Israel, and Aharon J. Agranat
Opt. Express 17(8) 6166-6176 (2009)

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters,” Springer series in materials science, Springer: Berlin (1995).
    [Crossref]
  2. N. Del Fatti and F. Vallee, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl. Phys. B 73, 383–390 (2001).
    [Crossref]
  3. A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).
  4. R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.20091909–1912 (2009).
  5. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Opt. Soc. Am. B 107, 668–677 (2003).
  6. B. E Olsson, L. Rau, and D. J. Blumenthal, “WDM to OTDM Multiplexing Using an Ultrafast All-Optical Wavelength Converter,” IEEE Photonic Tech. L. 13, (9)1005–1007 (2001).
    [Crossref]
  7. A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
    [Crossref]
  8. B. Can-Uc, R. Rangel-Rojo, L. Rodríguez-Fernández, and A. Oliver, “Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica,” Opt. Mater. Express 3, (12)2012–2021 (2013).
    [Crossref]
  9. S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).
  10. F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
    [Crossref]
  11. X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun. 285, 1225–1228 (2012).
  12. L. L. Wang and X. J. Cui, “Absorption spectra, near-field intensity and microscopic cross section of RbTiOPO4 channel waveguide formed by ion implantation”, Opt. Mater. 34, 1455–1458 (2012).
    [Crossref]
  13. J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, and X. L. Wang, “Lithium Niobate Ridge Waveguides Fabricated by Ion Implantation Followed by Ion Beam Etching,” J. Lightw. Technol. 28, (13)1913–1916 (2010).
    [Crossref]
  14. H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
    [Crossref]
  15. J. Licea-Rodríguez, I. Rocha-Mendoza, R. Rangel-Rojo, L. Rodríguez-Fernndez, and A. Oliver, “Femtosecond laser writing over silver nanoparticles system embedded in silica using nonlinear microscopy,” Opt. Mater. 36, 682–686 (2014).
    [Crossref]
  16. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15, (14)8513–8520 (2007).
    [Crossref] [PubMed]
  17. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
    [Crossref]
  18. M. H. Jenkins, B. S. Phillips, Y. Zhao, and M. R. Holmes, “Optical characterization of optofluidic waveguides using scattered light imaging,” Opt. Commun. 284, 3980–3982 (2011).
  19. S.I. Najafi, “Introduction to Glass Integrated Optics,” Artech House, Norwood (1992).
  20. G. Liu, R. He, S. Akhmadaliev, J. R. Vazquez de Aldana, S. Zhou, and F. Chen, “Optical waveguides in LiTaO3 cristals fabricated by swift C5+ ion irradiation,” Nucl. Instr. Meth. Phys. Res. B 325, 43–46 (2014).
    [Crossref]
  21. P. J. Chandler and F.L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
    [Crossref]

2014 (2)

J. Licea-Rodríguez, I. Rocha-Mendoza, R. Rangel-Rojo, L. Rodríguez-Fernndez, and A. Oliver, “Femtosecond laser writing over silver nanoparticles system embedded in silica using nonlinear microscopy,” Opt. Mater. 36, 682–686 (2014).
[Crossref]

G. Liu, R. He, S. Akhmadaliev, J. R. Vazquez de Aldana, S. Zhou, and F. Chen, “Optical waveguides in LiTaO3 cristals fabricated by swift C5+ ion irradiation,” Nucl. Instr. Meth. Phys. Res. B 325, 43–46 (2014).
[Crossref]

2013 (2)

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

B. Can-Uc, R. Rangel-Rojo, L. Rodríguez-Fernández, and A. Oliver, “Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica,” Opt. Mater. Express 3, (12)2012–2021 (2013).
[Crossref]

2012 (2)

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun. 285, 1225–1228 (2012).

L. L. Wang and X. J. Cui, “Absorption spectra, near-field intensity and microscopic cross section of RbTiOPO4 channel waveguide formed by ion implantation”, Opt. Mater. 34, 1455–1458 (2012).
[Crossref]

2011 (2)

A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).

M. H. Jenkins, B. S. Phillips, Y. Zhao, and M. R. Holmes, “Optical characterization of optofluidic waveguides using scattered light imaging,” Opt. Commun. 284, 3980–3982 (2011).

2010 (1)

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, and X. L. Wang, “Lithium Niobate Ridge Waveguides Fabricated by Ion Implantation Followed by Ion Beam Etching,” J. Lightw. Technol. 28, (13)1913–1916 (2010).
[Crossref]

2007 (2)

2006 (2)

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Opt. Soc. Am. B 107, 668–677 (2003).

