Abstract

We demonstrate an ammonia sensor composed of a tapered multimode fiber coated with polyaniline nanofibers that operates at room temperature (26°C). The optical properties of the polyaniline layer changes when it is exposed to ammonia, leading to a change in the absorption of evanescent field. The fiber sensor was tested by exposing it to ammonia at different concentrations and the absorbance is measured using a spectrophotometer system. Measured response and recovery times are about 2.27 minutes and 9.73 minutes, respectively. The sensor sensitivity can be controlled by adjusting the tapered fiber diameter and the highest sensitivity is achieved when the diameter is reduced to 20 µm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High sensitivity sol-gel silica coated optical fiber sensor for detection of ammonia in water

Dejun Liu, Wei Han, Arun Kumar Mallik, Jinhui Yuan, Chongxiu Yu, Gerald Farrell, Yuliya Semenova, and Qiang Wu
Opt. Express 24(21) 24179-24187 (2016)

Room temperature ammonia sensor using side-polished optical fiber coated with graphene/polyaniline nanocomposite

A. L. Khalaf, F. S. Mohamad, N. Abdul Rahman, H. N. Lim, S. Paiman, N. A. Yusof, M. A. Mahdi, and M. H. Yaacob
Opt. Mater. Express 7(6) 1858-1870 (2017)

Fabrication and calibration of Oxazine-based optic fiber sensor for detection of ammonia in water

Ahmed Hasnain Jalal, Jinsong Yu, and A. G. Agwu Nnanna
Appl. Opt. 51(17) 3768-3775 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. Timmer, W. Olthuis, and A. Berg, “Ammonia sensors and their applications—a review,” Sens. Actuator B-Chem. 107(2), 666–677 (2005).
    [Crossref]
  2. D. Verma and V. Dutta, “Role of novel microstructure of polyaniline-CSA thin film in ammonia sensing at room temperature,” Sens. Actuat. B-Chem. 134(2), 373–376 (2008).
    [Crossref]
  3. D. Nicolas-Debarnot and F. Poncin-Epaillard, “Polyaniline as a new sensitive layer for gas sensors,” Anal. Chim. Acta 475(1–2), 1–15 (2003).
    [Crossref]
  4. P. Stamenov, R. Madathil, and J. M. D. Coey, “Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology,” Sens. Actuat. B-Chem. 161(1), 989–999 (2012).
    [Crossref]
  5. H. Bai and G. Shi, “Gas sensors based on conducting polymers,” Sensors (Basel Switzerland) 7(3), 267–307 (2007).
    [Crossref]
  6. A. L. Kukla, Y. M. Shirshov, and S. A. Piletsky, “Ammonia sensors based on sensitive polyaniline films,” Sens. Actuat. B-Chem. 37(3), 135–140 (1996).
    [Crossref]
  7. A. D. Aguilar, E. S. Forzani, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao, “A breath ammonia sensor based on conducting polymer nanojunctions,” IEEE Sens. J. 8(3), 269–273 (2008).
    [Crossref]
  8. K. Crowley, A. Morrin, A. Hernandez, E. Omalley, P. Whitten, G. Wallace, M. Smyth, and A. Killard, “Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles,” Talanta 77(2), 710–717 (2008).
    [Crossref]
  9. A. L. Sharma, K. Kumar, and A. Deep, “Nanostructured polyaniline films on silicon for sensitive sensing of ammonia,” Sens. Actuat. A-Phys. 198, 107–112 (2013).
    [Crossref]
  10. M. H. Yaacob, M. Breedon, K. Kalantar-zadeh, and W. Wlodarski, “Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2,” Sens. Actuat. B-Chem. 137(1), 115–120 (2009).
    [Crossref]
  11. M. Yang and J. Dai, “Review on optical fiber sensors with sensitive thin films,” Photon. Sens. 2(1), 14–28 (2012).
    [Crossref]
  12. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
    [Crossref] [PubMed]
  13. J. Castrellon-Uribe, M. E. Nicho, and G. Reyes-Merino, “Remote optical detection of low concentrations of aqueous ammonia employing conductive polymers of polyaniline,” Sens. Actuat. B-Chem. 141(1), 40–44 (2009).
    [Crossref]
  14. A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “A new evanescent wave ammonia sensor based on polyaniline composite,” Talanta 76(2), 314–319 (2008).
    [Crossref] [PubMed]
  15. L. Ai, J. C. Mau, W. F. Liu, T. C. Chen, and W. K. Su, “A volatile-solvent gas fiber sensor based on polyaniline film coated on superstructure fiber Bragg gratings,” Meas. Sci. Technol. 19(1), 017002 (2008).
    [Crossref]
  16. M. El-Sherif, L. Bansal, and J. Yuan, “Fiber optic sensors for detection of toxic and biological threats,” Sensors (Basel Switzerland) 7(12), 3100–3118 (2007).
    [Crossref]
  17. M. A. El-Sherif, “Fiber-optic chemical sensor using polyaniline as modified cladding material,” IEEE Sens. J. 3(1), 5–12 (2003).
    [Crossref]
  18. S. K. Mishra, D. Kumari, and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline,” Sens. Actuator B-Chem. 171–172, 976–983 (2012).
    [Crossref]
  19. A. B. Socorro, I. Del Villar, J. M. Corres, I. R. Matias, and F. J. Arregui, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuat. A-Phys. 180, 25–31 (2012).
    [Crossref]
  20. A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21(12), 2202–2209 (2006).
    [Crossref] [PubMed]
  21. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
    [Crossref] [PubMed]
  22. L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008).
    [Crossref] [PubMed]
  23. H.-Y. Lin, C.-H. Huang, G.-L. Cheng, N.-K. Chen, and H.-C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
    [Crossref] [PubMed]
  24. N. Abdul Rahman, M. Gizdavic-Nikolaidis, S. Ray, A. J. Easteal, and J. Travas-Sejdic, “Functional electrospun nanofibres of poly(lactic acid) blends with polyaniline or poly(aniline-co-benzoic acid),” Synth. Met. 160(17–18), 2015–2022 (2010).
    [Crossref]
  25. B.-K. Min and S.-D. Choi, “SnO2 thin film gas sensor fabricated by ion beam deposition,” Sens. Actuat. B-Chem. 98(2–3), 239–246 (2004).
    [Crossref]

