Abstract

We report on color-tunable electroluminescence (EL) from TiO2:Eu/p+-Si heterostructured devices using different TiO2:Eu films in terms of Eu content and annealing temperature. It is found that the Eu-related emissions are activated by the energy transferred from TiO2 host via oxygen vacancies, at the price of weakened oxygen-vacancy-related emissions. Both the higher Eu content and the higher annealing temperature for TiO2:Eu films facilitate the aforementioned energy transfer. In this context, the dominant EL from the TiO2:Eu/p+-Si heterostructured devices can be transformed from oxygen-vacancy-related emissions into Eu-related emissions with increasing Eu-content and annealing temperature for TiO2:Eu films, exhibiting different colors of emanated light. We believe that this work sheds light on developing silicon-based red emitters using the Eu-doped oxide semiconductor films.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Luminescence of Eu3+ in the thin film heterojunction GaAs/SnO2

Cristina de Freitas Bueno, Luis Vicente de A. Scalvi, Maximo Siu Li, and Margarida J. Saeki
Opt. Mater. Express 5(1) 59-72 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. A. J. Klik, T. Gregorkiewicz, I. V. Bradley, and J. P. R. Wells, “Optically induced deexcitation of Rare-Earth ions in a semiconductor matrix,” Phys. Rev. Lett. 89(22), 227401 (2002).
    [Crossref] [PubMed]
  2. E. F. Pecora, T. I. Murphy, and L. D. Negro, “Rare earth doped Si-rich ZnO for multiband near-infrared light emitting devices,” Appl. Phys. Lett. 101(19), 191115 (2012).
    [Crossref]
  3. S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen, Z. G. Wang, H. Y. Pan, and D. P. Yu, “Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution,” Appl. Phys. Lett. 80(19), 3605 (2002).
    [Crossref]
  4. A. J. Neuhalfen and B. W. Wessels, “Thermal quenching of Er3+-related luminescence in In1−xGaxP,” Appl. Phys. Lett. 60(21), 2657 (1992).
    [Crossref]
  5. Y. S. Liu, W. Q. Luo, R. F. Li, and X. Y. Chen, “Optical properties of Nd3+ ion-doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 10(3), 1871–1876 (2010).
    [Crossref] [PubMed]
  6. A. Conde-Gallardo, M. García-Rocha, I. Hernández-Calderón, and R. Palomino-Merino, “Photoluminescence properties of the Eu3+ activator ion in the TiO2 host matrix,” Appl. Phys. Lett. 78(22), 3436 (2001).
    [Crossref]
  7. C. Y. Fu, J. S. Liao, W. Q. Luo, R. F. Li, and X. Y. Chen, “Emission of 1.53 microm originating from the lattice site of Er3+ ions incorporated in TiO2 nanocrystals,” Opt. Lett. 33(9), 953–955 (2008).
    [Crossref] [PubMed]
  8. S. Komuro, T. Katsumata, H. Kokai, T. Morikawa, and X. Zhao, “Change in photoluminescence from Er-doped TiO2 thin films induced by optically assisted reduction,” Appl. Phys. Lett. 81(25), 4733 (2002).
    [Crossref]
  9. Y. Yang, L. Jin, X. Ma, and D. Yang, “Low-voltage driven visible and infrared electroluminescence from light-emitting device based on Er-doped TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 100(3), 031103 (2012).
    [Crossref]
  10. Y. Yang, C. Lv, C. Zhu, S. Li, X. Ma, and D. Yang, “Near-infrared electroluminescence from light-emitting devices based on Nd-doped TiO2/p +-Si heterostructures,” Appl. Phys. Lett. 104(20), 201109 (2014).
    [Crossref]
  11. L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang, and H. G. Fu, “Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships,” J. Phys. Chem. B 110(36), 17860–17865 (2006).
    [Crossref] [PubMed]
  12. Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
    [Crossref]
  13. M. Popa, L. Diamandescu, F. Vasiliu, C. M. Teodorescu, V. Cosoveanu, M. Baia, M. Feder, L. Baia, and V. Danciu, “Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels,” J. Mater. Sci. 44(2), 358–364 (2009).
    [Crossref]
  14. T. Ohsaka, “Temperature dependence of the Raman spectrum in anatase TiO2,” J. Phys. Soc. Jpn. 48(5), 1661–1668 (1980).
    [Crossref]
  15. Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Efficient energy transfer in monodisperse Eu-doped ZnO nanocrystals synthesized from metal acetylacetonates in high-boiling solvents,” J. Phys. Chem. C 112(32), 12234–12241 (2008).
    [Crossref]
  16. Q. Zeng, Z. Zhang, Z. Ding, Y. Wang, and Y. Sheng, “Strong photoluminescence emission of Eu:TiO2 nanotubes,” Scr. Mater. 57(10), 897–900 (2007).
    [Crossref]
  17. J. G. Li, X. H. Wang, K. Watanabe, and T. Ishigaki, “Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists,” J. Phys. Chem. B 110(3), 1121–1127 (2006).
    [Crossref] [PubMed]
  18. D. D. Wang, G. Z. Xing, M. Gao, L. L. Yang, J. H. Yang, and T. Wu, “Defects-mediated energy transfer in red-light-emitting Eu-doped ZnO nanowire arrays,” J. Phys. Chem. C 115(46), 22729–22735 (2011).
    [Crossref]
  19. Y. Zhang, X. Ma, P. Chen, D. Li, and D. Yang, “Electroluminescence from TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 94(6), 061115 (2009).
    [Crossref]
  20. Y. Zhang, X. Ma, P. Chen, D. Li, X. Pi, D. Yang, and P. G. Coleman, “Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2,” Appl. Phys. Lett. 95(25), 252102 (2009).
    [Crossref]

