Abstract

Multiple-pulse S-on-1 laser damage experiments were carried out in the bulk of synthetic fused silica at 355 nm and 266 nm. Two beam sizes were used for each wavelength and the pulse duration was 8 ns. The results showed a fatigue effect that is due to cumulative material modifications. The modifications have a long lifetime and the fatigue dynamics are independent of the used beam sizes but differ for the two wavelengths. Based on the fact that, in the context of material-modification induced damage, the damage thresholds for smaller beams are higher than for larger beams, we discuss possible mechanisms of damage initiation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of multiple laser irradiations on silica at 1064 and 355?nm

J.-Y. Natoli, B. Bertussi, and M. Commandré
Opt. Lett. 30(11) 1315-1317 (2005)

Laser-induced defect reactions governing damage initiation in DKDP crystals

Paul DeMange, Raluca A. Negres, Christopher W. Carr, Harry B. Radousky, and Stavros G. Demos
Opt. Express 14(12) 5313-5328 (2006)

Research on laser induced damage in PLZT electro-optical transparent ceramic

Xuejiao Zhang, Qing Ye, Ronghui Qu, Haiwen Cai, and Fang Wei
Opt. Mater. Express 6(3) 952-960 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Exarhos, D. Ristau, M. J. Soileau, C. J. Stolz, and V. E. Gruzdev, eds., Proceedings of Boulder Damage Symposium and Proceedings of SPIE Laser Damage Conferences, Proc. SPIE (1969–2014).
  2. N. Leclerc, C. Pfleiderer, J. Wolfrum, K. Greulich, W. P. Leung, M. Kulkarni, and A. C. Tam, “Transient absorption and fluorescence spectroscopy in fused-silica induced by pulsed KrF excimer laser irradiation,” Appl. Phys. Lett. 59(26), 3369–3371 (1991).
    [Crossref]
  3. N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. O. Greulich, S. Thomas, H. Fabian, R. Takke, and W. Englisch, “Transient 210-nm absorption in fused silica induced by high-power UV laser irradiation,” Opt. Lett. 16(12), 940–942 (1991).
    [Crossref] [PubMed]
  4. D. J. Krajnovich, I. K. Pour, A. C. Tam, W. P. Leung, and M. V. Kulkarni, “Sudden onset of strong absorption followed by forced recovery in KrF laser-irradiated fused silica,” Opt. Lett. 18(6), 453–455 (1993).
    [Crossref] [PubMed]
  5. M. A. Stevens-Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758–760 (2002).
    [Crossref]
  6. L. Gallais, J. Capoulade, F. Wagner, J. Y. Natoli, and M. Commandre, “Analysis of material modifications induced during laser damage in SiO2 thin films,” Opt. Commun. 272(1), 221–226 (2007).
    [Crossref]
  7. M. Schillinger, D. Morancais, F. Fabre, and A. Culoma, “ALADIN: The LIDAR instrument for the AEOLUS mission,” Proc. SPIE 4881, 40–51 (2003).
    [Crossref]
  8. O. N. Bosyi and O. M. Efimov, “Relationships governing the cumulative effect and its mechanism in the absence of subthreshold ionisation of a glass matrix,” Quantum Electron. 26(8), 718–723 (1996).
    [Crossref]
  9. O. N. Bosyi and O. M. Efimov, “Relationships governing the cumulative effect and its mechanism under conditions of multiphoton generation of colour centres,” Quantum Electron. 26(8), 710–717 (1996).
    [Crossref]
  10. A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mat. Sci. Eng. B. Solid. 49(3), 175–190 (1997).
    [Crossref]
  11. L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 10(25), 1465–1474 (2002).
    [Crossref] [PubMed]
  12. F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandre, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
    [Crossref]
  13. S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
    [Crossref]
  14. X. Ling, “Nanosecond multi-pulse damage investigation of optical coatings in atmosphere and vacuum environments,” Appl. Surf. Sci. 257(13), 5601–5604 (2011).
    [Crossref]
  15. F. R. Wagner, C. Gouldieff, and J.-Y. Natoli, “Contrasted material responses to nanosecond multiple-pulse laser damage: From statistical behavior to material modification,” Opt. Lett. 38(11), 1869–1871 (2013).
    [Crossref] [PubMed]
  16. M. Cannas and F. Messina, “Nd: Yag laser induced E' centers probed by in situ absorption measurements,” J. Non-Cryst. Solids 351(21-23), 1780–1783 (2005).
    [Crossref]
  17. A. Burkert and U. Natura, “353 nm high fluence irradiation of fused silica,” Proc. SPIE 7132, 71321Q (2008).
    [Crossref]
  18. L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
    [Crossref] [PubMed]
  19. L. Gallais and J. Y. Natoli, “Optimized metrology for laser-damage measurement: Application to multiparameter study,” Appl. Opt. 42(6), 960–971 (2003).
    [Crossref] [PubMed]
  20. International Organization for Standardization, “Lasers and laser-related equipment. Test methods for laser-induced damage threshold. Part 2: Threshold determination,” (ISO 21254–2, 2011).
  21. F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: Statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
    [Crossref]
  22. A. Melninkaitis, J. Mirauskas, M. Jupé, D. Ristau, J. W. Arenberg, and V. Sirutkaitis, “The effect of pseudo-accumulation in the measurement of fatigue laser-induced damage threshold,” Proc. SPIE 7132, 713203 (2008).
    [Crossref]
  23. L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett. 23(11), 607 (1973).
    [Crossref]
  24. L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
    [Crossref]
  25. J. O. Porteus and S. C. Seitel, “Absolute onset of optical surface damage using distributed defect ensembles,” Appl. Opt. 23(21), 3796–3805 (1984).
    [Crossref] [PubMed]
  26. J. Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41(16), 3156–3166 (2002).
    [Crossref] [PubMed]
  27. A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
    [Crossref]
  28. E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A. Mater. 62, 143–149 (1996).
  29. K. Arai, H. Imai, H. Hosono, Y. Abe, and H. Imagawa, “2-photon processes in defect formation by excimer lasers in synthetic silica glass,” Appl. Phys. Lett. 53(20), 1891–1893 (1988).
    [Crossref]
  30. K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
    [Crossref]
  31. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
    [Crossref]
  32. N. Kuzuu, K. Yoshida, H. Yoshida, T. Kamimura, and N. Kamisugi, “Laser-induced bulk damage in various types of vitreous silica at 1064, 532, 355, and 266 nm: Evidence of different damage mechanisms between 266-nm and longer wavelengths,” Appl. Opt. 38(12), 2510–2515 (1999).
    [Crossref] [PubMed]
  33. D. W. Bäuerle, Laser Processing and Chemistry, 4th ed., Advanced Texts in Physics (Springer, 2011).
  34. Heraeus Quarzglas GmbH & Co. KG, “Quartz glass for optics - data and properties” (2013), retrieved 2014, http://heraeus-quarzglas.com/media/webmedia_local/downloads/broschren_mo/dataandproperties_optics_fusedsilica.pdf .
  35. G. Duchateau, “Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses,” Opt. Express 17(13), 10434–10456 (2009).
    [Crossref] [PubMed]
  36. E. L. Dawes and J. H. Marburger, “Computer studies of self-focusing,” Phys. Rev. 179(3), 862–868 (1969).
    [Crossref]
  37. H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997).
    [Crossref]