2013 (1)

A. L. Sharma, K. Kumar, and A. Deep, “Nanostructured polyaniline films on silicon for sensitive sensing of ammonia,” Sens. Actuat. A-Phys. 198, 107–112 (2013).
[Crossref]

2012 (5)

P. Stamenov, R. Madathil, and J. M. D. Coey, “Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology,” Sens. Actuat. B-Chem. 161(1), 989–999 (2012).
[Crossref]

M. Yang and J. Dai, “Review on optical fiber sensors with sensitive thin films,” Photon. Sens. 2(1), 14–28 (2012).
[Crossref]

S. K. Mishra, D. Kumari, and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline,” Sens. Actuator B-Chem. 171–172, 976–983 (2012).
[Crossref]

A. B. Socorro, I. Del Villar, J. M. Corres, I. R. Matias, and F. J. Arregui, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuat. A-Phys. 180, 25–31 (2012).
[Crossref]

H.-Y. Lin, C.-H. Huang, G.-L. Cheng, N.-K. Chen, and H.-C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express 20(19), 21693–21701 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

N. Abdul Rahman, M. Gizdavic-Nikolaidis, S. Ray, A. J. Easteal, and J. Travas-Sejdic, “Functional electrospun nanofibres of poly(lactic acid) blends with polyaniline or poly(aniline-co-benzoic acid),” Synth. Met. 160(17–18), 2015–2022 (2010).
[Crossref]

2009 (2)

J. Castrellon-Uribe, M. E. Nicho, and G. Reyes-Merino, “Remote optical detection of low concentrations of aqueous ammonia employing conductive polymers of polyaniline,” Sens. Actuat. B-Chem. 141(1), 40–44 (2009).
[Crossref]

M. H. Yaacob, M. Breedon, K. Kalantar-zadeh, and W. Wlodarski, “Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2,” Sens. Actuat. B-Chem. 137(1), 115–120 (2009).
[Crossref]

2008 (6)

A. D. Aguilar, E. S. Forzani, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao, “A breath ammonia sensor based on conducting polymer nanojunctions,” IEEE Sens. J. 8(3), 269–273 (2008).
[Crossref]

K. Crowley, A. Morrin, A. Hernandez, E. Omalley, P. Whitten, G. Wallace, M. Smyth, and A. Killard, “Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles,” Talanta 77(2), 710–717 (2008).
[Crossref]