2014 (1)

Y. Yang, C. Lv, C. Zhu, S. Li, X. Ma, and D. Yang, “Near-infrared electroluminescence from light-emitting devices based on Nd-doped TiO2/p +-Si heterostructures,” Appl. Phys. Lett. 104(20), 201109 (2014).
[Crossref]

2012 (2)

Y. Yang, L. Jin, X. Ma, and D. Yang, “Low-voltage driven visible and infrared electroluminescence from light-emitting device based on Er-doped TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 100(3), 031103 (2012).
[Crossref]

E. F. Pecora, T. I. Murphy, and L. D. Negro, “Rare earth doped Si-rich ZnO for multiband near-infrared light emitting devices,” Appl. Phys. Lett. 101(19), 191115 (2012).
[Crossref]

2011 (1)

D. D. Wang, G. Z. Xing, M. Gao, L. L. Yang, J. H. Yang, and T. Wu, “Defects-mediated energy transfer in red-light-emitting Eu-doped ZnO nanowire arrays,” J. Phys. Chem. C 115(46), 22729–22735 (2011).
[Crossref]

2010 (1)

Y. S. Liu, W. Q. Luo, R. F. Li, and X. Y. Chen, “Optical properties of Nd3+ ion-doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 10(3), 1871–1876 (2010).
[Crossref] [PubMed]

2009 (3)

Y. Zhang, X. Ma, P. Chen, D. Li, and D. Yang, “Electroluminescence from TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 94(6), 061115 (2009).
[Crossref]

Y. Zhang, X. Ma, P. Chen, D. Li, X. Pi, D. Yang, and P. G. Coleman, “Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2,” Appl. Phys. Lett. 95(25), 252102 (2009).
[Crossref]

M. Popa, L. Diamandescu, F. Vasiliu, C. M. Teodorescu, V. Cosoveanu, M. Baia, M. Feder, L. Baia, and V. Danciu, “Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels,” J. Mater. Sci. 44(2), 358–364 (2009).
[Crossref]

2008 (2)

Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Efficient energy transfer in monodisperse Eu-doped ZnO nanocrystals synthesized from metal acetylacetonates in high-boiling solvents,” J. Phys. Chem. C 112(32), 12234–12241 (2008).
[Crossref]

C. Y. Fu, J. S. Liao, W. Q. Luo, R. F. Li, and X. Y. Chen, “Emission of 1.53 microm originating from the lattice site of Er3+ ions incorporated in TiO2 nanocrystals,” Opt. Lett. 33(9), 953–955 (2008).
[Crossref] [PubMed]

