Abstract

Thermal and high speed modulation characteristics are investigated for a unidirectional-emission microdisk laser with a radius of 7 μm surrounded by BCB-cladding layer, with a threshold current of 1.5 mA at the temperature of 287 K. The lasing spectra under different widths of pulsed current are measured to characterize the temperature rise during the pulse period, and the thermal distribution in the microdisk laser is simulated by the finite-element modeling technique. A temperature rise of 25 K is estimated for the microdisk laser biased at 20 mA. Furthermore, small signal modulation response with 3dB bandwidth up to 20 GHz is obtained for the microdisk laser at the biasing current of 18 mA, and eye-diagrams at the modulation bit rates of 20, 25, and 30 GHz are also measured at the temperature of 287 K.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing

Ling-Xiu Zou, Yong-Zhen Huang, Xiao-Meng Lv, Bo-Wen Liu, Heng Long, Yue-De Yang, Jin-Long Xiao, and Yun Du
Photon. Res. 2(6) 177-181 (2014)

Direct modulation characteristics of microdisk lasers with InGaAs/GaAs quantum well-dots

N. V. Kryzhanovskaya, E. I. Moiseev, F. I. Zubov, A. M. Mozharov, M. V. Maximov, N. A. Kalyuzhnyy, S. A. Mintairov, M. M. Kulagina, S. A. Blokhin, K. E. Kudryavtsev, A. N. Yablonskiy, S. V. Morozov, Yu. Berdnikov, S. Rouvimov, and A. E. Zhukov
Photon. Res. 7(6) 664-668 (2019)

Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects

Yue-De Yang, Yu Zhang, Yong-Zhen Huang, and Andrew W. Poon
Opt. Express 22(1) 824-838 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
    [Crossref]
  2. G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat Commun. 2, 539 (2011).
    [Crossref] [PubMed]
  3. S. Matsuo, A. Shinya, C. H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
    [Crossref] [PubMed]
  4. Y. D. Yang and Y. Z. Huang, “Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators,” Phys. Rev. A 76(2), 023822 (2007).
    [Crossref]
  5. J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100(3), 033901 (2008).
    [Crossref] [PubMed]
  6. F. Ou, X. Y. Li, B. Y. Liu, Y. Y. Huang, and S. T. Ho, “Enhanced radiation-loss-based radial-waveguide-coupled electrically pumped microresonator lasers with single-directional output,” Opt. Lett. 35(10), 1722–1724 (2010).
    [Crossref] [PubMed]
  7. Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108(24), 243902 (2012).
    [Crossref] [PubMed]
  8. X. M. Lv, L. X. Zou, Y. Z. Huang, Y. D. Yang, J. L. Xiao, Q. F. Yao, and J. D. Lin, “Influence of mode Q factor and absorption loss on dynamical characteristics for semiconductor microcavity lasers by rate equation analysis,” IEEE J. Quantum Electron. 47(12), 1519–1525 (2011).
    [Crossref]
  9. X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7(5), 818–829 (2013).
    [Crossref]
  10. X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
    [Crossref]
  11. L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117(1), 453–458 (2014).
    [Crossref]
  12. R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL's bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11(12), 1554–1556 (1999).
    [Crossref]
  13. M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. J. Paniccia, “Experimental and theoretical thermal analysis of a hybrid silicon evanescent laser,” Opt. Express 15(23), 15041–15046 (2007).
    [Crossref] [PubMed]
  14. J. Van Campenhout, P. Rojo-Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. M. Fedeli, and R. Baets, “Thermal characterization of electrically injected thin-film InGaAsP microdisk lasers on Si,” J. Lightwave Technol. 25(6), 1543–1548 (2007).
    [Crossref]
  15. L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501808 (2013).
    [Crossref]
  16. S. Y. Huang, “Accurate thermal impedance measurement for semiconductor lasers by the double modes of fiber grating lasers,” Electronic Components and Technology Conference, Proceedings., 46th, 1996, pp. 635–639.
    [Crossref]
  17. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, (John Wiley & Sons, 2012).

