Abstract

A one-dimensional micro-bending vector sensor based on two-mode interference has been introduced. This device was fabricated by lateral offset splicing a piece of six-air-hole grapefruit microstructure fiber (GMF) with single mode fiber (SMF). Variation of effective mode index occurred by micro-bending was investigated in simulation and experiment. This device exhibits micro-bending sensitivities of 0.441 nm/m−1 and −0.754 nm/m−1 at 0° and 180° bending orientations, respectively. Moreover, this sensor is immune to surrounding refractive index (SRI) and presents a low crosstalk of temperature.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing

Zhilong Ou, Yongqin Yu, Peiguang Yan, Jishun Wang, Quandong Huang, Xue Chen, Chenlin Du, and Huifeng Wei
Opt. Express 21(20) 23812-23821 (2013)

Low-temperature crosstalk and surrounding refractive index insensitive vector bending sensor based on hole-assistant dual-core fiber

Jing Yang, Chunying Guan, Jiaming Zhang, Mingjie Wang, Min Yang, Zheng Zhu, Pengfei Wang, Jun Yang, and Libo Yuan
Appl. Opt. 58(24) 6597-6603 (2019)

Highly sensitive vector curvature sensor based on a triple-core fiber interferometer

Shaoxian Zhang, Ai Zhou, Huiyong Guo, Yujia Zhao, and Libo Yuan
OSA Continuum 2(6) 1953-1963 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fiber gratings for structural bend sensing,” Electron. Lett. 34(18), 1773–1775 (1998).
    [Crossref]
  2. P. Saffari, T. Allsop, A. Adebayo, D. Webb, R. Haynes, and M. M. Roth, “Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures,” Opt. Lett. 39(12), 3508–3511 (2014).
    [Crossref] [PubMed]
  3. Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
    [Crossref]
  4. D. Monzon-Hernandez, A. Martinez-Rios, I. Torres-Gomez, and G. Salceda-Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett. 36(22), 4380–4382 (2011).
    [Crossref] [PubMed]
  5. S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
    [Crossref] [PubMed]
  6. Z. L. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express 21(20), 23812–23821 (2013).
    [Crossref] [PubMed]
  7. O. Lisboa and C. K. Jen, “An optical-fiber bending sensor using two-mode fibers with an off-center core,” Smart Mater. Struct. 3(2), 164–170 (1994).
    [Crossref]
  8. C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express 20(14), 15406–15417 (2012).
    [Crossref] [PubMed]
  9. B. Kim, T.-H. Kim, L. Cui, and Y. Chung, “Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications,” Opt. Express 17(18), 15502–15507 (2009).
    [Crossref] [PubMed]
  10. H. Qu, G. F. Yan, and M. Skorobogatiy, “Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber,” Opt. Lett. 39(16), 4835–4838 (2014).
    [Crossref] [PubMed]
  11. I. A. Goncharenko, M. Marciniak, A. I. Konojko, and V. N. Reabtsev, “Optimization of the structure of an optical vectoral bend and stress sensor based on a three-core microstructured fiber,” Meas. Tech. 56(1), 65–71 (2013).
    [Crossref]
  12. R. M. Silva, M. S. Ferreira, J. Kobelke, K. Schuster, and O. Frazão, “Simultaneous measurement of curvature and strain using a suspended multicore fiber,” Opt. Lett. 36(19), 3939–3941 (2011).
    [Crossref] [PubMed]
  13. D. Zhao, X. Chen, K. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. Jones, “Bend Sensors with Direction Recognition Based on Long-Period Gratings Written in D-Shaped Fiber,” Appl. Opt. 43(29), 5425–5428 (2004).
    [Crossref] [PubMed]
  14. K. K. C. Lee, A. Mariampillai, M. Haque, B. A. Standish, V. X. D. Yang, and P. R. Herman, “Temperature-compensated fiber-optic 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides,” Opt. Express 21(20), 24076–24086 (2013).
    [Crossref] [PubMed]
  15. L. P. Sun, J. Li, Y. Z. Tan, S. Gao, L. Jin, and B.-O. Guan, “Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement,” Opt. Express 21(22), 26714–26720 (2013).
    [Crossref] [PubMed]
  16. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000°C,” Opt. Express 17(24), 21551–21559 (2009).
    [Crossref] [PubMed]
  17. S. Li, Z. Wang, Y. Liu, T. Han, Z. Wu, C. Wei, H. Wei, J. Li, and W. Tong, “Bending sensor based on intermodal interference properties of two-dimensional waveguide array fiber,” Opt. Lett. 37(10), 1610–1612 (2012).
    [Crossref] [PubMed]
  18. D. Kácik, I. Turek, I. Martincek, J. Canning, N. A. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Opt. Express 12(15), 3465–3470 (2004).
    [Crossref] [PubMed]
  19. J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18(20), 2168–2170 (2006).
    [Crossref]
  20. R. C. Youngquist, J. L. Brooks, and H. J. Shaw, “Two-mode fiber modal coupler,” Opt. Lett. 9(5), 177–179 (1984).
    [Crossref] [PubMed]
  21. W. V. Sorin, B. Y. Kim, and H. J. Shaw, “Highly selective evanescent modal filter for two-mode optical fibers,” Opt. Lett. 11(9), 581–583 (1986).
    [Crossref] [PubMed]
  22. D. Kreit, R. C. Youngquist, and D. E. N. Davies, “Two-mode fiber interferometer/amplitude modulator,” Appl. Opt. 25(23), 4433–4438 (1986).
    [Crossref] [PubMed]
  23. H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33(8), 812–814 (2008).
    [Crossref] [PubMed]
  24. J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
    [Crossref] [PubMed]
  25. W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
    [Crossref]
  26. K. Nagano, S. Kawakami, and S. Nishida, “Change of the refractive index in an optical fiber due to external forces,” Appl. Opt. 17(13), 2080–2085 (1978).
    [Crossref] [PubMed]
  27. N. H. Vu, I. K. Hwang, and Y. H. Lee, “Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method,” Opt. Lett. 33(2), 119–121 (2008).
    [Crossref] [PubMed]
  28. J. C. Bagget, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
    [Crossref]