2007 (1)

Q. Zeng, Z. Zhang, Z. Ding, Y. Wang, and Y. Sheng, “Strong photoluminescence emission of Eu:TiO2 nanotubes,” Scr. Mater. 57(10), 897–900 (2007).
[Crossref]

2006 (2)

J. G. Li, X. H. Wang, K. Watanabe, and T. Ishigaki, “Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists,” J. Phys. Chem. B 110(3), 1121–1127 (2006).
[Crossref] [PubMed]

L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang, and H. G. Fu, “Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships,” J. Phys. Chem. B 110(36), 17860–17865 (2006).
[Crossref] [PubMed]

2005 (1)

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

2002 (3)

S. Komuro, T. Katsumata, H. Kokai, T. Morikawa, and X. Zhao, “Change in photoluminescence from Er-doped TiO2 thin films induced by optically assisted reduction,” Appl. Phys. Lett. 81(25), 4733 (2002).
[Crossref]

M. A. J. Klik, T. Gregorkiewicz, I. V. Bradley, and J. P. R. Wells, “Optically induced deexcitation of Rare-Earth ions in a semiconductor matrix,” Phys. Rev. Lett. 89(22), 227401 (2002).
[Crossref] [PubMed]

S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen, Z. G. Wang, H. Y. Pan, and D. P. Yu, “Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution,” Appl. Phys. Lett. 80(19), 3605 (2002).
[Crossref]

2001 (1)

A. Conde-Gallardo, M. García-Rocha, I. Hernández-Calderón, and R. Palomino-Merino, “Photoluminescence properties of the Eu3+ activator ion in the TiO2 host matrix,” Appl. Phys. Lett. 78(22), 3436 (2001).
[Crossref]

1992 (1)

A. J. Neuhalfen and B. W. Wessels, “Thermal quenching of Er3+-related luminescence in In1−xGaxP,” Appl. Phys. Lett. 60(21), 2657 (1992).
[Crossref]

1980 (1)

T. Ohsaka, “Temperature dependence of the Raman spectrum in anatase TiO2,” J. Phys. Soc. Jpn. 48(5), 1661–1668 (1980).
[Crossref]

Ayukawa, T.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Baia, L.

M. Popa, L. Diamandescu, F. Vasiliu, C. M. Teodorescu, V. Cosoveanu, M. Baia, M. Feder, L. Baia, and V. Danciu, “Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels,” J. Mater. Sci. 44(2), 358–364 (2009).
[Crossref]

Baia, M.

M. Popa, L. Diamandescu, F. Vasiliu, C. M. Teodorescu, V. Cosoveanu, M. Baia, M. Feder, L. Baia, and V. Danciu, “Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels,” J. Mater. Sci. 44(2), 358–364 (2009).
[Crossref]

Bradley, I. V.

M. A. J. Klik, T. Gregorkiewicz, I. V. Bradley, and J. P. R. Wells, “Optically induced deexcitation of Rare-Earth ions in a semiconductor matrix,” Phys. Rev. Lett. 89(22), 227401 (2002).
[Crossref] [PubMed]

Chen, N. F.

S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen, Z. G. Wang, H. Y. Pan, and D. P. Yu, “Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution,” Appl. Phys. Lett. 80(19), 3605 (2002).
[Crossref]

Chen, P.

Y. Zhang, X. Ma, P. Chen, D. Li, and D. Yang, “Electroluminescence from TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 94(6), 061115 (2009).
[Crossref]

Y. Zhang, X. Ma, P. Chen, D. Li, X. Pi, D. Yang, and P. G. Coleman, “Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2,” Appl. Phys. Lett. 95(25), 252102 (2009).
[Crossref]

Chen, X. Y.

Coleman, P. G.

Y. Zhang, X. Ma, P. Chen, D. Li, X. Pi, D. Yang, and P. G. Coleman, “Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2,” Appl. Phys. Lett. 95(25), 252102 (2009).
[Crossref]

Conde-Gallardo, A.

A. Conde-Gallardo, M. García-Rocha, I. Hernández-Calderón, and R. Palomino-Merino, “Photoluminescence properties of the Eu3+ activator ion in the TiO2 host matrix,” Appl. Phys. Lett. 78(22), 3436 (2001).
[Crossref]

Cosoveanu, V.