2014 (1)

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandre, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

2013 (1)

2012 (1)

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: Statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

2011 (1)

X. Ling, “Nanosecond multi-pulse damage investigation of optical coatings in atmosphere and vacuum environments,” Appl. Surf. Sci. 257(13), 5601–5604 (2011).
[Crossref]

2009 (2)

L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[Crossref]

G. Duchateau, “Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses,” Opt. Express 17(13), 10434–10456 (2009).
[Crossref] [PubMed]

2008 (3)

A. Melninkaitis, J. Mirauskas, M. Jupé, D. Ristau, J. W. Arenberg, and V. Sirutkaitis, “The effect of pseudo-accumulation in the measurement of fatigue laser-induced damage threshold,” Proc. SPIE 7132, 713203 (2008).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

A. Burkert and U. Natura, “353 nm high fluence irradiation of fused silica,” Proc. SPIE 7132, 71321Q (2008).
[Crossref]

2007 (2)

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

L. Gallais, J. Capoulade, F. Wagner, J. Y. Natoli, and M. Commandre, “Analysis of material modifications induced during laser damage in SiO2 thin films,” Opt. Commun. 272(1), 221–226 (2007).
[Crossref]

2005 (1)

M. Cannas and F. Messina, “Nd: Yag laser induced E' centers probed by in situ absorption measurements,” J. Non-Cryst. Solids 351(21-23), 1780–1783 (2005).
[Crossref]

