Abstract

We investigated the relationship between two- and three-photon coherence in terms of the transition routes and coupling field intensities in a Doppler-broadened ladder-type atomic system for the 5S1/2–5P3/2–5D5/2 transition in 87Rb atoms. Three-photon electromagnetically induced absorption (TPEIA) due to three-photon coherence was observed in the only transition route that exhibited a dominant two-photon coherence effect. We showed that two-photon coherence is a necessary condition for three-photon coherence phenomena. A comparison of the relative magnitudes of the electromagnetically induced transparency and TPEIA as a function of the coupling field intensity revealed that the increase of three-photon coherence was faster than that of two-photon coherence. Considering three-photon coherence in a Doppler-broadened ladder-type three-level atomic system, the relation between two- and three-photon coherence was numerically calculated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Condition for Doppler-free three-photon resonance in a ladder-type atomic system

Yoon-Seok Lee and Han Seb Moon
Opt. Express 23(24) 31574-31581 (2015)

Doppler-free three-photon coherence in Doppler-broadened diamond-type atomic system

Yoon-Seok Lee and Han Seb Moon
Opt. Express 25(5) 5316-5326 (2017)

Atomic coherence effects in four-wave mixing process of a ladder-type atomic system

Yoon-Seok Lee and Han Seb Moon
Opt. Express 24(10) 10723-10732 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  2. S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  3. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
    [Crossref] [PubMed]
  4. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
    [Crossref]
  5. A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
    [Crossref] [PubMed]
  6. W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68(5), 053802 (2003).
    [Crossref]
  7. Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
    [Crossref]
  8. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
    [Crossref] [PubMed]
  9. K. Jensen, N. Leefer, A. Jarmola, Y. Dumeige, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 112(16), 160802 (2014).
    [Crossref] [PubMed]
  10. H. Kang, G. Hernandez, and Y. Zhu, “Slow-light six-wave mixing at low light intensities,” Phys. Rev. Lett. 93(7), 073601 (2004).
    [Crossref] [PubMed]
  11. I. Novikova, D. F. Phillips, A. S. Zibrov, R. L. Walsworth, A. V. Taichenachev, and V. I. Yudin, “Comparison of 87Rb N-resonances for D1 and D2 transitions,” Opt. Lett. 31(15), 2353–2355 (2006).
    [Crossref] [PubMed]
  12. Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
    [Crossref] [PubMed]
  13. S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
    [Crossref]
  14. K. Pandey, “Role of different types of subsystems in a doubly driven Λ system in 87Rb,” Phys. Rev. A 87(4), 043838 (2013).
    [Crossref]
  15. I. Ben-Aroya and G. Eisenstein, “Observation of large contrast electromagnetically induced absorption resonance due to population transfer in a three-level Λ-system interacting with three separate electromagnetic fields,” Opt. Express 19(10), 9956–9961 (2011).
    [Crossref] [PubMed]
  16. H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84(5), 053827 (2011).
    [Crossref]
  17. U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express 20(6), 6204–6214 (2012).
    [Crossref] [PubMed]
  18. C. Carr, M. Tanasittikosol, A. Sargsyan, D. Sarkisyan, C. S. Adams, and K. J. Weatherill, “Three-photon electromagnetically induced transparency using Rydberg states,” Opt. Lett. 37(18), 3858–3860 (2012).
    [Crossref] [PubMed]
  19. H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89(3), 033822 (2014).
    [Crossref]
  20. T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, “Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms,” Phys. Rev. Lett. 94(5), 050801 (2005).
    [Crossref] [PubMed]
  21. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble,” Opt. Express 19(15), 14632–14641 (2011).
    [Crossref] [PubMed]
  22. D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012).
    [Crossref] [PubMed]
  23. B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
    [Crossref] [PubMed]
  24. H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping effects in electromagnetically induced transparency,” Opt. Express 16(16), 12163–12170 (2008).
    [Crossref] [PubMed]
  25. H.-R. Noh and H. S. Moon, “Discrimination of one-photon and two-photon coherence parts in electromagnetically induced transparency for a ladder-type three-level atomic system,” Opt. Express 19(12), 11128–11137 (2011).
    [PubMed]
  26. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
    [Crossref] [PubMed]
  27. K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. At. Mol. Opt. Phys. 41(22), 225503 (2008).
    [Crossref]
  28. H. S. Moon and H.-R. Noh, “Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system,” Opt. Express 21(6), 7447–7455 (2013).
    [Crossref] [PubMed]