2001 (2)

B. E Olsson, L. Rau, and D. J. Blumenthal, “WDM to OTDM Multiplexing Using an Ultrafast All-Optical Wavelength Converter,” IEEE Photonic Tech. L. 13, (9)1005–1007 (2001).
[Crossref]

N. Del Fatti and F. Vallee, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl. Phys. B 73, 383–390 (2001).
[Crossref]

2000 (1)

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

1986 (1)

P. J. Chandler and F.L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
[Crossref]

Akhmadaliev, S.

G. Liu, R. He, S. Akhmadaliev, J. R. Vazquez de Aldana, S. Zhou, and F. Chen, “Optical waveguides in LiTaO3 cristals fabricated by swift C5+ ion irradiation,” Nucl. Instr. Meth. Phys. Res. B 325, 43–46 (2014).
[Crossref]

Angel-Valenzuela, J. L.

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

Banks, C.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Blumenthal, D. J.

B. E Olsson, L. Rau, and D. J. Blumenthal, “WDM to OTDM Multiplexing Using an Ultrafast All-Optical Wavelength Converter,” IEEE Photonic Tech. L. 13, (9)1005–1007 (2001).
[Crossref]

Bookey, H. T.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.20091909–1912 (2009).

Can-Uc, B.

Chandler, P. J.

P. J. Chandler and F.L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
[Crossref]

Cheang-Wong, J. C.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.20091909–1912 (2009).

Chen, F.

G. Liu, R. He, S. Akhmadaliev, J. R. Vazquez de Aldana, S. Zhou, and F. Chen, “Optical waveguides in LiTaO3 cristals fabricated by swift C5+ ion irradiation,” Nucl. Instr. Meth. Phys. Res. B 325, 43–46 (2014).
[Crossref]

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Chen, M.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun. 285, 1225–1228 (2012).

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Opt. Soc. Am. B 107, 668–677 (2003).

Crespo-Sosa, A.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.20091909–1912 (2009).

Cui, X. J.

L. L. Wang and X. J. Cui, “Absorption spectra, near-field intensity and microscopic cross section of RbTiOPO4 channel waveguide formed by ion implantation”, Opt. Mater. 34, 1455–1458 (2012).
[Crossref]

Curley, M. J.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Del Fatti, N.

N. Del Fatti and F. Vallee, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl. Phys. B 73, 383–390 (2001).
[Crossref]

Flores-Romero, E.

Fu, G.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

He, R.

G. Liu, R. He, S. Akhmadaliev, J. R. Vazquez de Aldana, S. Zhou, and F. Chen, “Optical waveguides in LiTaO3 cristals fabricated by swift C5+ ion irradiation,” Nucl. Instr. Meth. Phys. Res. B 325, 43–46 (2014).
[Crossref]

Hensley, D. K.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Holmes, M. R.

M. H. Jenkins, B. S. Phillips, Y. Zhao, and M. R. Holmes, “Optical characterization of optofluidic waveguides using scattered light imaging,” Opt. Commun. 284, 3980–3982 (2011).

Huang, Q.

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, and X. L. Wang, “Lithium Niobate Ridge Waveguides Fabricated by Ion Implantation Followed by Ion Beam Etching,” J. Lightw. Technol. 28, (13)1913–1916 (2010).
[Crossref]

Ila, D.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Jenkins, M. H.

M. H. Jenkins, B. S. Phillips, Y. Zhao, and M. R. Holmes, “Optical characterization of optofluidic waveguides using scattered light imaging,” Opt. Commun. 284, 3980–3982 (2011).

Jiang, Y.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Kar, A. K.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.20091909–1912 (2009).

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Opt. Soc. Am. B 107, 668–677 (2003).

Kip, D.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters,” Springer series in materials science, Springer: Berlin (1995).
[Crossref]

Lama, F.L.

P. J. Chandler and F.L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
[Crossref]

Licea-Rodríguez, J.

J. Licea-Rodríguez, I. Rocha-Mendoza, R. Rangel-Rojo, L. Rodríguez-Fernndez, and A. Oliver, “Femtosecond laser writing over silver nanoparticles system embedded in silica using nonlinear microscopy,” Opt. Mater. 36, 682–686 (2014).
[Crossref]

Liu, G.