2003 (2)

M. Schillinger, D. Morancais, F. Fabre, and A. Culoma, “ALADIN: The LIDAR instrument for the AEOLUS mission,” Proc. SPIE 4881, 40–51 (2003).
[Crossref]

L. Gallais and J. Y. Natoli, “Optimized metrology for laser-damage measurement: Application to multiparameter study,” Appl. Opt. 42(6), 960–971 (2003).
[Crossref] [PubMed]

2002 (3)

2000 (1)

K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[Crossref]

1999 (1)

1998 (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

1997 (2)

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997).
[Crossref]

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mat. Sci. Eng. B. Solid. 49(3), 175–190 (1997).
[Crossref]

1996 (3)

O. N. Bosyi and O. M. Efimov, “Relationships governing the cumulative effect and its mechanism in the absence of subthreshold ionisation of a glass matrix,” Quantum Electron. 26(8), 718–723 (1996).
[Crossref]

O. N. Bosyi and O. M. Efimov, “Relationships governing the cumulative effect and its mechanism under conditions of multiphoton generation of colour centres,” Quantum Electron. 26(8), 710–717 (1996).
[Crossref]

E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A. Mater. 62, 143–149 (1996).

1993 (1)

1991 (2)

N. Leclerc, C. Pfleiderer, J. Wolfrum, K. Greulich, W. P. Leung, M. Kulkarni, and A. C. Tam, “Transient absorption and fluorescence spectroscopy in fused-silica induced by pulsed KrF excimer laser irradiation,” Appl. Phys. Lett. 59(26), 3369–3371 (1991).
[Crossref]

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. O. Greulich, S. Thomas, H. Fabian, R. Takke, and W. Englisch, “Transient 210-nm absorption in fused silica induced by high-power UV laser irradiation,” Opt. Lett. 16(12), 940–942 (1991).
[Crossref] [PubMed]

1989 (1)

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
[Crossref]

1988 (1)

K. Arai, H. Imai, H. Hosono, Y. Abe, and H. Imagawa, “2-photon processes in defect formation by excimer lasers in synthetic silica glass,” Appl. Phys. Lett. 53(20), 1891–1893 (1988).
[Crossref]

1984 (1)

1973 (1)

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett. 23(11), 607 (1973).
[Crossref]

1969 (1)

E. L. Dawes and J. H. Marburger, “Computer studies of self-focusing,” Phys. Rev. 179(3), 862–868 (1969).
[Crossref]

Abe, Y.

K. Arai, H. Imai, H. Hosono, Y. Abe, and H. Imagawa, “2-photon processes in defect formation by excimer lasers in synthetic silica glass,” Appl. Phys. Lett. 53(20), 1891–1893 (1988).
[Crossref]

Akhouayri, H.

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandre, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: Statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

J. Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41(16), 3156–3166 (2002).
[Crossref] [PubMed]

Amra, C.

Arai, K.

K. Arai, H. Imai, H. Hosono, Y. Abe, and H. Imagawa, “2-photon processes in defect formation by excimer lasers in synthetic silica glass,” Appl. Phys. Lett. 53(20), 1891–1893 (1988).
[Crossref]

Arenberg, J. W.

A. Melninkaitis, J. Mirauskas, M. Jupé, D. Ristau, J. W. Arenberg, and V. Sirutkaitis, “The effect of pseudo-accumulation in the measurement of fatigue laser-induced damage threshold,” Proc. SPIE 7132, 713203 (2008).
[Crossref]

Bercegol, H.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Blaschke, H.

L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[Crossref]

Bosyi, O. N.

O. N. Bosyi and O. M. Efimov, “Relationships governing the cumulative effect and its mechanism in the absence of subthreshold ionisation of a glass matrix,” Quantum Electron. 26(8), 718–723 (1996).
[Crossref]

O. N. Bosyi and O. M. Efimov, “Relationships governing the cumulative effect and its mechanism under conditions of multiphoton generation of colour centres,” Quantum Electron. 26(8), 710–717 (1996).
[Crossref]

Bouillet, S.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Braunlich, P.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
[Crossref]

Burkert, A.

A. Burkert and U. Natura, “353 nm high fluence irradiation of fused silica,” Proc. SPIE 7132, 71321Q (2008).
[Crossref]

Cannas, M.