2014 (2)

K. Jensen, N. Leefer, A. Jarmola, Y. Dumeige, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 112(16), 160802 (2014).
[Crossref] [PubMed]

H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89(3), 033822 (2014).
[Crossref]

2013 (3)

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

H. S. Moon and H.-R. Noh, “Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system,” Opt. Express 21(6), 7447–7455 (2013).
[Crossref] [PubMed]

K. Pandey, “Role of different types of subsystems in a doubly driven Λ system in 87Rb,” Phys. Rev. A 87(4), 043838 (2013).
[Crossref]

2012 (3)

2011 (6)

H.-R. Noh and H. S. Moon, “Discrimination of one-photon and two-photon coherence parts in electromagnetically induced transparency for a ladder-type three-level atomic system,” Opt. Express 19(12), 11128–11137 (2011).
[PubMed]

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble,” Opt. Express 19(15), 14632–14641 (2011).
[Crossref] [PubMed]

I. Ben-Aroya and G. Eisenstein, “Observation of large contrast electromagnetically induced absorption resonance due to population transfer in a three-level Λ-system interacting with three separate electromagnetic fields,” Opt. Express 19(10), 9956–9961 (2011).
[Crossref] [PubMed]

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84(5), 053827 (2011).
[Crossref]

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

2010 (1)

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

2008 (2)

H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping effects in electromagnetically induced transparency,” Opt. Express 16(16), 12163–12170 (2008).
[Crossref] [PubMed]

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. At. Mol. Opt. Phys. 41(22), 225503 (2008).
[Crossref]

2007 (2)

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, “Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms,” Phys. Rev. Lett. 94(5), 050801 (2005).
[Crossref] [PubMed]

2004 (1)

H. Kang, G. Hernandez, and Y. Zhu, “Slow-light six-wave mixing at low light intensities,” Phys. Rev. Lett. 93(7), 073601 (2004).
[Crossref] [PubMed]

2003 (2)

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[Crossref]

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68(5), 053802 (2003).
[Crossref]

1998 (1)

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

1997 (1)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

1995 (1)

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

1991 (1)

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Abdumalikov, A. A.

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

Acosta, V. M.

K. Jensen, N. Leefer, A. Jarmola, Y. Dumeige, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 112(16), 160802 (2014).
[Crossref] [PubMed]

Adams, C. S.

C. Carr, M. Tanasittikosol, A. Sargsyan, D. Sarkisyan, C. S. Adams, and K. J. Weatherill, “Three-photon electromagnetically induced transparency using Rydberg states,” Opt. Lett. 37(18), 3858–3860 (2012).
[Crossref] [PubMed]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

Akulshin, A. M.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

Astafiev, O.

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

Babin, S. A.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[Crossref]

Barreiro, S.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

Becerra, F. E.

Ben-Aroya, I.

Boller, K. J.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Brown, A. W.

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

Budker, D.

K. Jensen, N. Leefer, A. Jarmola, Y. Dumeige, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 112(16), 160802 (2014).
[Crossref] [PubMed]

Carr, C.

Chan, J.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chen, H.

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Chng, B.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

Chow, W. W.

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68(5), 053802 (2003).
[Crossref]

Churkin, D. V.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[Crossref]

Cramer, C.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, “Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms,” Phys. Rev. Lett. 94(5), 050801 (2005).
[Crossref] [PubMed]

Ding, D.-S.

Dumeige, Y.

K. Jensen, N. Leefer, A. Jarmola, Y. Dumeige, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 112(16), 160802 (2014).
[Crossref] [PubMed]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Eisenstein, G.

Fortson, E. N.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, “Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms,” Phys. Rev. Lett. 94(5), 050801 (2005).
[Crossref] [PubMed]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Gulati, G. K.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

Guo, G.-C.

Harris, S. E.

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Hernandez, G.

H. Kang, G. Hernandez, and Y. Zhu, “Slow-light six-wave mixing at low light intensities,” Phys. Rev. Lett. 93(7), 073601 (2004).
[Crossref] [PubMed]

Hill, J. T.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Hong, T.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, “Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms,” Phys. Rev. Lett. 94(5), 050801 (2005).
[Crossref] [PubMed]

Imamolu, A.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Jackson, T. R.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

Jarmola, A.