D. Verma and V. Dutta, “Role of novel microstructure of polyaniline-CSA thin film in ammonia sensing at room temperature,” Sens. Actuat. B-Chem. 134(2), 373–376 (2008).
[Crossref]

A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “A new evanescent wave ammonia sensor based on polyaniline composite,” Talanta 76(2), 314–319 (2008).
[Crossref] [PubMed]

L. Ai, J. C. Mau, W. F. Liu, T. C. Chen, and W. K. Su, “A volatile-solvent gas fiber sensor based on polyaniline film coated on superstructure fiber Bragg gratings,” Meas. Sci. Technol. 19(1), 017002 (2008).
[Crossref]

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16(17), 13349–13353 (2008).
[Crossref] [PubMed]

2007 (2)

M. El-Sherif, L. Bansal, and J. Yuan, “Fiber optic sensors for detection of toxic and biological threats,” Sensors (Basel Switzerland) 7(12), 3100–3118 (2007).
[Crossref]

H. Bai and G. Shi, “Gas sensors based on conducting polymers,” Sensors (Basel Switzerland) 7(3), 267–307 (2007).
[Crossref]

2006 (1)

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21(12), 2202–2209 (2006).
[Crossref] [PubMed]

2005 (2)

B. Timmer, W. Olthuis, and A. Berg, “Ammonia sensors and their applications—a review,” Sens. Actuator B-Chem. 107(2), 666–677 (2005).
[Crossref]

J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[Crossref] [PubMed]

2004 (1)

B.-K. Min and S.-D. Choi, “SnO2 thin film gas sensor fabricated by ion beam deposition,” Sens. Actuat. B-Chem. 98(2–3), 239–246 (2004).
[Crossref]

2003 (2)

M. A. El-Sherif, “Fiber-optic chemical sensor using polyaniline as modified cladding material,” IEEE Sens. J. 3(1), 5–12 (2003).
[Crossref]

D. Nicolas-Debarnot and F. Poncin-Epaillard, “Polyaniline as a new sensitive layer for gas sensors,” Anal. Chim. Acta 475(1–2), 1–15 (2003).
[Crossref]

1996 (1)

A. L. Kukla, Y. M. Shirshov, and S. A. Piletsky, “Ammonia sensors based on sensitive polyaniline films,” Sens. Actuat. B-Chem. 37(3), 135–140 (1996).
[Crossref]

Abdul Rahman, N.

N. Abdul Rahman, M. Gizdavic-Nikolaidis, S. Ray, A. J. Easteal, and J. Travas-Sejdic, “Functional electrospun nanofibres of poly(lactic acid) blends with polyaniline or poly(aniline-co-benzoic acid),” Synth. Met. 160(17–18), 2015–2022 (2010).
[Crossref]

Aguilar, A. D.

A. D. Aguilar, E. S. Forzani, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao, “A breath ammonia sensor based on conducting polymer nanojunctions,” IEEE Sens. J. 8(3), 269–273 (2008).
[Crossref]

Ai, L.

L. Ai, J. C. Mau, W. F. Liu, T. C. Chen, and W. K. Su, “A volatile-solvent gas fiber sensor based on polyaniline film coated on superstructure fiber Bragg gratings,” Meas. Sci. Technol. 19(1), 017002 (2008).
[Crossref]

Airoudj, A.

A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “A new evanescent wave ammonia sensor based on polyaniline composite,” Talanta 76(2), 314–319 (2008).
[Crossref] [PubMed]

Amlani, I.

A. D. Aguilar, E. S. Forzani, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao, “A breath ammonia sensor based on conducting polymer nanojunctions,” IEEE Sens. J. 8(3), 269–273 (2008).
[Crossref]

Arregui, F. J.

A. B. Socorro, I. Del Villar, J. M. Corres, I. R. Matias, and F. J. Arregui, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuat. A-Phys. 180, 25–31 (2012).
[Crossref]

Bai, H.

H. Bai and G. Shi, “Gas sensors based on conducting polymers,” Sensors (Basel Switzerland) 7(3), 267–307 (2007).
[Crossref]

Bansal, L.

M. El-Sherif, L. Bansal, and J. Yuan, “Fiber optic sensors for detection of toxic and biological threats,” Sensors (Basel Switzerland) 7(12), 3100–3118 (2007).
[Crossref]

Bêche, B.