G. Liu, R. He, S. Akhmadaliev, J. R. Vazquez de Aldana, S. Zhou, and F. Chen, “Optical waveguides in LiTaO3 cristals fabricated by swift C5+ ion irradiation,” Nucl. Instr. Meth. Phys. Res. B 325, 43–46 (2014).
[Crossref]

Liu, P.

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, and X. L. Wang, “Lithium Niobate Ridge Waveguides Fabricated by Ion Implantation Followed by Ion Beam Etching,” J. Lightw. Technol. 28, (13)1913–1916 (2010).
[Crossref]

Liu, X.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun. 285, 1225–1228 (2012).

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun. 285, 1225–1228 (2012).

Liu, X. H.

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, and X. L. Wang, “Lithium Niobate Ridge Waveguides Fabricated by Ion Implantation Followed by Ion Beam Etching,” J. Lightw. Technol. 28, (13)1913–1916 (2010).
[Crossref]

López-Suares, A.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.20091909–1912 (2009).

Lu, F.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun. 285, 1225–1228 (2012).

Lu, Q.M.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Ma, Y.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun. 285, 1225–1228 (2012).

Márquez, H.

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15, (14)8513–8520 (2007).
[Crossref] [PubMed]

McCarthy, J.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.20091909–1912 (2009).

Ming, X.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun. 285, 1225–1228 (2012).

Najafi, S.I.

S.I. Najafi, “Introduction to Glass Integrated Optics,” Artech House, Norwood (1992).

Noguez, C.

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
[Crossref]

Nóguez, C.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Oliver, A.

J. Licea-Rodríguez, I. Rocha-Mendoza, R. Rangel-Rojo, L. Rodríguez-Fernndez, and A. Oliver, “Femtosecond laser writing over silver nanoparticles system embedded in silica using nonlinear microscopy,” Opt. Mater. 36, 682–686 (2014).
[Crossref]

B. Can-Uc, R. Rangel-Rojo, L. Rodríguez-Fernández, and A. Oliver, “Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica,” Opt. Mater. Express 3, (12)2012–2021 (2013).
[Crossref]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.20091909–1912 (2009).

Olsson, B. E

B. E Olsson, L. Rau, and D. J. Blumenthal, “WDM to OTDM Multiplexing Using an Ultrafast All-Optical Wavelength Converter,” IEEE Photonic Tech. L. 13, (9)1005–1007 (2001).
[Crossref]

Phillips, B. S.

M. H. Jenkins, B. S. Phillips, Y. Zhao, and M. R. Holmes, “Optical characterization of optofluidic waveguides using scattered light imaging,” Opt. Commun. 284, 3980–3982 (2011).

Poker, D. B.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Rangel-Rojo, R.

J. Licea-Rodríguez, I. Rocha-Mendoza, R. Rangel-Rojo, L. Rodríguez-Fernndez, and A. Oliver, “Femtosecond laser writing over silver nanoparticles system embedded in silica using nonlinear microscopy,” Opt. Mater. 36, 682–686 (2014).
[Crossref]

B. Can-Uc, R. Rangel-Rojo, L. Rodríguez-Fernández, and A. Oliver, “Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica,” Opt. Mater. Express 3, (12)2012–2021 (2013).
[Crossref]

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15, (14)8513–8520 (2007).
[Crossref] [PubMed]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.20091909–1912 (2009).

Rau, L.

B. E Olsson, L. Rau, and D. J. Blumenthal, “WDM to OTDM Multiplexing Using an Ultrafast All-Optical Wavelength Converter,” IEEE Photonic Tech. L. 13, (9)1005–1007 (2001).
[Crossref]

Reyes-Esqueda, J. A.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Rickards, J.

Rocha-Mendoza, I.

J. Licea-Rodríguez, I. Rocha-Mendoza, R. Rangel-Rojo, L. Rodríguez-Fernndez, and A. Oliver, “Femtosecond laser writing over silver nanoparticles system embedded in silica using nonlinear microscopy,” Opt. Mater. 36, 682–686 (2014).
[Crossref]

Rodriguez-Fernández, L.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.20091909–1912 (2009).

Rodríguez-Fernández, L.

B. Can-Uc, R. Rangel-Rojo, L. Rodríguez-Fernández, and A. Oliver, “Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica,” Opt. Mater. Express 3, (12)2012–2021 (2013).
[Crossref]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Rodríguez-Fernndez, L.

J. Licea-Rodríguez, I. Rocha-Mendoza, R. Rangel-Rojo, L. Rodríguez-Fernndez, and A. Oliver, “Femtosecond laser writing over silver nanoparticles system embedded in silica using nonlinear microscopy,” Opt. Mater. 36, 682–686 (2014).
[Crossref]

Rodríguez-Iglesias, V.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.20091909–1912 (2009).