M. Cannas and F. Messina, “Nd: Yag laser induced E' centers probed by in situ absorption measurements,” J. Non-Cryst. Solids 351(21-23), 1780–1783 (2005).
[Crossref]

Capoulade, J.

L. Gallais, J. Capoulade, F. Wagner, J. Y. Natoli, and M. Commandre, “Analysis of material modifications induced during laser damage in SiO2 thin films,” Opt. Commun. 272(1), 221–226 (2007).
[Crossref]

Casper, R. T.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
[Crossref]

Chmel, A. E.

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mat. Sci. Eng. B. Solid. 49(3), 175–190 (1997).
[Crossref]

Commandre, M.

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandre, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

L. Gallais, J. Capoulade, F. Wagner, J. Y. Natoli, and M. Commandre, “Analysis of material modifications induced during laser damage in SiO2 thin films,” Opt. Commun. 272(1), 221–226 (2007).
[Crossref]

Commandré, M.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: Statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Courchinoux, R.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Culoma, A.

M. Schillinger, D. Morancais, F. Fabre, and A. Culoma, “ALADIN: The LIDAR instrument for the AEOLUS mission,” Proc. SPIE 4881, 40–51 (2003).
[Crossref]

Dawes, E. L.

E. L. Dawes and J. H. Marburger, “Computer studies of self-focusing,” Phys. Rev. 179(3), 862–868 (1969).
[Crossref]

DeShazer, L. G.

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett. 23(11), 607 (1973).
[Crossref]

Donval, T.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Duchateau, G.

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandre, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

G. Duchateau, “Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses,” Opt. Express 17(13), 10434–10456 (2009).
[Crossref] [PubMed]

Efimov, O. M.

O. N. Bosyi and O. M. Efimov, “Relationships governing the cumulative effect and its mechanism in the absence of subthreshold ionisation of a glass matrix,” Quantum Electron. 26(8), 718–723 (1996).
[Crossref]

O. N. Bosyi and O. M. Efimov, “Relationships governing the cumulative effect and its mechanism under conditions of multiphoton generation of colour centres,” Quantum Electron. 26(8), 710–717 (1996).
[Crossref]

Englisch, W.

Eva, E.

E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A. Mater. 62, 143–149 (1996).

Fabian, H.

Fabre, F.

M. Schillinger, D. Morancais, F. Fabre, and A. Culoma, “ALADIN: The LIDAR instrument for the AEOLUS mission,” Proc. SPIE 4881, 40–51 (2003).
[Crossref]

Gallais, L.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: Statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

L. Gallais, J. Capoulade, F. Wagner, J. Y. Natoli, and M. Commandre, “Analysis of material modifications induced during laser damage in SiO2 thin films,” Opt. Commun. 272(1), 221–226 (2007).
[Crossref]

L. Gallais and J. Y. Natoli, “Optimized metrology for laser-damage measurement: Application to multiparameter study,” Appl. Opt. 42(6), 960–971 (2003).
[Crossref] [PubMed]

J. Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41(16), 3156–3166 (2002).
[Crossref] [PubMed]

L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 10(25), 1465–1474 (2002).
[Crossref] [PubMed]

Gouldieff, C.

F. R. Wagner, C. Gouldieff, and J.-Y. Natoli, “Contrasted material responses to nanosecond multiple-pulse laser damage: From statistical behavior to material modification,” Opt. Lett. 38(11), 1869–1871 (2013).
[Crossref] [PubMed]

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: Statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

Greulich, K.

N. Leclerc, C. Pfleiderer, J. Wolfrum, K. Greulich, W. P. Leung, M. Kulkarni, and A. C. Tam, “Transient absorption and fluorescence spectroscopy in fused-silica induced by pulsed KrF excimer laser irradiation,” Appl. Phys. Lett. 59(26), 3369–3371 (1991).
[Crossref]

Greulich, K. O.

Hildenbrand, A.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: Statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Hitzler, H.

Hosono, H.

K. Arai, H. Imai, H. Hosono, Y. Abe, and H. Imagawa, “2-photon processes in defect formation by excimer lasers in synthetic silica glass,” Appl. Phys. Lett. 53(20), 1891–1893 (1988).
[Crossref]

Ikushima, A. J.

K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[Crossref]

Imagawa, H.