A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “A new evanescent wave ammonia sensor based on polyaniline composite,” Talanta 76(2), 314–319 (2008).
[Crossref] [PubMed]

Berg, A.

B. Timmer, W. Olthuis, and A. Berg, “Ammonia sensors and their applications—a review,” Sens. Actuator B-Chem. 107(2), 666–677 (2005).
[Crossref]

Brambilla, G.

Breedon, M.

M. H. Yaacob, M. Breedon, K. Kalantar-zadeh, and W. Wlodarski, “Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2,” Sens. Actuat. B-Chem. 137(1), 115–120 (2009).
[Crossref]

Castrellon-Uribe, J.

J. Castrellon-Uribe, M. E. Nicho, and G. Reyes-Merino, “Remote optical detection of low concentrations of aqueous ammonia employing conductive polymers of polyaniline,” Sens. Actuat. B-Chem. 141(1), 40–44 (2009).
[Crossref]

Chen, N.-K.

Chen, T. C.

L. Ai, J. C. Mau, W. F. Liu, T. C. Chen, and W. K. Su, “A volatile-solvent gas fiber sensor based on polyaniline film coated on superstructure fiber Bragg gratings,” Meas. Sci. Technol. 19(1), 017002 (2008).
[Crossref]

Cheng, G.-L.

Choi, S.-D.

B.-K. Min and S.-D. Choi, “SnO2 thin film gas sensor fabricated by ion beam deposition,” Sens. Actuat. B-Chem. 98(2–3), 239–246 (2004).
[Crossref]

Chui, H.-C.

Coey, J. M. D.

P. Stamenov, R. Madathil, and J. M. D. Coey, “Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology,” Sens. Actuat. B-Chem. 161(1), 989–999 (2012).
[Crossref]

Corres, J. M.

A. B. Socorro, I. Del Villar, J. M. Corres, I. R. Matias, and F. J. Arregui, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuat. A-Phys. 180, 25–31 (2012).
[Crossref]

Crowley, K.

K. Crowley, A. Morrin, A. Hernandez, E. Omalley, P. Whitten, G. Wallace, M. Smyth, and A. Killard, “Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles,” Talanta 77(2), 710–717 (2008).
[Crossref]

Dai, J.

M. Yang and J. Dai, “Review on optical fiber sensors with sensitive thin films,” Photon. Sens. 2(1), 14–28 (2012).
[Crossref]

Debarnot, D.

A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “A new evanescent wave ammonia sensor based on polyaniline composite,” Talanta 76(2), 314–319 (2008).
[Crossref] [PubMed]

Deep, A.

A. L. Sharma, K. Kumar, and A. Deep, “Nanostructured polyaniline films on silicon for sensitive sensing of ammonia,” Sens. Actuat. A-Phys. 198, 107–112 (2013).
[Crossref]

Del Villar, I.

A. B. Socorro, I. Del Villar, J. M. Corres, I. R. Matias, and F. J. Arregui, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuat. A-Phys. 180, 25–31 (2012).
[Crossref]

Ding, M.

Dutta, V.

D. Verma and V. Dutta, “Role of novel microstructure of polyaniline-CSA thin film in ammonia sensing at room temperature,” Sens. Actuat. B-Chem. 134(2), 373–376 (2008).
[Crossref]

Easteal, A. J.

N. Abdul Rahman, M. Gizdavic-Nikolaidis, S. Ray, A. J. Easteal, and J. Travas-Sejdic, “Functional electrospun nanofibres of poly(lactic acid) blends with polyaniline or poly(aniline-co-benzoic acid),” Synth. Met. 160(17–18), 2015–2022 (2010).
[Crossref]

El-Sherif, M.

M. El-Sherif, L. Bansal, and J. Yuan, “Fiber optic sensors for detection of toxic and biological threats,” Sensors (Basel Switzerland) 7(12), 3100–3118 (2007).
[Crossref]

El-Sherif, M. A.

M. A. El-Sherif, “Fiber-optic chemical sensor using polyaniline as modified cladding material,” IEEE Sens. J. 3(1), 5–12 (2003).
[Crossref]

Farrell, G.

Forzani, E. S.

A. D. Aguilar, E. S. Forzani, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao, “A breath ammonia sensor based on conducting polymer nanojunctions,” IEEE Sens. J. 8(3), 269–273 (2008).
[Crossref]

Gizdavic-Nikolaidis, M.