M. Popa, L. Diamandescu, F. Vasiliu, C. M. Teodorescu, V. Cosoveanu, M. Baia, M. Feder, L. Baia, and V. Danciu, “Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels,” J. Mater. Sci. 44(2), 358–364 (2009).
[Crossref]

Danciu, V.

M. Popa, L. Diamandescu, F. Vasiliu, C. M. Teodorescu, V. Cosoveanu, M. Baia, M. Feder, L. Baia, and V. Danciu, “Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels,” J. Mater. Sci. 44(2), 358–364 (2009).
[Crossref]

Diamandescu, L.

M. Popa, L. Diamandescu, F. Vasiliu, C. M. Teodorescu, V. Cosoveanu, M. Baia, M. Feder, L. Baia, and V. Danciu, “Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels,” J. Mater. Sci. 44(2), 358–364 (2009).
[Crossref]

Ding, Z.

Q. Zeng, Z. Zhang, Z. Ding, Y. Wang, and Y. Sheng, “Strong photoluminescence emission of Eu:TiO2 nanotubes,” Scr. Mater. 57(10), 897–900 (2007).
[Crossref]

Du, Y. P.

Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Efficient energy transfer in monodisperse Eu-doped ZnO nanocrystals synthesized from metal acetylacetonates in high-boiling solvents,” J. Phys. Chem. C 112(32), 12234–12241 (2008).
[Crossref]

Feder, M.

M. Popa, L. Diamandescu, F. Vasiliu, C. M. Teodorescu, V. Cosoveanu, M. Baia, M. Feder, L. Baia, and V. Danciu, “Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels,” J. Mater. Sci. 44(2), 358–364 (2009).
[Crossref]

Fu, C. Y.

Fu, H. G.

L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang, and H. G. Fu, “Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships,” J. Phys. Chem. B 110(36), 17860–17865 (2006).
[Crossref] [PubMed]

Gao, M.

D. D. Wang, G. Z. Xing, M. Gao, L. L. Yang, J. H. Yang, and T. Wu, “Defects-mediated energy transfer in red-light-emitting Eu-doped ZnO nanowire arrays,” J. Phys. Chem. C 115(46), 22729–22735 (2011).
[Crossref]

García-Rocha, M.

A. Conde-Gallardo, M. García-Rocha, I. Hernández-Calderón, and R. Palomino-Merino, “Photoluminescence properties of the Eu3+ activator ion in the TiO2 host matrix,” Appl. Phys. Lett. 78(22), 3436 (2001).
[Crossref]

Gregorkiewicz, T.

M. A. J. Klik, T. Gregorkiewicz, I. V. Bradley, and J. P. R. Wells, “Optically induced deexcitation of Rare-Earth ions in a semiconductor matrix,” Phys. Rev. Lett. 89(22), 227401 (2002).
[Crossref] [PubMed]

Hernández-Calderón, I.

A. Conde-Gallardo, M. García-Rocha, I. Hernández-Calderón, and R. Palomino-Merino, “Photoluminescence properties of the Eu3+ activator ion in the TiO2 host matrix,” Appl. Phys. Lett. 78(22), 3436 (2001).
[Crossref]

Ishigaki, T.

J. G. Li, X. H. Wang, K. Watanabe, and T. Ishigaki, “Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists,” J. Phys. Chem. B 110(3), 1121–1127 (2006).
[Crossref] [PubMed]

Jin, L.

Y. Yang, L. Jin, X. Ma, and D. Yang, “Low-voltage driven visible and infrared electroluminescence from light-emitting device based on Er-doped TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 100(3), 031103 (2012).
[Crossref]

Jing, L. Q.

L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang, and H. G. Fu, “Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships,” J. Phys. Chem. B 110(36), 17860–17865 (2006).
[Crossref] [PubMed]

Katsumata, T.

S. Komuro, T. Katsumata, H. Kokai, T. Morikawa, and X. Zhao, “Change in photoluminescence from Er-doped TiO2 thin films induced by optically assisted reduction,” Appl. Phys. Lett. 81(25), 4733 (2002).
[Crossref]

Klik, M. A. J.

