Abstract

Plasmonic optical fiber sensors are continuously developed for (bio)chemical sensing purposes. Recently, surface plasmon resonance (SPR) generation was achieved in gold-coated tilted fiber Bragg gratings (TFBGs). These sensors probe the surrounding medium with near-infrared narrowband resonances, which enhances both the penetration depth of the evanescent field in the external medium and the wavelength resolution of the interrogation. They constitute a unique configuration to probe all the fiber cladding modes individually. We use them to analyze the modal distribution of gold-coated telecommunication-grade optical fibers immersed in aqueous solutions. Theoretical investigations with a finite-difference complex mode solver are confirmed by experimental data obtained on TFBGs. We show that the refractometric sensitivity varies with the mode order and that the global SPR envelope shift in response to surrounding refractive index (SRI) changes higher than 1e-2 RIU (refractive index unit) can be ~25% bigger than the local SPR mode shift arising from SRI changes limited to 1e-4 RIU. We bring clear evidence that the optimum gold thickness for SPR generation lies in the range between 50 and 70 nm while a cladding diameter decrease from 125 µm to 80 µm enhances the refractometric sensitivity by ~20%. Finally, we demonstrate that the ultimate refractometric sensitivity of cladding modes is ~550 nm/RIU when they are probed by gold-coated TFBGs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive surface plasmon resonance sensor utilizing a long period grating with photosensitive cladding

Zhihong Li, Tao Chen, Zhaogang Zhang, Yanming Zhou, Dan Li, and Zhong Xie
Appl. Opt. 55(6) 1470-1480 (2016)

High-refractive-index transparent coatings enhance the optical fiber cladding modes refractometric sensitivity

Jean-Michel Renoirt, Chao Zhang, Marc Debliquy, Marie-Georges Olivier, Patrice Mégret, and Christophe Caucheteur
Opt. Express 21(23) 29073-29082 (2013)

High resolution fiber optic surface plasmon resonance sensors with single-sided gold coatings

Dingyi Feng, Wenjun Zhou, Xueguang Qiao, and Jacques Albert
Opt. Express 24(15) 16456-16464 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmon excited by light,” Z. Naturforsch. B 23, 2135 (1968).
  2. R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
    [Crossref]
  3. A. Trouillet, C. Ronot-Triol, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fiber,” Pure Appl. Opt. 5(2), 227–237 (1997).
    [Crossref]
  4. J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1-3), 401–405 (1995).
    [Crossref]
  5. M. H. Chiu, S. F. Wang, and R. S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30(3), 233–235 (2005).
    [Crossref] [PubMed]
  6. Y. L. Lo, C. H. Chuang, and Z. W. Lin, “Ultra-high sensitivity polarimetric strain sensor based upon D-shaped optical fiber and surface plasmon resonance technology,” Opt. Lett. 36(13), 2489–2491 (2011).
    [Crossref] [PubMed]
  7. R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
    [Crossref]
  8. V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24(9), 2804–2809 (2009).
    [Crossref] [PubMed]
  9. T. Schuster, R. Herschel, N. Neumann, and C. G. Schaffer, “Miniaturized long-period fiber grating assisted surface plasmon resonance sensor,” J. Lightwave Technol. 30(8), 1003–1008 (2012).
    [Crossref]
  10. J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [Crossref]
  11. Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor,” Plasmonics 3(2-3), 79–86 (2008).
    [Crossref]
  12. J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
    [Crossref] [PubMed]
  13. F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
    [Crossref] [PubMed]
  14. C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. (2015), doi:.
    [Crossref]
  15. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
    [Crossref] [PubMed]
  16. Y. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
    [Crossref] [PubMed]
  17. Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
    [Crossref] [PubMed]
  18. V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
    [Crossref] [PubMed]
  19. J. Albert, S. Lepinay, C. Caucheteur, and M. C. Derosa, “High resolution grating-assisted surface plasmon resonance fiber optic aptasensor,” Methods 63(3), 239–254 (2013).
    [Crossref] [PubMed]
  20. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, 1988).
  21. H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem. 132(1), 26–33 (2008).
    [Crossref]
  22. C. Caucheteur, Y. Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1656 .
    [Crossref] [PubMed]
  23. C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
    [Crossref]
  24. C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express 21(3), 3055–3066 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3055 .
    [Crossref] [PubMed]
  25. V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt. 50(22), 4257–4261 (2011).
    [Crossref] [PubMed]
  26. M. D. Baiad, M. Gagné, W.-J. Madore, E. De Montigny, N. Godbout, C. Boudoux, and R. Kashyap, “Surface plasmon resonance sensor interrogation with a double-clad fiber coupler and cladding modes excited by a tilted fiber Bragg grating,” Opt. Lett. 38(22), 4911–4914 (2013).
    [Crossref] [PubMed]
  27. L. Novotny, “Strong coupling, energy splitting, and level crossings: a classical perspective,” Am. J. Phys. 78(11), 1199–1202 (2010).
    [Crossref]
  28. A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coatings for fiber plasmonics by electroless deposition,” Opt. Express 19(20), 18742–18753 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-18742 .
    [Crossref] [PubMed]