N. Abdul Rahman, M. Gizdavic-Nikolaidis, S. Ray, A. J. Easteal, and J. Travas-Sejdic, “Functional electrospun nanofibres of poly(lactic acid) blends with polyaniline or poly(aniline-co-benzoic acid),” Synth. Met. 160(17–18), 2015–2022 (2010).
[Crossref]

Gu, F.

Gupta, B. D.

S. K. Mishra, D. Kumari, and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline,” Sens. Actuator B-Chem. 171–172, 976–983 (2012).
[Crossref]

Hernandez, A.

K. Crowley, A. Morrin, A. Hernandez, E. Omalley, P. Whitten, G. Wallace, M. Smyth, and A. Killard, “Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles,” Talanta 77(2), 710–717 (2008).
[Crossref]

Huang, C.-H.

Kalantar-zadeh, K.

M. H. Yaacob, M. Breedon, K. Kalantar-zadeh, and W. Wlodarski, “Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2,” Sens. Actuat. B-Chem. 137(1), 115–120 (2009).
[Crossref]

Killard, A.

K. Crowley, A. Morrin, A. Hernandez, E. Omalley, P. Whitten, G. Wallace, M. Smyth, and A. Killard, “Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles,” Talanta 77(2), 710–717 (2008).
[Crossref]

Kukla, A. L.

A. L. Kukla, Y. M. Shirshov, and S. A. Piletsky, “Ammonia sensors based on sensitive polyaniline films,” Sens. Actuat. B-Chem. 37(3), 135–140 (1996).
[Crossref]

Kumar, K.

A. L. Sharma, K. Kumar, and A. Deep, “Nanostructured polyaniline films on silicon for sensitive sensing of ammonia,” Sens. Actuat. A-Phys. 198, 107–112 (2013).
[Crossref]

Kumari, D.

S. K. Mishra, D. Kumari, and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline,” Sens. Actuator B-Chem. 171–172, 976–983 (2012).
[Crossref]

Leung, A.

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21(12), 2202–2209 (2006).
[Crossref] [PubMed]

Lin, H.-Y.

Liu, W. F.

L. Ai, J. C. Mau, W. F. Liu, T. C. Chen, and W. K. Su, “A volatile-solvent gas fiber sensor based on polyaniline film coated on superstructure fiber Bragg gratings,” Meas. Sci. Technol. 19(1), 017002 (2008).
[Crossref]

Lou, J.

Madathil, R.

P. Stamenov, R. Madathil, and J. M. D. Coey, “Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology,” Sens. Actuat. B-Chem. 161(1), 989–999 (2012).
[Crossref]

Matias, I. R.

A. B. Socorro, I. Del Villar, J. M. Corres, I. R. Matias, and F. J. Arregui, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuat. A-Phys. 180, 25–31 (2012).
[Crossref]

Mau, J. C.

L. Ai, J. C. Mau, W. F. Liu, T. C. Chen, and W. K. Su, “A volatile-solvent gas fiber sensor based on polyaniline film coated on superstructure fiber Bragg gratings,” Meas. Sci. Technol. 19(1), 017002 (2008).
[Crossref]

Min, B.-K.

B.-K. Min and S.-D. Choi, “SnO2 thin film gas sensor fabricated by ion beam deposition,” Sens. Actuat. B-Chem. 98(2–3), 239–246 (2004).
[Crossref]

Mishra, S. K.

S. K. Mishra, D. Kumari, and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline,” Sens. Actuator B-Chem. 171–172, 976–983 (2012).
[Crossref]

Monzón-Hernández, D.

Morrin, A.

K. Crowley, A. Morrin, A. Hernandez, E. Omalley, P. Whitten, G. Wallace, M. Smyth, and A. Killard, “Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles,” Talanta 77(2), 710–717 (2008).
[Crossref]

Mutharasan, R.

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21(12), 2202–2209 (2006).
[Crossref] [PubMed]

Nagahara, L. A.

A. D. Aguilar, E. S. Forzani, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao, “A breath ammonia sensor based on conducting polymer nanojunctions,” IEEE Sens. J. 8(3), 269–273 (2008).
[Crossref]

Nicho, M. E.

J. Castrellon-Uribe, M. E. Nicho, and G. Reyes-Merino, “Remote optical detection of low concentrations of aqueous ammonia employing conductive polymers of polyaniline,” Sens. Actuat. B-Chem. 141(1), 40–44 (2009).
[Crossref]

Nicolas-Debarnot, D.