2014 (3)

2013 (4)

2012 (3)

2011 (2)

2010 (1)

W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

2009 (3)

2008 (2)

2006 (1)

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18(20), 2168–2170 (2006).
[Crossref]

2004 (2)

2003 (1)

J. C. Bagget, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
[Crossref]

1998 (1)

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fiber gratings for structural bend sensing,” Electron. Lett. 34(18), 1773–1775 (1998).
[Crossref]

1994 (1)

O. Lisboa and C. K. Jen, “An optical-fiber bending sensor using two-mode fibers with an off-center core,” Smart Mater. Struct. 3(2), 164–170 (1994).
[Crossref]

1986 (2)

1984 (1)

1978 (1)

Adebayo, A.

Ahn, T. J.

W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Allsop, T.

Bagget, J. C.

J. C. Bagget, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
[Crossref]

Barton, J. S.

Bennion, I.

Brooks, J. L.

Canning, J.

Chan, C. C.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Chang, C. C.

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fiber gratings for structural bend sensing,” Electron. Lett. 34(18), 1773–1775 (1998).
[Crossref]

Chen, X.

Choi, H. Y.

Chu, J.

Chung, Y.

Coviello, G.

Cui, L.

Davies, D. E. N.

Demokan, M. S.

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18(20), 2168–2170 (2006).
[Crossref]

Dong, X.

Dong, X. Y.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Du, C.

Ferreira, M. S.

Finazzi, V.

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000°C,” Opt. Express 17(24), 21551–21559 (2009).
[Crossref] [PubMed]

J. C. Bagget, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
[Crossref]

Frazão, O.

Furusawa, K.

J. C. Bagget, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
[Crossref]

Gao, S.