K. Jensen, N. Leefer, A. Jarmola, Y. Dumeige, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 112(16), 160802 (2014).
[Crossref] [PubMed]

Jensen, K.

K. Jensen, N. Leefer, A. Jarmola, Y. Dumeige, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 112(16), 160802 (2014).
[Crossref] [PubMed]

Jeong, T.

H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89(3), 033822 (2014).
[Crossref]

Jiang, H.

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Kang, H.

H. Kang, G. Hernandez, and Y. Zhu, “Slow-light six-wave mixing at low light intensities,” Phys. Rev. Lett. 93(7), 073601 (2004).
[Crossref] [PubMed]

Kehayias, P.

K. Jensen, N. Leefer, A. Jarmola, Y. Dumeige, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 112(16), 160802 (2014).
[Crossref] [PubMed]

Khadka, U.

Kim, J. B.

Kurtsiefer, C.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

Lee, L.

Leefer, N.

K. Jensen, N. Leefer, A. Jarmola, Y. Dumeige, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 112(16), 160802 (2014).
[Crossref] [PubMed]

Lezama, A.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

Li, Y.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Lin, Q.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Maslennikov, G.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

Matsukevich, D.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

Mayer Alegre, T. P.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Mohapatra, A. K.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

Moon, H. S.

Nagourney, W.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, “Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms,” Phys. Rev. Lett. 94(5), 050801 (2005).
[Crossref] [PubMed]

Nakamura, Y.

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

Natarajan, V.

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. At. Mol. Opt. Phys. 41(22), 225503 (2008).
[Crossref]

Noh, H.-R.

Novikova, I.

Orozco, L. A.

Painter, O.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Pandey, K.

K. Pandey, “Role of different types of subsystems in a doubly driven Λ system in 87Rb,” Phys. Rev. A 87(4), 043838 (2013).
[Crossref]

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. At. Mol. Opt. Phys. 41(22), 225503 (2008).
[Crossref]

Pashkin, Y. A.

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

Patton, B.

K. Jensen, N. Leefer, A. Jarmola, Y. Dumeige, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 112(16), 160802 (2014).
[Crossref] [PubMed]

Phillips, D. F.

Phillips, M. C.

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68(5), 053802 (2003).
[Crossref]

Podivilov, E. V.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[Crossref]

Potapov, V. V.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[Crossref]

Rolston, S. L.

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Sargsyan, A.

Sarkisyan, D.

Schneider, H. C.

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68(5), 053802 (2003).
[Crossref]

Shapiro, D. A.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[Crossref]

Shi, B.-S.

Srivathsan, B.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Taichenachev, A. V.

Tanasittikosol, M.

Tsai, J. S.

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

Walsworth, R. L.

Wasan, A.

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. At. Mol. Opt. Phys. 41(22), 225503 (2008).
[Crossref]

Weatherill, K. J.

Willis, R. T.

Winger, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Xiao, M.

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express 20(6), 6204–6214 (2012).
[Crossref] [PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Yang, Y.

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Yudin, V. I.

Zagoskin, A. M.

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

Zhang, Y.

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

Zheng, H.

Zhou, Z.-Y.

Zhu, S.

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Zhu, Y.

H. Kang, G. Hernandez, and Y. Zhu, “Slow-light six-wave mixing at low light intensities,” Phys. Rev. Lett. 93(7), 073601 (2004).
[Crossref] [PubMed]

Zibrov, A. S.

Zou, X.-B.

J. Phys. At. Mol. Opt. Phys. (1)

K. Pandey, A. Wasan, and V. Natarajan, “Coherent control of magneto-optic rotation,” J. Phys. At. Mol. Opt. Phys. 41(22), 225503 (2008).
[Crossref]

Nature (1)

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Opt. Express (7)

H. S. Moon and H.-R. Noh, “Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system,” Opt. Express 21(6), 7447–7455 (2013).
[Crossref] [PubMed]

H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping effects in electromagnetically induced transparency,” Opt. Express 16(16), 12163–12170 (2008).
[Crossref] [PubMed]

I. Ben-Aroya and G. Eisenstein, “Observation of large contrast electromagnetically induced absorption resonance due to population transfer in a three-level Λ-system interacting with three separate electromagnetic fields,” Opt. Express 19(10), 9956–9961 (2011).
[Crossref] [PubMed]