K. Arai, H. Imai, H. Hosono, Y. Abe, and H. Imagawa, “2-photon processes in defect formation by excimer lasers in synthetic silica glass,” Appl. Phys. Lett. 53(20), 1891–1893 (1988).
[Crossref]

Imai, H.

K. Arai, H. Imai, H. Hosono, Y. Abe, and H. Imagawa, “2-photon processes in defect formation by excimer lasers in synthetic silica glass,” Appl. Phys. Lett. 53(20), 1891–1893 (1988).
[Crossref]

Jensen, L.

L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[Crossref]

Ji, W.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997).
[Crossref]

Jones, S. C.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
[Crossref]

Josse, M.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Jupé, M.

L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[Crossref]

A. Melninkaitis, J. Mirauskas, M. Jupé, D. Ristau, J. W. Arenberg, and V. Sirutkaitis, “The effect of pseudo-accumulation in the measurement of fatigue laser-induced damage threshold,” Proc. SPIE 7132, 713203 (2008).
[Crossref]

Kamimura, T.

Kamisugi, N.

Kelly, P.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
[Crossref]

Krajnovich, D. J.

Kulkarni, M.

N. Leclerc, C. Pfleiderer, J. Wolfrum, K. Greulich, W. P. Leung, M. Kulkarni, and A. C. Tam, “Transient absorption and fluorescence spectroscopy in fused-silica induced by pulsed KrF excimer laser irradiation,” Appl. Phys. Lett. 59(26), 3369–3371 (1991).
[Crossref]

Kulkarni, M. V.

Kuzuu, N.

Lamaignère, L.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Leclerc, N.

N. Leclerc, C. Pfleiderer, J. Wolfrum, K. Greulich, W. P. Leung, M. Kulkarni, and A. C. Tam, “Transient absorption and fluorescence spectroscopy in fused-silica induced by pulsed KrF excimer laser irradiation,” Appl. Phys. Lett. 59(26), 3369–3371 (1991).
[Crossref]

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. O. Greulich, S. Thomas, H. Fabian, R. Takke, and W. Englisch, “Transient 210-nm absorption in fused silica induced by high-power UV laser irradiation,” Opt. Lett. 16(12), 940–942 (1991).
[Crossref] [PubMed]

Leung, K. M.

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett. 23(11), 607 (1973).
[Crossref]

Leung, W. P.

D. J. Krajnovich, I. K. Pour, A. C. Tam, W. P. Leung, and M. V. Kulkarni, “Sudden onset of strong absorption followed by forced recovery in KrF laser-irradiated fused silica,” Opt. Lett. 18(6), 453–455 (1993).
[Crossref] [PubMed]

N. Leclerc, C. Pfleiderer, J. Wolfrum, K. Greulich, W. P. Leung, M. Kulkarni, and A. C. Tam, “Transient absorption and fluorescence spectroscopy in fused-silica induced by pulsed KrF excimer laser irradiation,” Appl. Phys. Lett. 59(26), 3369–3371 (1991).
[Crossref]

Li, H.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997).
[Crossref]

Ling, X.

X. Ling, “Nanosecond multi-pulse damage investigation of optical coatings in atmosphere and vacuum environments,” Appl. Surf. Sci. 257(13), 5601–5604 (2011).
[Crossref]

Mann, K.

E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A. Mater. 62, 143–149 (1996).

Marburger, J. H.

E. L. Dawes and J. H. Marburger, “Computer studies of self-focusing,” Phys. Rev. 179(3), 862–868 (1969).
[Crossref]

Melninkaitis, A.

A. Melninkaitis, J. Mirauskas, M. Jupé, D. Ristau, J. W. Arenberg, and V. Sirutkaitis, “The effect of pseudo-accumulation in the measurement of fatigue laser-induced damage threshold,” Proc. SPIE 7132, 713203 (2008).
[Crossref]

Messina, F.

M. Cannas and F. Messina, “Nd: Yag laser induced E' centers probed by in situ absorption measurements,” J. Non-Cryst. Solids 351(21-23), 1780–1783 (2005).
[Crossref]

Mirauskas, J.

A. Melninkaitis, J. Mirauskas, M. Jupé, D. Ristau, J. W. Arenberg, and V. Sirutkaitis, “The effect of pseudo-accumulation in the measurement of fatigue laser-induced damage threshold,” Proc. SPIE 7132, 713203 (2008).
[Crossref]

Morancais, D.