2014 (2)

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117(1), 453–458 (2014).
[Crossref]

2013 (2)

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7(5), 818–829 (2013).
[Crossref]

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501808 (2013).
[Crossref]

2012 (2)

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108(24), 243902 (2012).
[Crossref] [PubMed]

2011 (3)

X. M. Lv, L. X. Zou, Y. Z. Huang, Y. D. Yang, J. L. Xiao, Q. F. Yao, and J. D. Lin, “Influence of mode Q factor and absorption loss on dynamical characteristics for semiconductor microcavity lasers by rate equation analysis,” IEEE J. Quantum Electron. 47(12), 1519–1525 (2011).
[Crossref]

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat Commun. 2, 539 (2011).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, C. H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19(3), 2242–2250 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (1)

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100(3), 033901 (2008).
[Crossref] [PubMed]

2007 (3)

1999 (1)

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL's bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11(12), 1554–1556 (1999).
[Crossref]

Baets, R.

Bowers, J. E.

Cao, H.

Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108(24), 243902 (2012).
[Crossref] [PubMed]

Chen, C. H.

Choquette, K. D.

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL's bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11(12), 1554–1556 (1999).
[Crossref]

Cohen, O.

Di Cioccio, L.

Du, Y.

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117(1), 453–458 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7(5), 818–829 (2013).
[Crossref]

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501808 (2013).
[Crossref]

Ellis, B.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat Commun. 2, 539 (2011).
[Crossref] [PubMed]

Fang, A. W.

Fedeli, J. M.

Ge, L.

Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108(24), 243902 (2012).
[Crossref] [PubMed]

Geen, M.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Geib, K. M.

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL's bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11(12), 1554–1556 (1999).
[Crossref]

Gustavsson, J. S.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Haglund, E.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Haller, E. E.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat Commun. 2, 539 (2011).
[Crossref] [PubMed]

Harris, J.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat Commun. 2, 539 (2011).
[Crossref] [PubMed]

Hentschel, M.

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100(3), 033901 (2008).
[Crossref] [PubMed]

Ho, S. T.

Huang, Y. Y.

Huang, Y. Z.

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117(1), 453–458 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7(5), 818–829 (2013).
[Crossref]

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501808 (2013).
[Crossref]

X. M. Lv, L. X. Zou, Y. Z. Huang, Y. D. Yang, J. L. Xiao, Q. F. Yao, and J. D. Lin, “Influence of mode Q factor and absorption loss on dynamical characteristics for semiconductor microcavity lasers by rate equation analysis,” IEEE J. Quantum Electron. 47(12), 1519–1525 (2011).
[Crossref]

Y. D. Yang and Y. Z. Huang, “Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators,” Phys. Rev. A 76(2), 023822 (2007).
[Crossref]

Joel, A.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Jones, R.

Kawaguchi, Y.

Kögel, B.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Larsson, A.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Lawrence, R.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Li, X. Y.

Lin, J. D.

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501808 (2013).
[Crossref]

X. M. Lv, L. X. Zou, Y. Z. Huang, Y. D. Yang, J. L. Xiao, Q. F. Yao, and J. D. Lin, “Influence of mode Q factor and absorption loss on dynamical characteristics for semiconductor microcavity lasers by rate equation analysis,” IEEE J. Quantum Electron. 47(12), 1519–1525 (2011).
[Crossref]

Liu, B. W.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

Liu, B. Y.

Long, H.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117(1), 453–458 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7(5), 818–829 (2013).
[Crossref]

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501808 (2013).
[Crossref]

Lv, X. M.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117(1), 453–458 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7(5), 818–829 (2013).
[Crossref]

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501808 (2013).
[Crossref]

X. M. Lv, L. X. Zou, Y. Z. Huang, Y. D. Yang, J. L. Xiao, Q. F. Yao, and J. D. Lin, “Influence of mode Q factor and absorption loss on dynamical characteristics for semiconductor microcavity lasers by rate equation analysis,” IEEE J. Quantum Electron. 47(12), 1519–1525 (2011).
[Crossref]

Majumdar, A.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat Commun. 2, 539 (2011).
[Crossref] [PubMed]

Matsuo, S.

Mayer, M. A.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat Commun. 2, 539 (2011).
[Crossref] [PubMed]

Notomi, M.