Geng, P.

Goncharenko, I. A.

I. A. Goncharenko, M. Marciniak, A. I. Konojko, and V. N. Reabtsev, “Optimization of the structure of an optical vectoral bend and stress sensor based on a three-core microstructured fiber,” Meas. Tech. 56(1), 65–71 (2013).
[Crossref]

Gong, H.

Guan, B.-O.

Han, T.

Haque, M.

Haynes, R.

Herman, P. R.

Huang, Q.

Hwang, I. K.

Issa, N. A.

Jen, C. K.

O. Lisboa and C. K. Jen, “An optical-fiber bending sensor using two-mode fibers with an off-center core,” Smart Mater. Struct. 3(2), 164–170 (1994).
[Crossref]

Jin, L.

Jin, W.

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18(20), 2168–2170 (2006).
[Crossref]

Jin, Y.

Jin, Y. X.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Jones, J. D.

Ju, J.

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18(20), 2168–2170 (2006).
[Crossref]

Kácik, D.

Kawakami, S.

Kim, B.

Kim, B. Y.

Kim, T.-H.

Kobelke, J.

Konojko, A. I.

I. A. Goncharenko, M. Marciniak, A. I. Konojko, and V. N. Reabtsev, “Optimization of the structure of an optical vectoral bend and stress sensor based on a three-core microstructured fiber,” Meas. Tech. 56(1), 65–71 (2013).
[Crossref]

Kreit, D.

Lee, B. H.

Lee, K. K. C.

Lee, Y. H.

Lee, Y. L.

W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Li, J.

Li, S.

Li, Z.

Liao, C.

Lisboa, O.

O. Lisboa and C. K. Jen, “An optical-fiber bending sensor using two-mode fibers with an off-center core,” Smart Mater. Struct. 3(2), 164–170 (1994).
[Crossref]

Liu, Y.

Lyytikäinen, K.

MacPherson, W. N.

Marciniak, M.

I. A. Goncharenko, M. Marciniak, A. I. Konojko, and V. N. Reabtsev, “Optimization of the structure of an optical vectoral bend and stress sensor based on a three-core microstructured fiber,” Meas. Tech. 56(1), 65–71 (2013).
[Crossref]

Mariampillai, A.

Martincek, I.

Martinez-Rios, A.

Monro, T. M.

J. C. Bagget, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
[Crossref]

Monzon-Hernandez, D.

Nagano, K.

Nishida, S.

Noh, Y. C.

W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Ou, Z. L.

Park, K. S.

Patrick, H. J.

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fiber gratings for structural bend sensing,” Electron. Lett. 34(18), 1773–1775 (1998).
[Crossref]

Pruneri, V.

Qu, H.

Reabtsev, V. N.

I. A. Goncharenko, M. Marciniak, A. I. Konojko, and V. N. Reabtsev, “Optimization of the structure of an optical vectoral bend and stress sensor based on a three-core microstructured fiber,” Meas. Tech. 56(1), 65–71 (2013).
[Crossref]

Richardson, D. J.

J. C. Bagget, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
[Crossref]

Roth, M. M.

Saffari, P.

Salceda-Delgado, G.

Schuster, K.

Shaw, H. J.

Shen, C.

Shin, W.

W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Silva, R. M.

Skorobogatiy, M.

Sorin, W. V.

Standish, B. A.

Sun, B.

Sun, L. P.

Tan, Y. Z.

Tong, W.

Torres-Gomez, I.

Turek, I.

Villatoro, J.

Vohra, S. T.

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fiber gratings for structural bend sensing,” Electron. Lett. 34(18), 1773–1775 (1998).
[Crossref]

Vu, N. H.

Wang, G.

Wang, J.

Wang, Y.

Wang, Z.