M. Schillinger, D. Morancais, F. Fabre, and A. Culoma, “ALADIN: The LIDAR instrument for the AEOLUS mission,” Proc. SPIE 4881, 40–51 (2003).
[Crossref]

Natoli, J. Y.

Natoli, J.-Y.

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandre, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

F. R. Wagner, C. Gouldieff, and J.-Y. Natoli, “Contrasted material responses to nanosecond multiple-pulse laser damage: From statistical behavior to material modification,” Opt. Lett. 38(11), 1869–1871 (2013).
[Crossref] [PubMed]

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: Statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Natura, U.

A. Burkert and U. Natura, “353 nm high fluence irradiation of fused silica,” Proc. SPIE 7132, 71321Q (2008).
[Crossref]

Newnam, B. E.

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett. 23(11), 607 (1973).
[Crossref]

Pfleiderer, C.

N. Leclerc, C. Pfleiderer, J. Wolfrum, K. Greulich, W. P. Leung, M. Kulkarni, and A. C. Tam, “Transient absorption and fluorescence spectroscopy in fused-silica induced by pulsed KrF excimer laser irradiation,” Appl. Phys. Lett. 59(26), 3369–3371 (1991).
[Crossref]

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. O. Greulich, S. Thomas, H. Fabian, R. Takke, and W. Englisch, “Transient 210-nm absorption in fused silica induced by high-power UV laser irradiation,” Opt. Lett. 16(12), 940–942 (1991).
[Crossref] [PubMed]

Poncetta, J. C.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Porteus, J. O.

Pour, I. K.

Ristau, D.

L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[Crossref]

A. Melninkaitis, J. Mirauskas, M. Jupé, D. Ristau, J. W. Arenberg, and V. Sirutkaitis, “The effect of pseudo-accumulation in the measurement of fatigue laser-induced damage threshold,” Proc. SPIE 7132, 713203 (2008).
[Crossref]

Saito, K.

K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[Crossref]

Schillinger, M.

M. Schillinger, D. Morancais, F. Fabre, and A. Culoma, “ALADIN: The LIDAR instrument for the AEOLUS mission,” Proc. SPIE 4881, 40–51 (2003).
[Crossref]

Schrameyer, S.

L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[Crossref]

Seitel, S. C.

Shen, X. A.

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
[Crossref]

Sirutkaitis, V.

A. Melninkaitis, J. Mirauskas, M. Jupé, D. Ristau, J. W. Arenberg, and V. Sirutkaitis, “The effect of pseudo-accumulation in the measurement of fatigue laser-induced damage threshold,” Proc. SPIE 7132, 713203 (2008).
[Crossref]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

Stesmans, A.

M. A. Stevens-Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758–760 (2002).
[Crossref]

Stevens-Kalceff, M. A.

M. A. Stevens-Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758–760 (2002).
[Crossref]

Takke, R.

Tam, A. C.

D. J. Krajnovich, I. K. Pour, A. C. Tam, W. P. Leung, and M. V. Kulkarni, “Sudden onset of strong absorption followed by forced recovery in KrF laser-irradiated fused silica,” Opt. Lett. 18(6), 453–455 (1993).
[Crossref] [PubMed]

N. Leclerc, C. Pfleiderer, J. Wolfrum, K. Greulich, W. P. Leung, M. Kulkarni, and A. C. Tam, “Transient absorption and fluorescence spectroscopy in fused-silica induced by pulsed KrF excimer laser irradiation,” Appl. Phys. Lett. 59(26), 3369–3371 (1991).
[Crossref]

Thomas, S.

Wagner, F.

L. Gallais, J. Capoulade, F. Wagner, J. Y. Natoli, and M. Commandre, “Analysis of material modifications induced during laser damage in SiO2 thin films,” Opt. Commun. 272(1), 221–226 (2007).
[Crossref]

Wagner, F. R.

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandre, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

F. R. Wagner, C. Gouldieff, and J.-Y. Natoli, “Contrasted material responses to nanosecond multiple-pulse laser damage: From statistical behavior to material modification,” Opt. Lett. 38(11), 1869–1871 (2013).
[Crossref] [PubMed]

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: Statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

Wolfrum, J.