2014 (1)

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (2)

T. Schuster, R. Herschel, N. Neumann, and C. G. Schaffer, “Miniaturized long-period fiber grating assisted surface plasmon resonance sensor,” J. Lightwave Technol. 30(8), 1003–1008 (2012).
[Crossref]

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

2011 (7)

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Y. L. Lo, C. H. Chuang, and Z. W. Lin, “Ultra-high sensitivity polarimetric strain sensor based upon D-shaped optical fiber and surface plasmon resonance technology,” Opt. Lett. 36(13), 2489–2491 (2011).
[Crossref] [PubMed]

Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coatings for fiber plasmonics by electroless deposition,” Opt. Express 19(20), 18742–18753 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-18742 .
[Crossref] [PubMed]

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt. 50(22), 4257–4261 (2011).
[Crossref] [PubMed]

C. Caucheteur, Y. Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1656 .
[Crossref] [PubMed]

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[Crossref]

2010 (2)

L. Novotny, “Strong coupling, energy splitting, and level crossings: a classical perspective,” Am. J. Phys. 78(11), 1199–1202 (2010).
[Crossref]

Y. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
[Crossref] [PubMed]

2009 (2)

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24(9), 2804–2809 (2009).
[Crossref] [PubMed]

2008 (3)

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor,” Plasmonics 3(2-3), 79–86 (2008).
[Crossref]

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem. 132(1), 26–33 (2008).
[Crossref]

2005 (1)

1997 (1)

A. Trouillet, C. Ronot-Triol, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fiber,” Pure Appl. Opt. 5(2), 227–237 (1997).
[Crossref]

1995 (1)

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1-3), 401–405 (1995).
[Crossref]

1993 (1)

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmon excited by light,” Z. Naturforsch. B 23, 2135 (1968).

Ahamad, N.

Albert, J.

C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express 21(3), 3055–3066 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3055 .
[Crossref] [PubMed]

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

J. Albert, S. Lepinay, C. Caucheteur, and M. C. Derosa, “High resolution grating-assisted surface plasmon resonance fiber optic aptasensor,” Methods 63(3), 239–254 (2013).
[Crossref] [PubMed]

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[Crossref]

Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coatings for fiber plasmonics by electroless deposition,” Opt. Express 19(20), 18742–18753 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-18742 .
[Crossref] [PubMed]

C. Caucheteur, Y. Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1656 .
[Crossref] [PubMed]

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt. 50(22), 4257–4261 (2011).
[Crossref] [PubMed]

Y. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. (2015), doi:.
[Crossref]

Baiad, M. D.

Baldini, F.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Berini, P.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[Crossref]

Bialiayeu, A.

Blair, D. A.

Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Boudoux, C.

Brenci, M.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Brongersma, S. H.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Caucheteur, C.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref] [PubMed]

J. Albert, S. Lepinay, C. Caucheteur, and M. C. Derosa, “High resolution grating-assisted surface plasmon resonance fiber optic aptasensor,” Methods 63(3), 239–254 (2013).
[Crossref] [PubMed]

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express 21(3), 3055–3066 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3055 .
[Crossref] [PubMed]

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, “Self-optimized metal coatings for fiber plasmonics by electroless deposition,” Opt. Express 19(20), 18742–18753 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-18742 .
[Crossref] [PubMed]

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt. 50(22), 4257–4261 (2011).
[Crossref] [PubMed]

C. Caucheteur, Y. Y. Shevchenko, L.-Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19(2), 1656–1664 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1656 .
[Crossref] [PubMed]

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. (2015), doi:.
[Crossref]

Chang, R. S.

Chen, C.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[Crossref]

Y. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
[Crossref] [PubMed]

Chiavaioli, F.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Chiu, M. H.

Chuang, C. H.

Crego-Calama, M.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Dakka, M. A.

Damman, P.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref] [PubMed]

De Montigny, E.

Delport, F.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Derosa, M. C.