S. Li, Z. Wang, Y. Liu, T. Han, Z. Wu, C. Wei, H. Wei, J. Li, and W. Tong, “Bending sensor based on intermodal interference properties of two-dimensional waveguide array fiber,” Opt. Lett. 37(10), 1610–1612 (2012).
[Crossref] [PubMed]

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18(20), 2168–2170 (2006).
[Crossref]

Webb, D.

Wei, C.

Wei, H.

Wu, Z.

Xue, X.

Yan, G. F.

Yan, P.

Yang, K.

Yang, V. X. D.

Yin, G.

You, Y.

Youngquist, R. C.

Yu, B. A.

W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Yu, Y.

Zhang, L.

Zhang, S.

Zhang, W.

Zhang, Y. F.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

Zhao, D.

Zhong, C.

Zhong, X.

Zhou, J.

Zhou, K.

Zou, X.

Appl. Opt. (3)

Electron. Lett. (1)

H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fiber gratings for structural bend sensing,” Electron. Lett. 34(18), 1773–1775 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Ju, Z. Wang, W. Jin, and M. S. Demokan, “Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor,” IEEE Photon. Technol. Lett. 18(20), 2168–2170 (2006).
[Crossref]

Meas. Tech. (1)

I. A. Goncharenko, M. Marciniak, A. I. Konojko, and V. N. Reabtsev, “Optimization of the structure of an optical vectoral bend and stress sensor based on a three-core microstructured fiber,” Meas. Tech. 56(1), 65–71 (2013).
[Crossref]

Opt. Commun. (3)

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg grating interacting with multimode fiber,” Opt. Commun. 282(19), 3905–3907 (2009).
[Crossref]

W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

J. C. Bagget, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
[Crossref]

Opt. Express (8)

D. Kácik, I. Turek, I. Martincek, J. Canning, N. A. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre,” Opt. Express 12(15), 3465–3470 (2004).
[Crossref] [PubMed]

B. Kim, T.-H. Kim, L. Cui, and Y. Chung, “Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications,” Opt. Express 17(18), 15502–15507 (2009).
[Crossref] [PubMed]

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000°C,” Opt. Express 17(24), 21551–21559 (2009).
[Crossref] [PubMed]

Z. L. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express 21(20), 23812–23821 (2013).
[Crossref] [PubMed]

K. K. C. Lee, A. Mariampillai, M. Haque, B. A. Standish, V. X. D. Yang, and P. R. Herman, “Temperature-compensated fiber-optic 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides,” Opt. Express 21(20), 24076–24086 (2013).
[Crossref] [PubMed]

L. P. Sun, J. Li, Y. Z. Tan, S. Gao, L. Jin, and B.-O. Guan, “Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement,” Opt. Express 21(22), 26714–26720 (2013).
[Crossref] [PubMed]

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express 20(14), 15406–15417 (2012).
[Crossref] [PubMed]

Opt. Lett. (10)

S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
[Crossref] [PubMed]

P. Saffari, T. Allsop, A. Adebayo, D. Webb, R. Haynes, and M. M. Roth, “Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures,” Opt. Lett. 39(12), 3508–3511 (2014).
[Crossref] [PubMed]

H. Qu, G. F. Yan, and M. Skorobogatiy, “Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber,” Opt. Lett. 39(16), 4835–4838 (2014).
[Crossref] [PubMed]

R. M. Silva, M. S. Ferreira, J. Kobelke, K. Schuster, and O. Frazão, “Simultaneous measurement of curvature and strain using a suspended multicore fiber,” Opt. Lett. 36(19), 3939–3941 (2011).
[Crossref] [PubMed]

D. Monzon-Hernandez, A. Martinez-Rios, I. Torres-Gomez, and G. Salceda-Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett. 36(22), 4380–4382 (2011).
[Crossref] [PubMed]

S. Li, Z. Wang, Y. Liu, T. Han, Z. Wu, C. Wei, H. Wei, J. Li, and W. Tong, “Bending sensor based on intermodal interference properties of two-dimensional waveguide array fiber,” Opt. Lett. 37(10), 1610–1612 (2012).
[Crossref] [PubMed]