M. A. J. Klik, T. Gregorkiewicz, I. V. Bradley, and J. P. R. Wells, “Optically induced deexcitation of Rare-Earth ions in a semiconductor matrix,” Phys. Rev. Lett. 89(22), 227401 (2002).
[Crossref] [PubMed]

Koizumi, A.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Kokai, H.

S. Komuro, T. Katsumata, H. Kokai, T. Morikawa, and X. Zhao, “Change in photoluminescence from Er-doped TiO2 thin films induced by optically assisted reduction,” Appl. Phys. Lett. 81(25), 4733 (2002).
[Crossref]

Komori, T.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Komuro, S.

S. Komuro, T. Katsumata, H. Kokai, T. Morikawa, and X. Zhao, “Change in photoluminescence from Er-doped TiO2 thin films induced by optically assisted reduction,” Appl. Phys. Lett. 81(25), 4733 (2002).
[Crossref]

Li, D.

Y. Zhang, X. Ma, P. Chen, D. Li, X. Pi, D. Yang, and P. G. Coleman, “Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2,” Appl. Phys. Lett. 95(25), 252102 (2009).
[Crossref]

Y. Zhang, X. Ma, P. Chen, D. Li, and D. Yang, “Electroluminescence from TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 94(6), 061115 (2009).
[Crossref]

Li, J. G.

J. G. Li, X. H. Wang, K. Watanabe, and T. Ishigaki, “Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists,” J. Phys. Chem. B 110(3), 1121–1127 (2006).
[Crossref] [PubMed]

Li, R. F.

Li, S.

Y. Yang, C. Lv, C. Zhu, S. Li, X. Ma, and D. Yang, “Near-infrared electroluminescence from light-emitting devices based on Nd-doped TiO2/p +-Si heterostructures,” Appl. Phys. Lett. 104(20), 201109 (2014).
[Crossref]

Liao, J. S.

Liu, F. Q.

S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen, Z. G. Wang, H. Y. Pan, and D. P. Yu, “Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution,” Appl. Phys. Lett. 80(19), 3605 (2002).
[Crossref]

Liu, Y. S.

Y. S. Liu, W. Q. Luo, R. F. Li, and X. Y. Chen, “Optical properties of Nd3+ ion-doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 10(3), 1871–1876 (2010).
[Crossref] [PubMed]

Luo, W. Q.

Lv, C.

Y. Yang, C. Lv, C. Zhu, S. Li, X. Ma, and D. Yang, “Near-infrared electroluminescence from light-emitting devices based on Nd-doped TiO2/p +-Si heterostructures,” Appl. Phys. Lett. 104(20), 201109 (2014).
[Crossref]

Ma, X.

Y. Yang, C. Lv, C. Zhu, S. Li, X. Ma, and D. Yang, “Near-infrared electroluminescence from light-emitting devices based on Nd-doped TiO2/p +-Si heterostructures,” Appl. Phys. Lett. 104(20), 201109 (2014).
[Crossref]

Y. Yang, L. Jin, X. Ma, and D. Yang, “Low-voltage driven visible and infrared electroluminescence from light-emitting device based on Er-doped TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 100(3), 031103 (2012).
[Crossref]

Y. Zhang, X. Ma, P. Chen, D. Li, and D. Yang, “Electroluminescence from TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 94(6), 061115 (2009).
[Crossref]

Y. Zhang, X. Ma, P. Chen, D. Li, X. Pi, D. Yang, and P. G. Coleman, “Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2,” Appl. Phys. Lett. 95(25), 252102 (2009).
[Crossref]

Morikawa, T.

S. Komuro, T. Katsumata, H. Kokai, T. Morikawa, and X. Zhao, “Change in photoluminescence from Er-doped TiO2 thin films induced by optically assisted reduction,” Appl. Phys. Lett. 81(25), 4733 (2002).
[Crossref]

Morinaga, M.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Murphy, T. I.

E. F. Pecora, T. I. Murphy, and L. D. Negro, “Rare earth doped Si-rich ZnO for multiband near-infrared light emitting devices,” Appl. Phys. Lett. 101(19), 191115 (2012).
[Crossref]

Negro, L. D.