J. Albert, S. Lepinay, C. Caucheteur, and M. C. Derosa, “High resolution grating-assisted surface plasmon resonance fiber optic aptasensor,” Methods 63(3), 239–254 (2013).
[Crossref] [PubMed]

Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Dwivedi, Y. S.

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor,” Plasmonics 3(2-3), 79–86 (2008).
[Crossref]

Francis, T. J.

Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Gagnaire, H.

A. Trouillet, C. Ronot-Triol, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fiber,” Pure Appl. Opt. 5(2), 227–237 (1997).
[Crossref]

Gagné, M.

Giannetti, A.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Godbout, N.

Gómez Rivas, J.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Guo, T.

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. (2015), doi:.
[Crossref]

Gupta, B. D.

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor,” Plasmonics 3(2-3), 79–86 (2008).
[Crossref]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Herschel, R.

Homola, J.

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1-3), 401–405 (1995).
[Crossref]

Ianoul, A.

Jans, K.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Janssen, K. P. F.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Jorgenson, R.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Kashyap, R.

Kondoh, J.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem. 132(1), 26–33 (2008).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmon excited by light,” Z. Naturforsch. B 23, 2135 (1968).

Kundu, T.

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24(9), 2804–2809 (2009).
[Crossref] [PubMed]

Lammertyn, J.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Lepinay, S.

J. Albert, S. Lepinay, C. Caucheteur, and M. C. Derosa, “High resolution grating-assisted surface plasmon resonance fiber optic aptasensor,” Methods 63(3), 239–254 (2013).
[Crossref] [PubMed]

Lin, Z. W.

Lo, Y. L.

Madore, W.-J.

Maes, G.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Matsui, Y.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem. 132(1), 26–33 (2008).
[Crossref]

Mégret, P.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref] [PubMed]

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt. 50(22), 4257–4261 (2011).
[Crossref] [PubMed]

Mukherji, S.

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24(9), 2804–2809 (2009).
[Crossref] [PubMed]

Neumann, N.

Novotny, L.

L. Novotny, “Strong coupling, energy splitting, and level crossings: a classical perspective,” Am. J. Phys. 78(11), 1199–1202 (2010).
[Crossref]

Offermans, P.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Pfeiffer, H.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Pilate, J.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref] [PubMed]

Pollet, J.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmon excited by light,” Z. Naturforsch. B 23, 2135 (1968).

Rodriguez, S. R. K.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Ronot-Triol, C.

A. Trouillet, C. Ronot-Triol, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fiber,” Pure Appl. Opt. 5(2), 227–237 (1997).
[Crossref]

Sai, V. V. R.

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24(9), 2804–2809 (2009).
[Crossref] [PubMed]

Schaafsma, M. C.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Schaffer, C. G.

Schuster, T.

Shao, L.-Y.

Sharma, A. K.

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor,” Plasmonics 3(2-3), 79–86 (2008).
[Crossref]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Shevchenko, Y. Y.

Sugimoto, M.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem. 132(1), 26–33 (2008).
[Crossref]

Suzuki, H.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem. 132(1), 26–33 (2008).
[Crossref]

Trono, C.

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Trouillet, A.

A. Trouillet, C. Ronot-Triol, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fiber,” Pure Appl. Opt. 5(2), 227–237 (1997).
[Crossref]

Veillas, C.

A. Trouillet, C. Ronot-Triol, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fiber,” Pure Appl. Opt. 5(2), 227–237 (1997).
[Crossref]

Verma, R. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Voisin, V.

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref] [PubMed]

C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express 21(3), 3055–3066 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3055 .
[Crossref] [PubMed]

V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt. 50(22), 4257–4261 (2011).
[Crossref] [PubMed]

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[Crossref]

Walsh, R.

Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Wang, S. F.

Wevers, M.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

Wuilpart, M.

Yee, S.