Román-Velasquez, C. E.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Romero, E.

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

Rter, C. E.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Salazar, D.

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

Sarkisov, S. S.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Opt. Soc. Am. B 107, 668–677 (2003).

Seman, J. A.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Silva-Pereyra, H. G.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.20091909–1912 (2009).

Stepanov, A. L.

A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).

Svetchnikov, V. L.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Trejo-Luna, R.

Vallee, F.

N. Del Fatti and F. Vallee, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl. Phys. B 73, 383–390 (2001).
[Crossref]

Vázquez, G. V.

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals,” Opt. Express 15, (14)8513–8520 (2007).
[Crossref] [PubMed]

Vazquez de Aldana, J. R.

G. Liu, R. He, S. Akhmadaliev, J. R. Vazquez de Aldana, S. Zhou, and F. Chen, “Optical waveguides in LiTaO3 cristals fabricated by swift C5+ ion irradiation,” Nucl. Instr. Meth. Phys. Res. B 325, 43–46 (2014).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters,” Springer series in materials science, Springer: Berlin (1995).
[Crossref]

Wang, J. C.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Wang, K. M.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Wang, L.

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Wang, L. L.

L. L. Wang and X. J. Cui, “Absorption spectra, near-field intensity and microscopic cross section of RbTiOPO4 channel waveguide formed by ion implantation”, Opt. Mater. 34, 1455–1458 (2012).
[Crossref]

Wang, X. L.

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, and X. L. Wang, “Lithium Niobate Ridge Waveguides Fabricated by Ion Implantation Followed by Ion Beam Etching,” J. Lightw. Technol. 28, (13)1913–1916 (2010).
[Crossref]

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

Williams, E. K.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Yin, J.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun. 285, 1225–1228 (2012).

Zandbergen, H. W.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Zhang, S.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun. 285, 1225–1228 (2012).

Zhao, J.

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun. 285, 1225–1228 (2012).

Zhao, J. H.

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, and X. L. Wang, “Lithium Niobate Ridge Waveguides Fabricated by Ion Implantation Followed by Ion Beam Etching,” J. Lightw. Technol. 28, (13)1913–1916 (2010).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Opt. Soc. Am. B 107, 668–677 (2003).

Zhao, Y.

M. H. Jenkins, B. S. Phillips, Y. Zhao, and M. R. Holmes, “Optical characterization of optofluidic waveguides using scattered light imaging,” Opt. Commun. 284, 3980–3982 (2011).

Zhou, S.

G. Liu, R. He, S. Akhmadaliev, J. R. Vazquez de Aldana, S. Zhou, and F. Chen, “Optical waveguides in LiTaO3 cristals fabricated by swift C5+ ion irradiation,” Nucl. Instr. Meth. Phys. Res. B 325, 43–46 (2014).
[Crossref]

Zykov, G. A.

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Appl. Phys. B (1)

N. Del Fatti and F. Vallee, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl. Phys. B 73, 383–390 (2001).
[Crossref]

Appl. Phys. Lett. (1)

F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q.M. Lu, C. E. Rter, and D. Kip, “Optical channel waveguides in Nd : YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett. 88, 071123 (2006).
[Crossref]

IEEE Photonic Tech. L. (1)

B. E Olsson, L. Rau, and D. J. Blumenthal, “WDM to OTDM Multiplexing Using an Ultrafast All-Optical Wavelength Converter,” IEEE Photonic Tech. L. 13, (9)1005–1007 (2001).
[Crossref]

J. Lightw. Technol. (1)

J. H. Zhao, X. H. Liu, Q. Huang, P. Liu, and X. L. Wang, “Lithium Niobate Ridge Waveguides Fabricated by Ion Implantation Followed by Ion Beam Etching,” J. Lightw. Technol. 28, (13)1913–1916 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Opt. Soc. Am. B 107, 668–677 (2003).

J. Phys. Chem. C (1)

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
[Crossref]

Nucl. Instr. Meth. Phys. Res. B (2)

G. Liu, R. He, S. Akhmadaliev, J. R. Vazquez de Aldana, S. Zhou, and F. Chen, “Optical waveguides in LiTaO3 cristals fabricated by swift C5+ ion irradiation,” Nucl. Instr. Meth. Phys. Res. B 325, 43–46 (2014).
[Crossref]

S. S. Sarkisov, M. J. Curley, E. K. Williams, D. Ila, V. L. Svetchnikov, H. W. Zandbergen, G. A. Zykov, C. Banks, J. C. Wang, D. B. Poker, and D. K. Hensley, “Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3,” Nucl. Instr. Meth. Phys. Res. B 166, 750–757 (2000).