E. F. Pecora, T. I. Murphy, and L. D. Negro, “Rare earth doped Si-rich ZnO for multiband near-infrared light emitting devices,” Appl. Phys. Lett. 101(19), 191115 (2012).
[Crossref]

Neuhalfen, A. J.

A. J. Neuhalfen and B. W. Wessels, “Thermal quenching of Er3+-related luminescence in In1−xGaxP,” Appl. Phys. Lett. 60(21), 2657 (1992).
[Crossref]

Ohsaka, T.

T. Ohsaka, “Temperature dependence of the Raman spectrum in anatase TiO2,” J. Phys. Soc. Jpn. 48(5), 1661–1668 (1980).
[Crossref]

Palomino-Merino, R.

A. Conde-Gallardo, M. García-Rocha, I. Hernández-Calderón, and R. Palomino-Merino, “Photoluminescence properties of the Eu3+ activator ion in the TiO2 host matrix,” Appl. Phys. Lett. 78(22), 3436 (2001).
[Crossref]

Pan, H. Y.

S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen, Z. G. Wang, H. Y. Pan, and D. P. Yu, “Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution,” Appl. Phys. Lett. 80(19), 3605 (2002).
[Crossref]

Pecora, E. F.

E. F. Pecora, T. I. Murphy, and L. D. Negro, “Rare earth doped Si-rich ZnO for multiband near-infrared light emitting devices,” Appl. Phys. Lett. 101(19), 191115 (2012).
[Crossref]

Pi, X.

Y. Zhang, X. Ma, P. Chen, D. Li, X. Pi, D. Yang, and P. G. Coleman, “Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2,” Appl. Phys. Lett. 95(25), 252102 (2009).
[Crossref]

Popa, M.

M. Popa, L. Diamandescu, F. Vasiliu, C. M. Teodorescu, V. Cosoveanu, M. Baia, M. Feder, L. Baia, and V. Danciu, “Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels,” J. Mater. Sci. 44(2), 358–364 (2009).
[Crossref]

Qu, S. C.

S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen, Z. G. Wang, H. Y. Pan, and D. P. Yu, “Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution,” Appl. Phys. Lett. 80(19), 3605 (2002).
[Crossref]

Sheng, Y.

Q. Zeng, Z. Zhang, Z. Ding, Y. Wang, and Y. Sheng, “Strong photoluminescence emission of Eu:TiO2 nanotubes,” Scr. Mater. 57(10), 897–900 (2007).
[Crossref]

Sun, L. D.

Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Efficient energy transfer in monodisperse Eu-doped ZnO nanocrystals synthesized from metal acetylacetonates in high-boiling solvents,” J. Phys. Chem. C 112(32), 12234–12241 (2008).
[Crossref]

Takeda, Y.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Teodorescu, C. M.

M. Popa, L. Diamandescu, F. Vasiliu, C. M. Teodorescu, V. Cosoveanu, M. Baia, M. Feder, L. Baia, and V. Danciu, “Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels,” J. Mater. Sci. 44(2), 358–364 (2009).
[Crossref]

Vasiliu, F.

M. Popa, L. Diamandescu, F. Vasiliu, C. M. Teodorescu, V. Cosoveanu, M. Baia, M. Feder, L. Baia, and V. Danciu, “Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels,” J. Mater. Sci. 44(2), 358–364 (2009).
[Crossref]

Wang, B. Q.

L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang, and H. G. Fu, “Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships,” J. Phys. Chem. B 110(36), 17860–17865 (2006).
[Crossref] [PubMed]

Wang, D. D.

D. D. Wang, G. Z. Xing, M. Gao, L. L. Yang, J. H. Yang, and T. Wu, “Defects-mediated energy transfer in red-light-emitting Eu-doped ZnO nanowire arrays,” J. Phys. Chem. C 115(46), 22729–22735 (2011).
[Crossref]

Wang, X. H.

J. G. Li, X. H. Wang, K. Watanabe, and T. Ishigaki, “Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists,” J. Phys. Chem. B 110(3), 1121–1127 (2006).
[Crossref] [PubMed]

Wang, Y.