N. Leclerc, C. Pfleiderer, J. Wolfrum, K. Greulich, W. P. Leung, M. Kulkarni, and A. C. Tam, “Transient absorption and fluorescence spectroscopy in fused-silica induced by pulsed KrF excimer laser irradiation,” Appl. Phys. Lett. 59(26), 3369–3371 (1991).
[Crossref]

N. Leclerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K. O. Greulich, S. Thomas, H. Fabian, R. Takke, and W. Englisch, “Transient 210-nm absorption in fused silica induced by high-power UV laser irradiation,” Opt. Lett. 16(12), 940–942 (1991).
[Crossref] [PubMed]

Wong, J.

M. A. Stevens-Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758–760 (2002).
[Crossref]

Yoshida, H.

Yoshida, K.

Zhang, X.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997).
[Crossref]

Zhou, F.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997).
[Crossref]

Appl. Opt. (4)

Appl. Phys. A. Mater. (1)

E. Eva and K. Mann, “Calorimetric measurement of two-photon absorption and color-center formation in ultraviolet-window materials,” Appl. Phys. A. Mater. 62, 143–149 (1996).

Appl. Phys. Lett. (4)

K. Arai, H. Imai, H. Hosono, Y. Abe, and H. Imagawa, “2-photon processes in defect formation by excimer lasers in synthetic silica glass,” Appl. Phys. Lett. 53(20), 1891–1893 (1988).
[Crossref]

L. G. DeShazer, B. E. Newnam, and K. M. Leung, “Role of coating defects in laser-induced damage to dielectric thin films,” Appl. Phys. Lett. 23(11), 607 (1973).
[Crossref]

M. A. Stevens-Kalceff, A. Stesmans, and J. Wong, “Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm,” Appl. Phys. Lett. 80(5), 758–760 (2002).
[Crossref]

N. Leclerc, C. Pfleiderer, J. Wolfrum, K. Greulich, W. P. Leung, M. Kulkarni, and A. C. Tam, “Transient absorption and fluorescence spectroscopy in fused-silica induced by pulsed KrF excimer laser irradiation,” Appl. Phys. Lett. 59(26), 3369–3371 (1991).
[Crossref]

Appl. Surf. Sci. (1)

X. Ling, “Nanosecond multi-pulse damage investigation of optical coatings in atmosphere and vacuum environments,” Appl. Surf. Sci. 257(13), 5601–5604 (2011).
[Crossref]

J. Appl. Phys. (1)

F. R. Wagner, G. Duchateau, J.-Y. Natoli, H. Akhouayri, and M. Commandre, “Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals,” J. Appl. Phys. 115(24), 243102 (2014).
[Crossref]

J. Non-Cryst. Solids (2)

M. Cannas and F. Messina, “Nd: Yag laser induced E' centers probed by in situ absorption measurements,” J. Non-Cryst. Solids 351(21-23), 1780–1783 (2005).
[Crossref]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[Crossref]

Mat. Sci. Eng. B. Solid. (1)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mat. Sci. Eng. B. Solid. 49(3), 175–190 (1997).
[Crossref]

Opt. Commun. (2)

L. Gallais, J. Capoulade, F. Wagner, J. Y. Natoli, and M. Commandre, “Analysis of material modifications induced during laser damage in SiO2 thin films,” Opt. Commun. 272(1), 221–226 (2007).
[Crossref]

H. Li, F. Zhou, X. Zhang, and W. Ji, “Bound electronic kerr effect and self-focusing induced damage in second-harmonic-generation crystals,” Opt. Commun. 144(1-3), 75–81 (1997).
[Crossref]

Opt. Eng. (3)

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandré, and J.-Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: Statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[Crossref]

A. Hildenbrand, F. R. Wagner, H. Akhouayri, J.-Y. Natoli, and M. Commandré, “Accurate metrology for laser damage measurements in nonlinear crystals,” Opt. Eng. 47(8), 083603 (2008).
[Crossref]

S. C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials,” Opt. Eng. 28(10), 281039 (1989).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. (1)

E. L. Dawes and J. H. Marburger, “Computer studies of self-focusing,” Phys. Rev. 179(3), 862–868 (1969).
[Crossref]

Phys. Rev. B (1)

K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62(13), 8584–8587 (2000).
[Crossref]

Proc. SPIE (4)

A. Melninkaitis, J. Mirauskas, M. Jupé, D. Ristau, J. W. Arenberg, and V. Sirutkaitis, “The effect of pseudo-accumulation in the measurement of fatigue laser-induced damage threshold,” Proc. SPIE 7132, 713203 (2008).
[Crossref]