Opt. Acta (1)

P. J. Chandler and F.L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127–143 (1986).
[Crossref]

Opt. Commun. (2)

M. H. Jenkins, B. S. Phillips, Y. Zhao, and M. R. Holmes, “Optical characterization of optofluidic waveguides using scattered light imaging,” Opt. Commun. 284, 3980–3982 (2011).

X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, Y. Ma, and X. Liu, “Waveguide effect in ZnO crystal by He+ ions implantation: Analysis of optical confinement from implant-induced lattice damage,” Opt. Commun. 285, 1225–1228 (2012).

Opt. Express (1)

Opt. Mater. (3)

L. L. Wang and X. J. Cui, “Absorption spectra, near-field intensity and microscopic cross section of RbTiOPO4 channel waveguide formed by ion implantation”, Opt. Mater. 34, 1455–1458 (2012).
[Crossref]

H. Márquez, D. Salazar, R. Rangel-Rojo, J. L. Angel-Valenzuela, G. V. Vázquez, and E. Romero, “Sythesis of optical waveguides in SiO2 by silver ion implantation,” Opt. Mater. 35, 927–934 (2013).
[Crossref]

J. Licea-Rodríguez, I. Rocha-Mendoza, R. Rangel-Rojo, L. Rodríguez-Fernndez, and A. Oliver, “Femtosecond laser writing over silver nanoparticles system embedded in silica using nonlinear microscopy,” Opt. Mater. 36, 682–686 (2014).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Nóguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Rev. Adv. Mater. Sci. (1)

A. L. Stepanov, “Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review,” Rev. Adv. Mater. Sci. 27, 115–145 (2011).

Other (3)

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodriguez-Fernández, J. C. Cheang-Wong, A. Crespo-Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun.20091909–1912 (2009).

U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters,” Springer series in materials science, Springer: Berlin (1995).
[Crossref]

S.I. Najafi, “Introduction to Glass Integrated Optics,” Artech House, Norwood (1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The SRIM simulations for the multiple Ag implantation process in SiO2. Shown are the simulated Ag ion distributions for each energy, and the superposition of all of them. The vertical axis is given in counts, which are proportional to the Ag ions concentration. The fluences are multiplicaded by 1 × 1016
Fig. 2
Fig. 2 End-face and top-view microphotographs of channels waveguides fabricated by Ag ion implantation. a) and d) 10 μm, b) and e) 15 μm and c) and f) 20 μm of width respectively.
Fig. 3
Fig. 3 Absorption spectra of the slab waveguides containing silver nanoparticles, showing the usual surface plasmon resonance at 390 nm.
Fig. 4
Fig. 4 The schematic of the experimental setup to observe the intensity distribution of the propagation modes.
Fig. 5
Fig. 5 2D modal distribution of the channel waveguide with Ag nanoparticles. a), b) and c) are the modal distribution for the 10 μm; d), e) and f) are for the 15 μm and the last, are for the 20 μm waveguides respectively for different input coupling conditions in x-axis
Fig. 6
Fig. 6 3D irradiance modal distribution of the channel waveguide with Ag nanoparticles obtained from each end face modal distribution images of Fig 5. a), b) and c) are the intensity modal distribution for the 10 μm; d), e) and f) are for the 15 μm and the last, are for the 20 μm waveguides respectively
Fig. 7
Fig. 7 Semilog plot at the integrated intensity versus position along the direction of propagation in the guide for a 10μm wide guide. The inset shows the original CCD camera image of the scattered light
Fig. 8
Fig. 8 Effective refractive index of the guided modes for the Ag nanoparticles produced by ion implantation. The data obtained is for the multi-implanted slab waveguide.
Fig. 9
Fig. 9 The circles in red are the reconstructed refractive index profile using the Neff and n0H of the planar waveguide containing silver nanoparticles by ion implantation process. The dashed black line is the refractive index of the substrate.

Tables (1)

Tables Icon

Table 1 Optical propagation losses to the different width channel waveguides.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α = ln ( P 1 / P 0 ) / L ,
N m eff = n p sin [ sin 1 ( sin ( θ m n p ) ) + A ] ,

Metrics