D. Nicolas-Debarnot and F. Poncin-Epaillard, “Polyaniline as a new sensitive layer for gas sensors,” Anal. Chim. Acta 475(1–2), 1–15 (2003).
[Crossref]

Olthuis, W.

B. Timmer, W. Olthuis, and A. Berg, “Ammonia sensors and their applications—a review,” Sens. Actuator B-Chem. 107(2), 666–677 (2005).
[Crossref]

Omalley, E.

K. Crowley, A. Morrin, A. Hernandez, E. Omalley, P. Whitten, G. Wallace, M. Smyth, and A. Killard, “Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles,” Talanta 77(2), 710–717 (2008).
[Crossref]

Piletsky, S. A.

A. L. Kukla, Y. M. Shirshov, and S. A. Piletsky, “Ammonia sensors based on sensitive polyaniline films,” Sens. Actuat. B-Chem. 37(3), 135–140 (1996).
[Crossref]

Poncin-Epaillard, F.

A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “A new evanescent wave ammonia sensor based on polyaniline composite,” Talanta 76(2), 314–319 (2008).
[Crossref] [PubMed]

D. Nicolas-Debarnot and F. Poncin-Epaillard, “Polyaniline as a new sensitive layer for gas sensors,” Anal. Chim. Acta 475(1–2), 1–15 (2003).
[Crossref]

Ray, S.

N. Abdul Rahman, M. Gizdavic-Nikolaidis, S. Ray, A. J. Easteal, and J. Travas-Sejdic, “Functional electrospun nanofibres of poly(lactic acid) blends with polyaniline or poly(aniline-co-benzoic acid),” Synth. Met. 160(17–18), 2015–2022 (2010).
[Crossref]

Reyes-Merino, G.

J. Castrellon-Uribe, M. E. Nicho, and G. Reyes-Merino, “Remote optical detection of low concentrations of aqueous ammonia employing conductive polymers of polyaniline,” Sens. Actuat. B-Chem. 141(1), 40–44 (2009).
[Crossref]

Rijal, K.

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21(12), 2202–2209 (2006).
[Crossref] [PubMed]

Semenova, Y.

Shankar, P. M.

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21(12), 2202–2209 (2006).
[Crossref] [PubMed]

Sharma, A. L.

A. L. Sharma, K. Kumar, and A. Deep, “Nanostructured polyaniline films on silicon for sensitive sensing of ammonia,” Sens. Actuat. A-Phys. 198, 107–112 (2013).
[Crossref]

Shi, G.

H. Bai and G. Shi, “Gas sensors based on conducting polymers,” Sensors (Basel Switzerland) 7(3), 267–307 (2007).
[Crossref]

Shirshov, Y. M.

A. L. Kukla, Y. M. Shirshov, and S. A. Piletsky, “Ammonia sensors based on sensitive polyaniline films,” Sens. Actuat. B-Chem. 37(3), 135–140 (1996).
[Crossref]

Smyth, M.

K. Crowley, A. Morrin, A. Hernandez, E. Omalley, P. Whitten, G. Wallace, M. Smyth, and A. Killard, “Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles,” Talanta 77(2), 710–717 (2008).
[Crossref]

Socorro, A. B.

A. B. Socorro, I. Del Villar, J. M. Corres, I. R. Matias, and F. J. Arregui, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuat. A-Phys. 180, 25–31 (2012).
[Crossref]

Stamenov, P.

P. Stamenov, R. Madathil, and J. M. D. Coey, “Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology,” Sens. Actuat. B-Chem. 161(1), 989–999 (2012).
[Crossref]

Su, W. K.

L. Ai, J. C. Mau, W. F. Liu, T. C. Chen, and W. K. Su, “A volatile-solvent gas fiber sensor based on polyaniline film coated on superstructure fiber Bragg gratings,” Meas. Sci. Technol. 19(1), 017002 (2008).
[Crossref]

Tao, N. J.

A. D. Aguilar, E. S. Forzani, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao, “A breath ammonia sensor based on conducting polymer nanojunctions,” IEEE Sens. J. 8(3), 269–273 (2008).
[Crossref]

Timmer, B.

B. Timmer, W. Olthuis, and A. Berg, “Ammonia sensors and their applications—a review,” Sens. Actuator B-Chem. 107(2), 666–677 (2005).
[Crossref]

Tong, L.