Q. Zeng, Z. Zhang, Z. Ding, Y. Wang, and Y. Sheng, “Strong photoluminescence emission of Eu:TiO2 nanotubes,” Scr. Mater. 57(10), 897–900 (2007).
[Crossref]

Wang, Z. G.

S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen, Z. G. Wang, H. Y. Pan, and D. P. Yu, “Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution,” Appl. Phys. Lett. 80(19), 3605 (2002).
[Crossref]

Watanabe, K.

J. G. Li, X. H. Wang, K. Watanabe, and T. Ishigaki, “Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists,” J. Phys. Chem. B 110(3), 1121–1127 (2006).
[Crossref] [PubMed]

Wells, J. P. R.

M. A. J. Klik, T. Gregorkiewicz, I. V. Bradley, and J. P. R. Wells, “Optically induced deexcitation of Rare-Earth ions in a semiconductor matrix,” Phys. Rev. Lett. 89(22), 227401 (2002).
[Crossref] [PubMed]

Wessels, B. W.

A. J. Neuhalfen and B. W. Wessels, “Thermal quenching of Er3+-related luminescence in In1−xGaxP,” Appl. Phys. Lett. 60(21), 2657 (1992).
[Crossref]

Wu, T.

D. D. Wang, G. Z. Xing, M. Gao, L. L. Yang, J. H. Yang, and T. Wu, “Defects-mediated energy transfer in red-light-emitting Eu-doped ZnO nanowire arrays,” J. Phys. Chem. C 115(46), 22729–22735 (2011).
[Crossref]

Xin, B. F.

L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang, and H. G. Fu, “Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships,” J. Phys. Chem. B 110(36), 17860–17865 (2006).
[Crossref] [PubMed]

Xing, G. Z.

D. D. Wang, G. Z. Xing, M. Gao, L. L. Yang, J. H. Yang, and T. Wu, “Defects-mediated energy transfer in red-light-emitting Eu-doped ZnO nanowire arrays,” J. Phys. Chem. C 115(46), 22729–22735 (2011).
[Crossref]

Xue, L. P.

L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang, and H. G. Fu, “Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships,” J. Phys. Chem. B 110(36), 17860–17865 (2006).
[Crossref] [PubMed]

Yan, C. H.

Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Efficient energy transfer in monodisperse Eu-doped ZnO nanocrystals synthesized from metal acetylacetonates in high-boiling solvents,” J. Phys. Chem. C 112(32), 12234–12241 (2008).
[Crossref]

Yang, D.

Y. Yang, C. Lv, C. Zhu, S. Li, X. Ma, and D. Yang, “Near-infrared electroluminescence from light-emitting devices based on Nd-doped TiO2/p +-Si heterostructures,” Appl. Phys. Lett. 104(20), 201109 (2014).
[Crossref]

Y. Yang, L. Jin, X. Ma, and D. Yang, “Low-voltage driven visible and infrared electroluminescence from light-emitting device based on Er-doped TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 100(3), 031103 (2012).
[Crossref]

Y. Zhang, X. Ma, P. Chen, D. Li, and D. Yang, “Electroluminescence from TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 94(6), 061115 (2009).
[Crossref]

Y. Zhang, X. Ma, P. Chen, D. Li, X. Pi, D. Yang, and P. G. Coleman, “Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2,” Appl. Phys. Lett. 95(25), 252102 (2009).
[Crossref]

Yang, J. H.

D. D. Wang, G. Z. Xing, M. Gao, L. L. Yang, J. H. Yang, and T. Wu, “Defects-mediated energy transfer in red-light-emitting Eu-doped ZnO nanowire arrays,” J. Phys. Chem. C 115(46), 22729–22735 (2011).
[Crossref]

Yang, L. L.

D. D. Wang, G. Z. Xing, M. Gao, L. L. Yang, J. H. Yang, and T. Wu, “Defects-mediated energy transfer in red-light-emitting Eu-doped ZnO nanowire arrays,” J. Phys. Chem. C 115(46), 22729–22735 (2011).
[Crossref]

Yang, Y.