Nozaki, K.

Ou, F.

Paniccia, M. J.

Park, H.

Petykiewicz, J.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat Commun. 2, 539 (2011).
[Crossref] [PubMed]

Pu, R.

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL's bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11(12), 1554–1556 (1999).
[Crossref]

Raday, O.

Redding, B.

Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108(24), 243902 (2012).
[Crossref] [PubMed]

Regreny, P.

Rojo-Romeo, P.

Safaisini, R.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Sarmiento, T.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat Commun. 2, 539 (2011).
[Crossref] [PubMed]

Sato, T.

Seassal, C.

Shambat, G.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat Commun. 2, 539 (2011).
[Crossref] [PubMed]

Shinya, A.

Song, Q.

Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108(24), 243902 (2012).
[Crossref] [PubMed]

Sysak, M. N.

Taniyama, H.

Van Campenhout, J.

Van Thourhout, D.

Vuckovic, J.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat Commun. 2, 539 (2011).
[Crossref] [PubMed]

Westbergh, P.

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Wiersig, J.

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100(3), 033901 (2008).
[Crossref] [PubMed]

Wilmsen, C. W.

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL's bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11(12), 1554–1556 (1999).
[Crossref]

Xiao, J. L.

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117(1), 453–458 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501808 (2013).
[Crossref]

X. M. Lv, L. X. Zou, Y. Z. Huang, Y. D. Yang, J. L. Xiao, Q. F. Yao, and J. D. Lin, “Influence of mode Q factor and absorption loss on dynamical characteristics for semiconductor microcavity lasers by rate equation analysis,” IEEE J. Quantum Electron. 47(12), 1519–1525 (2011).
[Crossref]

Yang, Y. D.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117(1), 453–458 (2014).
[Crossref]

X. M. Lv, L. X. Zou, Y. Z. Huang, Y. D. Yang, J. L. Xiao, Q. F. Yao, and J. D. Lin, “Influence of mode Q factor and absorption loss on dynamical characteristics for semiconductor microcavity lasers by rate equation analysis,” IEEE J. Quantum Electron. 47(12), 1519–1525 (2011).
[Crossref]

Y. D. Yang and Y. Z. Huang, “Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators,” Phys. Rev. A 76(2), 023822 (2007).
[Crossref]

Yao, Q. F.

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501808 (2013).
[Crossref]

X. M. Lv, L. X. Zou, Y. Z. Huang, Y. D. Yang, J. L. Xiao, Q. F. Yao, and J. D. Lin, “Influence of mode Q factor and absorption loss on dynamical characteristics for semiconductor microcavity lasers by rate equation analysis,” IEEE J. Quantum Electron. 47(12), 1519–1525 (2011).
[Crossref]

Zou, L. X.

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117(1), 453–458 (2014).
[Crossref]

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7(5), 818–829 (2013).
[Crossref]

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501808 (2013).
[Crossref]

X. M. Lv, L. X. Zou, Y. Z. Huang, Y. D. Yang, J. L. Xiao, Q. F. Yao, and J. D. Lin, “Influence of mode Q factor and absorption loss on dynamical characteristics for semiconductor microcavity lasers by rate equation analysis,” IEEE J. Quantum Electron. 47(12), 1519–1525 (2011).
[Crossref]

Appl. Phys. B (1)

L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, and Y. Du, “Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser,” Appl. Phys. B 117(1), 453–458 (2014).
[Crossref]

Appl. Phys. Lett. (1)

X. M. Lv, Y. Z. Huang, Y. D. Yang, L. X. Zou, H. Long, B. W. Liu, J. L. Xiao, and Y. Du, “Influences of carrier diffusion and radial mode field pattern on high speed characteristics for microring lasers,” Appl. Phys. Lett. 104(16), 161101 (2014).
[Crossref]

Electron. Lett. (1)

B. Kögel, J. S. Gustavsson, E. Haglund, R. Safaisini, A. Joel, P. Westbergh, M. Geen, R. Lawrence, and A. Larsson, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