N. H. Vu, I. K. Hwang, and Y. H. Lee, “Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method,” Opt. Lett. 33(2), 119–121 (2008).
[Crossref] [PubMed]

H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33(8), 812–814 (2008).
[Crossref] [PubMed]

R. C. Youngquist, J. L. Brooks, and H. J. Shaw, “Two-mode fiber modal coupler,” Opt. Lett. 9(5), 177–179 (1984).
[Crossref] [PubMed]

W. V. Sorin, B. Y. Kim, and H. J. Shaw, “Highly selective evanescent modal filter for two-mode optical fibers,” Opt. Lett. 11(9), 581–583 (1986).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

O. Lisboa and C. K. Jen, “An optical-fiber bending sensor using two-mode fibers with an off-center core,” Smart Mater. Struct. 3(2), 164–170 (1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a)Effective mode index of GMF against wavelength and the inset is the cross section of this fiber. And calculative mode field distributions of (b) LP01 (n = 1.447405), and (c) LP11 (n = 1.445545) at 1550 nm.
Fig. 2
Fig. 2 Schema of this device, which is fabricated by lateral offset splicing a section of GMF with SMFs.
Fig. 3
Fig. 3 Evolution of transmission spectra: (a) the 1st point was lateral offset alignment while the 2nd point was manually spliced without lateral offset and the length of GMF is 43 cm; (b) the 2nd point was lateral offset alignment while the 1st point was manually spliced, and the length of GMF is 41 cm.
Fig. 4
Fig. 4 (a) Evolution of the transmission spectra by increasing lateral offset value of the 1st point while the 2st point was manually spliced with 4 μm lateral offset, the length of GMF is 4.2 cm. (b)Transmission spectra of this device with 4 μm lateral offset of both splicing points: the length of GMF is 4.2 cm.
Fig. 5
Fig. 5 (a) Theory calculation curve and experimentally studied fringe separation ∆λ of this device fabricated with different lengths of GMF. (b) Distribution of experimental ∆n under several test numbers and the deviation is calculated to be 3 × 10−4.
Fig. 6
Fig. 6 (a) Schematic diagram of experimental setup. (b) Scheme of four bending directions (0°, 180°, 90° and 270°).
Fig. 7
Fig. 7 Refractive index profile of curved GMF (C = 0.986 m−1).
Fig. 8
Fig. 8 Distribution of light intensity with different mode effective indices by application of different curvature; (a) LP01 (n = 1.447405) and (b) LP11 (n = 1.445545) are of 0 m−1; (c) LP01 (n = 1.447416) and (d) LP11 (n = 1.445549) are of 0.986 m−1, ∆n = 0.001867.
Fig. 9
Fig. 9 Transmission spectra of this device with length of 3.4 cm: (a) straight and (b) with curvature of 0.986m−1 at the 0° bending orientation; (c) straight and (d) with curvature of 0.986m−1 at the 180° bending orientation.
Fig. 10
Fig. 10 Variation of transmission spectra of this device at maximum bending direction: (a) 0° and (b) 180° and the inserts are the magnifying area of transmission spectra. (c) Linear fits of central wavelength shifts with 0° and 180° bending orientations. (d) Difference of central wavelength (90° and 270°).
Fig. 11
Fig. 11 Responses of this device to (a) temperature and (b) surrounding refractive index exhibit in the form of its central wavelength shift.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I= I L P 01 + I L P 11 +2 I L P 01 I L P 11 cos(φ)
Δφ=2π( n eff L P 01 n eff L P 11 )L/λ
Δφ=(2m+1)π
λ m =2( n eff L P 01 n eff L P 11 )L/(2m+1)
Δλ= λ 1 λ 2 ΔnL
C= 1 R = 2d d 2 + D 2
R 2 = R 2 cos 2 ( D 0 R )+ D 2
C= 1 R = 3( D 0 2 D 2 ) D 0 2
n (y)= n 0 (1yC)

Metrics