L. Jensen, S. Schrameyer, M. Jupé, H. Blaschke, and D. Ristau, “Spotsize dependence of the LIDT from the NIR to the UV,” Proc. SPIE 7504, 75041E (2009).
[Crossref]

A. Burkert and U. Natura, “353 nm high fluence irradiation of fused silica,” Proc. SPIE 7132, 71321Q (2008).
[Crossref]

M. Schillinger, D. Morancais, F. Fabre, and A. Culoma, “ALADIN: The LIDAR instrument for the AEOLUS mission,” Proc. SPIE 4881, 40–51 (2003).
[Crossref]

Quantum Electron. (2)

O. N. Bosyi and O. M. Efimov, “Relationships governing the cumulative effect and its mechanism in the absence of subthreshold ionisation of a glass matrix,” Quantum Electron. 26(8), 718–723 (1996).
[Crossref]

O. N. Bosyi and O. M. Efimov, “Relationships governing the cumulative effect and its mechanism under conditions of multiphoton generation of colour centres,” Quantum Electron. 26(8), 710–717 (1996).
[Crossref]

Rev. Sci. Instrum. (1)

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[Crossref] [PubMed]

Other (4)

International Organization for Standardization, “Lasers and laser-related equipment. Test methods for laser-induced damage threshold. Part 2: Threshold determination,” (ISO 21254–2, 2011).

G. J. Exarhos, D. Ristau, M. J. Soileau, C. J. Stolz, and V. E. Gruzdev, eds., Proceedings of Boulder Damage Symposium and Proceedings of SPIE Laser Damage Conferences, Proc. SPIE (1969–2014).

D. W. Bäuerle, Laser Processing and Chemistry, 4th ed., Advanced Texts in Physics (Springer, 2011).

Heraeus Quarzglas GmbH & Co. KG, “Quartz glass for optics - data and properties” (2013), retrieved 2014, http://heraeus-quarzglas.com/media/webmedia_local/downloads/broschren_mo/dataandproperties_optics_fusedsilica.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic view of the used setup. Elements in bold face communicate with the computer for automation of the experiment. Sh: fast mechanical shutter, HW: half wave plates, Pol: high power Glan-Taylor polarizers, M: mirrors, BS: beam splitters, ED: pyroelectric energy detector, OD: attenuation filters, L: two identical lenses, XY: x-y positioning stage for the sample S, CCD: in situ damage detection camera with microscope objective and laser blocking filter, FD: field diaphragm used to align the UV-CCD camera that acquires the beam profiles.
Fig. 2
Fig. 2 Characterization of the different test beams.
Fig. 3
Fig. 3 Example of a P(S)-curve (green dots) extracted from a 5000-on-1 measurement using 11 different sites. Wavelength, peak fluence and beam diameter were 266 nm, 24.8 J/cm2 and 11.5 µm respectively. The red line is obtained from the statistical model for a comparable situation ( P1 reached at similar pulse number S). The mismatch between data and model indicates that material modifications caused the fatigue effect at this wavelength and that laser fluctuations do not dominate the measured fatigue behavior.
Fig. 4
Fig. 4 Representation of the fatigue dynamics: number of pulses required to damage, ND, as function of normalized fluence, Fnorm. The fluence was normalized to the 50% damage threshold for 500 pulses. (a) Both beam sizes for 355 nm irradiation. (b) Both beam sizes for 266 nm irradiation. Dashed straight lines are guides to the eye.
Fig. 5
Fig. 5 S-on-1 damage probability data at 355 nm for both beam sizes and with a maximum of 500 pulses per site. The error bars in both directions are one-sigma error bars (68% confidence interval). The relative fluence uncertainty is obtained from fluctuations of the brightest pixel in the beam profile images (Fig. 2) and the probability error bars are calculated according to [27].
Fig. 6
Fig. 6 (a) Schematic representation of both experiments carried out in the bulk of fused silica at 266 nm with a laser beam diameter of 30 µm with two different break durations in the irradiation: 7 minutes (first series) and 45 minutes (second series). For each site, the precise numbers of shots used during the first and the second part of the irradiation were recorded and are named N1 and N2 respectively. Red disks represent damaged sites and white disks undamaged ones (after the first part of the irradiation). (b) Number of shots needed to damage (ND) as a function of the fluence. For more details, please refer to the text.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1P(S)= (1 p 1 ) S

Metrics