X. M. Lv, L. X. Zou, Y. Z. Huang, Y. D. Yang, J. L. Xiao, Q. F. Yao, and J. D. Lin, “Influence of mode Q factor and absorption loss on dynamical characteristics for semiconductor microcavity lasers by rate equation analysis,” IEEE J. Quantum Electron. 47(12), 1519–1525 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501808 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL's bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11(12), 1554–1556 (1999).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7(5), 818–829 (2013).
[Crossref]

Nat Commun. (1)

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat Commun. 2, 539 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

Y. D. Yang and Y. Z. Huang, “Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators,” Phys. Rev. A 76(2), 023822 (2007).
[Crossref]

Phys. Rev. Lett. (2)

J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100(3), 033901 (2008).
[Crossref] [PubMed]

Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108(24), 243902 (2012).
[Crossref] [PubMed]

Other (2)

S. Y. Huang, “Accurate thermal impedance measurement for semiconductor lasers by the double modes of fiber grating lasers,” Electronic Components and Technology Conference, Proceedings., 46th, 1996, pp. 635–639.
[Crossref]

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, (John Wiley & Sons, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) The structure diagram of a microdisk laser, (b) the SEM picture of a microdisk resonator and (c) the microscope picture of a microdisk laser covered by p-electrode.
Fig. 2
Fig. 2 (a) Output powers coupled into a multi-mode optical fiber versus CW current at 287 K, 298 K and 308 K, and (b) applied voltage versus CW injection current and the fitted curve at 287 K for a microdisk laser with a radius of 7μm connected with a 1.2-μm-wide waveguide.
Fig. 3
Fig. 3 (a) Lasing spectra measured at 287 K for the microdisk laser with the radius of 7 μm biased at 2 and 15 mA, and (b) the mode wavelengths and SMSR versus the CW injection current.
Fig. 4
Fig. 4 (a) The lasing wavelength versus TEC temperature for the microdisk laser under pulsed injection current of 15 mA; (b) lasing wavelength versus the applied electric power at 287 K; (c) the practical laser temperature versus the injection current at the TEC temperature of 287 K; and (d) the threshold current versus the TEC temperature with T0 = 53.2 K.
Fig. 5
Fig. 5 Lasing spectra for the microdisk laser at the TEC temperature of 287 K versus pulse width at a pulsed current of 20 mA and a period of 10 µs.
Fig. 6
Fig. 6 The estimated device temperature step response versus the pulse width at Ths = 287 K and the pulsed currents of 15 and 20 mA. The solid lines show the simulated results with the applied electric powers of 22 and 32 mW.
Fig. 7
Fig. 7 Two-dimensional temperature profile for the microdisk laser operating with a bias current of 20 mA, (a) without and (b) with a Si3N4 interlayer between the p-electrode and the BCB layer.
Fig. 8
Fig. 8 (a) Small-signal modulation responses for the 7-μm radius microdisk laser at 287 K and the biasing currents of 10, 13 and 18 mA, and (b) resonance frequency and practical temperature versus square root of the bias current minus the threshold current.
Fig. 9
Fig. 9 (a) Small-signal modulation responses of the 7-μm radius microdisk laser measured at a biasing current of 15 mA and the TEC temperatures of 293, 303 and 313K; (b) resonance frequencies versus the TEC temperature for the microdisk laser biased at 10, 12 and 15 mA.
Fig. 10
Fig. 10 Eye diagrams at the modulation bit rates of 20, 25 and 30 Gbit/s for the microdisk laser biased at 21 mA at the TEC temperature of 287 K.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I= I s [ exp( ( VIR )q/nkT )1 ],
Z T =( dλ dP ) ( dλ dT ) 1 ,
ΔT=( 0.025 I 2 +1.07I )K.
I th ( T 2 )= I th ( T 1 )exp[( T 2 T 1 ) / T 0 ]
T( t d )= T hs + Δλ( t d ) dλ/dT ,
rρc T t = q v r+ r ( κr T r )+ z ( κr T z )
P d = P in ( 1η )= P s + P act
f R = 1 2π ( v g a s 0 τ P ) 1/2 = 1 2π ( v g a η i q V P ( I I th ) ) 1/2 =D ( I I th ) 1/2

Metrics