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

Zhang, Y.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

ACS Nano (1)

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Am. J. Phys. (1)

L. Novotny, “Strong coupling, energy splitting, and level crossings: a classical perspective,” Am. J. Phys. 78(11), 1199–1202 (2010).
[Crossref]

Anal. Bioanal. Chem. (1)

F. Baldini, M. Brenci, F. Chiavaioli, A. Giannetti, and C. Trono, “Optical fibre gratings as tools for chemical and biochemical sensing,” Anal. Bioanal. Chem. 402(1), 109–116 (2012).
[Crossref] [PubMed]

Anal. Chem. (1)

Y. Y. Shevchenko, T. J. Francis, D. A. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface Plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[Crossref]

Biosens. Bioelectron. (3)

V. Voisin, J. Pilate, P. Damman, P. Mégret, and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosens. Bioelectron. 51, 249–254 (2014).
[Crossref] [PubMed]

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[Crossref] [PubMed]

V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron. 24(9), 2804–2809 (2009).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Methods (1)

J. Albert, S. Lepinay, C. Caucheteur, and M. C. Derosa, “High resolution grating-assisted surface plasmon resonance fiber optic aptasensor,” Methods 63(3), 239–254 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Plasmonics (1)

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, “Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor,” Plasmonics 3(2-3), 79–86 (2008).
[Crossref]

Pure Appl. Opt. (1)

A. Trouillet, C. Ronot-Triol, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fiber,” Pure Appl. Opt. 5(2), 227–237 (1997).
[Crossref]

Sens. Actuators B Chem. (3)

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1-3), 401–405 (1995).
[Crossref]

R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[Crossref]

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem. 132(1), 26–33 (2008).
[Crossref]

Z. Naturforsch. B (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmon excited by light,” Z. Naturforsch. B 23, 2135 (1968).

Other (2)

C. Caucheteur, T. Guo, and J. Albert, “Review of plasmonic fiber optic biochemical sensors: improving the limit of detection,” Anal. Bioanal. Chem. (2015), doi:.
[Crossref]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Simulated electric fields pattern for three modes near the SPR, separated into radial (top row) and azimuthal (bottom row). All patterns have the same (normalized) mapping between magnitude and color. The three columns refer to cladding modes with effective indices of 1.3208, 1.3280, and 1.3285 (left to right).
Fig. 2
Fig. 2 Mode loss and fill factor in the surrounding medium as a function of the effective refractive index for a 50 nm gold-coated SMF immersed in water (the dashed line indicates the position of the 1D-SPP obtained with Eq. (1)).
Fig. 3
Fig. 3 Simulated mode loss for different thicknesses of the gold sheath. Each bar represents a mode with its effective index (abscissae) and loss (ordinate). Bars are color coded according to mode polarization and azimuthal order.
Fig. 4
Fig. 4 Simulated refractometric wavelength shift of the SPR mode as a function of the gold sheath thickness.
Fig. 5
Fig. 5 Refractometric sensitivity of the SPP mode and fraction of its power in the surrounding medium as a function of the gold sheath thickness in the range 10-100 nm.
Fig. 6
Fig. 6 Refractometric sensitivity of the SPR mode for different cladding diameters between 90 and 140 µm.
Fig. 7
Fig. 7 Wavelength shift of the SPR mode as a function of the SRI for a 50 nm gold-coated SMF.
Fig. 8
Fig. 8 Wavelength sensitivity of the SPR mode as a function of the SRI for a 50 nm gold-coated SMF.
Fig. 9
Fig. 9 Wavelength shift of different modes as a function of the SRI for a 50 nm gold-coated SMF.
Fig. 10
Fig. 10 Wavelength shift of the SPR mode and its radially-polarized neighbor as a function of the SRI value.
Fig. 11
Fig. 11 Radial and azimuthal polarization modes spectra of a 30 nm gold-coated 8° TFBG immersed in water (top) and corresponding Fimmwave simulation (bottom).
Fig. 12
Fig. 12 Transmitted spectrum (radial polarization) of an 8° TFBG immersed in salted water for different gold coating thicknesses.
Fig. 13
Fig. 13 SPR signature in the transmitted spectrum of gold-coated TFBG for coarse changes in SRI (a) and SPR tracking for different SRI values (b).
Fig. 14
Fig. 14 Spectra measured during a biosensing experiment (a) with 3 spectral regions shown in detail: on the short wavelength side of the SPR (b); near the SPR (c); and on the long wavelength side (d).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R= | r 12 p + r 23 p exp( 2i k z1 d ) 1+  r 12 p r 23 p exp( 2i k z1 d ) | 2
r mn p =( k zm ϵ m k zn ϵ n )/( k zm ϵ m + k zn ϵ n )
k 0 = 2π λ
k x = k 0 ϵ 1 sin( θ i )
k z1 = k 0 2 ϵ 1 k x 2
k z2 = k 0 2 ϵ 2 k x 2
k z3 = k 0 2 ϵ 3 k x 2
n eff = k x / k 0
λ SPR =( n eff,SPR + n eff,core )Λ
λ SPR n ext = n eff,SPR n ext Λ
λ SPR n ext Λ

Metrics