Travas-Sejdic, J.

N. Abdul Rahman, M. Gizdavic-Nikolaidis, S. Ray, A. J. Easteal, and J. Travas-Sejdic, “Functional electrospun nanofibres of poly(lactic acid) blends with polyaniline or poly(aniline-co-benzoic acid),” Synth. Met. 160(17–18), 2015–2022 (2010).
[Crossref]

Tsui, R.

A. D. Aguilar, E. S. Forzani, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao, “A breath ammonia sensor based on conducting polymer nanojunctions,” IEEE Sens. J. 8(3), 269–273 (2008).
[Crossref]

Verma, D.

D. Verma and V. Dutta, “Role of novel microstructure of polyaniline-CSA thin film in ammonia sensing at room temperature,” Sens. Actuat. B-Chem. 134(2), 373–376 (2008).
[Crossref]

Villatoro, J.

Wallace, G.

K. Crowley, A. Morrin, A. Hernandez, E. Omalley, P. Whitten, G. Wallace, M. Smyth, and A. Killard, “Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles,” Talanta 77(2), 710–717 (2008).
[Crossref]

Wang, P.

Whitten, P.

K. Crowley, A. Morrin, A. Hernandez, E. Omalley, P. Whitten, G. Wallace, M. Smyth, and A. Killard, “Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles,” Talanta 77(2), 710–717 (2008).
[Crossref]

Wlodarski, W.

M. H. Yaacob, M. Breedon, K. Kalantar-zadeh, and W. Wlodarski, “Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2,” Sens. Actuat. B-Chem. 137(1), 115–120 (2009).
[Crossref]

Wu, Q.

Yaacob, M. H.

M. H. Yaacob, M. Breedon, K. Kalantar-zadeh, and W. Wlodarski, “Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2,” Sens. Actuat. B-Chem. 137(1), 115–120 (2009).
[Crossref]

Yang, M.

M. Yang and J. Dai, “Review on optical fiber sensors with sensitive thin films,” Photon. Sens. 2(1), 14–28 (2012).
[Crossref]

Yin, X.

Yuan, J.

M. El-Sherif, L. Bansal, and J. Yuan, “Fiber optic sensors for detection of toxic and biological threats,” Sensors (Basel Switzerland) 7(12), 3100–3118 (2007).
[Crossref]

Zhang, L.

Anal. Chim. Acta (1)

D. Nicolas-Debarnot and F. Poncin-Epaillard, “Polyaniline as a new sensitive layer for gas sensors,” Anal. Chim. Acta 475(1–2), 1–15 (2003).
[Crossref]

Biosens. Bioelectron. (1)

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21(12), 2202–2209 (2006).
[Crossref] [PubMed]

IEEE Sens. J. (2)

A. D. Aguilar, E. S. Forzani, L. A. Nagahara, I. Amlani, R. Tsui, and N. J. Tao, “A breath ammonia sensor based on conducting polymer nanojunctions,” IEEE Sens. J. 8(3), 269–273 (2008).
[Crossref]

M. A. El-Sherif, “Fiber-optic chemical sensor using polyaniline as modified cladding material,” IEEE Sens. J. 3(1), 5–12 (2003).
[Crossref]

Meas. Sci. Technol. (1)

L. Ai, J. C. Mau, W. F. Liu, T. C. Chen, and W. K. Su, “A volatile-solvent gas fiber sensor based on polyaniline film coated on superstructure fiber Bragg gratings,” Meas. Sci. Technol. 19(1), 017002 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Photon. Sens. (1)

M. Yang and J. Dai, “Review on optical fiber sensors with sensitive thin films,” Photon. Sens. 2(1), 14–28 (2012).
[Crossref]

Sens. Actuat. A-Phys. (2)

A. B. Socorro, I. Del Villar, J. M. Corres, I. R. Matias, and F. J. Arregui, “Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber,” Sens. Actuat. A-Phys. 180, 25–31 (2012).
[Crossref]

A. L. Sharma, K. Kumar, and A. Deep, “Nanostructured polyaniline films on silicon for sensitive sensing of ammonia,” Sens. Actuat. A-Phys. 198, 107–112 (2013).
[Crossref]

Sens. Actuat. B-Chem. (6)