H.-R. Noh and H. S. Moon, “Discrimination of one-photon and two-photon coherence parts in electromagnetically induced transparency for a ladder-type three-level atomic system,” Opt. Express 19(12), 11128–11137 (2011).
[PubMed]

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble,” Opt. Express 19(15), 14632–14641 (2011).
[Crossref] [PubMed]

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express 20(6), 6204–6214 (2012).
[Crossref] [PubMed]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433–11444 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (6)

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[Crossref]

K. Pandey, “Role of different types of subsystems in a doubly driven Λ system in 87Rb,” Phys. Rev. A 87(4), 043838 (2013).
[Crossref]

H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89(3), 033822 (2014).
[Crossref]

W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68(5), 053802 (2003).
[Crossref]

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84(5), 053827 (2011).
[Crossref]

Phys. Rev. B (1)

Y. Sun, H. Jiang, Y. Yang, Y. Zhang, H. Chen, and S. Zhu, “Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution,” Phys. Rev. B 83(19), 195140 (2011).
[Crossref]

Phys. Rev. Lett. (9)

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98(11), 113003 (2007).
[Crossref] [PubMed]

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, “Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms,” Phys. Rev. Lett. 94(5), 050801 (2005).
[Crossref] [PubMed]

A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104(19), 193601 (2010).
[Crossref] [PubMed]

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

K. Jensen, N. Leefer, A. Jarmola, Y. Dumeige, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, “Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 112(16), 160802 (2014).
[Crossref] [PubMed]

H. Kang, G. Hernandez, and Y. Zhu, “Slow-light six-wave mixing at low light intensities,” Phys. Rev. Lett. 93(7), 073601 (2004).
[Crossref] [PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Energy level diagram for the 5S1/2–5P3/2–5D5/2 transitions of 87Rb (I = 3/2), (b) Experimental schematic; the probe field (Ωp) and two counter-propagating coupling fields (ΩC1 and ΩC2) in a pure Rb vapor cell (PD: photo-current detector, PBS: polarization beam splitter, QWP: quarter-wave plate, M: Mirror).
Fig. 2
Fig. 2 (a) EIT and TPEIA spectra as a function of the detuning frequency of the probe laser, where the frequency of the coupling laser is fixed at the 5P3/2(F′ = 3)–5D5/2(F″ = 4) transition. (b) EIT and TPEIA spectra as a function of the detuning frequency of the coupling laser, where the frequency of the probe laser is fixed at the 5S1/2(F = 2)–5P3/2(F′ = 3) transition.
Fig. 3
Fig. 3 (a) Transition routes between hyperfine states obtained by scanning the detuning frequency of the probe laser. (b) absorption spectra of the probe laser in each section according to the coupling laser detuning for the 5S1/2(F = 2)–5P3/2–5D5/2 transition.
Fig. 4
Fig. 4 (a) Transition routes between hyperfine states obtained by scanning the detuning frequency of the coupling laser. EIT and TPEIA spectra of the probe laser as a function of the coupling laser detuning for the frequency of the probe laser of the (b) 5S1/2(F = 2)–5P3/2(F′ = 2) and (c) 5S1/2(F = 2)–5P3/2(F′ = 3) transitions, respectively.
Fig. 5
Fig. 5 Absorption spectra of the probe laser according to the additional coupling intensity.
Fig. 6
Fig. 6 (a) Ladder-type EIT spectra according to the coupling field intensity (ΩC1) without ΩC2, (b) TPEIA spectra according to both coupling field intensities (ΩC1 and ΩC2), and (c) normalized magnitude of EIT (blue squares) and TPEIA (red circles) for 5D5/2(F″ = 4).
Fig. 7
Fig. 7 (a) Three-level atomic model considering TPC, consisting of a ground state ( |1 ), intermediate states ( |2 and | 2' ), and an excited state ( |3 ). (b) Numerically calculated EIT and TPEIA spectra in the ladder-type three-level atomic model.
Fig. 8
Fig. 8 (a) Numerically calculated transformation of EIT to TPEIA spectra for various additional coupling fields ΩC2. (b) Numerically calculated TPEIA spectra for various ΩC1 and ΩC2, where the ratio of ΩC2 to ΩC1 is 0.8.

Metrics