M. H. Yaacob, M. Breedon, K. Kalantar-zadeh, and W. Wlodarski, “Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2,” Sens. Actuat. B-Chem. 137(1), 115–120 (2009).
[Crossref]

P. Stamenov, R. Madathil, and J. M. D. Coey, “Dynamic response of ammonia sensors constructed from polyaniline nanofibre films with varying morphology,” Sens. Actuat. B-Chem. 161(1), 989–999 (2012).
[Crossref]

D. Verma and V. Dutta, “Role of novel microstructure of polyaniline-CSA thin film in ammonia sensing at room temperature,” Sens. Actuat. B-Chem. 134(2), 373–376 (2008).
[Crossref]

A. L. Kukla, Y. M. Shirshov, and S. A. Piletsky, “Ammonia sensors based on sensitive polyaniline films,” Sens. Actuat. B-Chem. 37(3), 135–140 (1996).
[Crossref]

J. Castrellon-Uribe, M. E. Nicho, and G. Reyes-Merino, “Remote optical detection of low concentrations of aqueous ammonia employing conductive polymers of polyaniline,” Sens. Actuat. B-Chem. 141(1), 40–44 (2009).
[Crossref]

B.-K. Min and S.-D. Choi, “SnO2 thin film gas sensor fabricated by ion beam deposition,” Sens. Actuat. B-Chem. 98(2–3), 239–246 (2004).
[Crossref]

Sens. Actuator B-Chem. (2)

S. K. Mishra, D. Kumari, and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline,” Sens. Actuator B-Chem. 171–172, 976–983 (2012).
[Crossref]

B. Timmer, W. Olthuis, and A. Berg, “Ammonia sensors and their applications—a review,” Sens. Actuator B-Chem. 107(2), 666–677 (2005).
[Crossref]

Sensors (Basel Switzerland) (2)

H. Bai and G. Shi, “Gas sensors based on conducting polymers,” Sensors (Basel Switzerland) 7(3), 267–307 (2007).
[Crossref]

M. El-Sherif, L. Bansal, and J. Yuan, “Fiber optic sensors for detection of toxic and biological threats,” Sensors (Basel Switzerland) 7(12), 3100–3118 (2007).
[Crossref]

Synth. Met. (1)

N. Abdul Rahman, M. Gizdavic-Nikolaidis, S. Ray, A. J. Easteal, and J. Travas-Sejdic, “Functional electrospun nanofibres of poly(lactic acid) blends with polyaniline or poly(aniline-co-benzoic acid),” Synth. Met. 160(17–18), 2015–2022 (2010).
[Crossref]

Talanta (2)

A. Airoudj, D. Debarnot, B. Bêche, and F. Poncin-Epaillard, “A new evanescent wave ammonia sensor based on polyaniline composite,” Talanta 76(2), 314–319 (2008).
[Crossref] [PubMed]

K. Crowley, A. Morrin, A. Hernandez, E. Omalley, P. Whitten, G. Wallace, M. Smyth, and A. Killard, “Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles,” Talanta 77(2), 710–717 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

SEM image of (a) transition region and (b) waist region of the tapered fiber.

Fig. 2
Fig. 2

SEM images of (a) PANI nanofibers on glass at magnification of 6000, (b) PANI nanofibers on glass at magnification of 15000, (c) tapered MMF coated with PANI nanofibers at magnification of 2000, and (d) tapered MMF coated with PANI nanofibers at magnification of 4000.

Fig. 3
Fig. 3

(a) 3D AFM image of the boundary area between bare glass and polyaniline coated glass. (b) The optical image captured during AFM analysis, showing the scan area.

Fig. 4
Fig. 4

Experimental setup for ammonia sensing using a PANI-coated tapered MMF.

Fig. 5
Fig. 5

The sensor (30 μm waist diameter) absorbance response under exposure of ammonia gas with concentration varied between 0.125% to 1%, (a) the normalized absorbance with variation in wavelength and (b) the dynamic response in terms of the normalized cumulative absorbance.

Fig. 6
Fig. 6

(a) Dynamic response and (b) change in cumulative absorbance versus ammonia concentration for tapered fiber sensor with waist diameter of 20 µm, 30 µm and 40 µm.

Fig. 7
Fig. 7

Three cycles of sensor response under exposure to 1% ammonia for 5 minutes and followed by purified air for 15 minutes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A λ =lo g 10 ( S λ D λ R λ D λ ),

Metrics