Y. Yang, C. Lv, C. Zhu, S. Li, X. Ma, and D. Yang, “Near-infrared electroluminescence from light-emitting devices based on Nd-doped TiO2/p +-Si heterostructures,” Appl. Phys. Lett. 104(20), 201109 (2014).
[Crossref]

Y. Yang, L. Jin, X. Ma, and D. Yang, “Low-voltage driven visible and infrared electroluminescence from light-emitting device based on Er-doped TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 100(3), 031103 (2012).
[Crossref]

Yu, D. P.

S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen, Z. G. Wang, H. Y. Pan, and D. P. Yu, “Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution,” Appl. Phys. Lett. 80(19), 3605 (2002).
[Crossref]

Yuan, F. L.

L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang, and H. G. Fu, “Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships,” J. Phys. Chem. B 110(36), 17860–17865 (2006).
[Crossref] [PubMed]

Yukawa, H.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Zeng, Q.

Q. Zeng, Z. Zhang, Z. Ding, Y. Wang, and Y. Sheng, “Strong photoluminescence emission of Eu:TiO2 nanotubes,” Scr. Mater. 57(10), 897–900 (2007).
[Crossref]

Zhang, Y.

Y. Zhang, X. Ma, P. Chen, D. Li, and D. Yang, “Electroluminescence from TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 94(6), 061115 (2009).
[Crossref]

Y. Zhang, X. Ma, P. Chen, D. Li, X. Pi, D. Yang, and P. G. Coleman, “Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2,” Appl. Phys. Lett. 95(25), 252102 (2009).
[Crossref]

Zhang, Y. W.

Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Efficient energy transfer in monodisperse Eu-doped ZnO nanocrystals synthesized from metal acetylacetonates in high-boiling solvents,” J. Phys. Chem. C 112(32), 12234–12241 (2008).
[Crossref]

Zhang, Z.

Q. Zeng, Z. Zhang, Z. Ding, Y. Wang, and Y. Sheng, “Strong photoluminescence emission of Eu:TiO2 nanotubes,” Scr. Mater. 57(10), 897–900 (2007).
[Crossref]

Zhao, X.

S. Komuro, T. Katsumata, H. Kokai, T. Morikawa, and X. Zhao, “Change in photoluminescence from Er-doped TiO2 thin films induced by optically assisted reduction,” Appl. Phys. Lett. 81(25), 4733 (2002).
[Crossref]

Zhou, W. H.

S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen, Z. G. Wang, H. Y. Pan, and D. P. Yu, “Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution,” Appl. Phys. Lett. 80(19), 3605 (2002).
[Crossref]

Zhou, Z.

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Zhu, C.

Y. Yang, C. Lv, C. Zhu, S. Li, X. Ma, and D. Yang, “Near-infrared electroluminescence from light-emitting devices based on Nd-doped TiO2/p +-Si heterostructures,” Appl. Phys. Lett. 104(20), 201109 (2014).
[Crossref]

Appl. Phys. Lett. (10)

E. F. Pecora, T. I. Murphy, and L. D. Negro, “Rare earth doped Si-rich ZnO for multiband near-infrared light emitting devices,” Appl. Phys. Lett. 101(19), 191115 (2012).
[Crossref]

S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen, Z. G. Wang, H. Y. Pan, and D. P. Yu, “Photoluminescence properties of Eu3+-doped ZnS nanocrystals prepared in a water/methanol solution,” Appl. Phys. Lett. 80(19), 3605 (2002).
[Crossref]

A. J. Neuhalfen and B. W. Wessels, “Thermal quenching of Er3+-related luminescence in In1−xGaxP,” Appl. Phys. Lett. 60(21), 2657 (1992).
[Crossref]

S. Komuro, T. Katsumata, H. Kokai, T. Morikawa, and X. Zhao, “Change in photoluminescence from Er-doped TiO2 thin films induced by optically assisted reduction,” Appl. Phys. Lett. 81(25), 4733 (2002).
[Crossref]

Y. Yang, L. Jin, X. Ma, and D. Yang, “Low-voltage driven visible and infrared electroluminescence from light-emitting device based on Er-doped TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 100(3), 031103 (2012).
[Crossref]

Y. Yang, C. Lv, C. Zhu, S. Li, X. Ma, and D. Yang, “Near-infrared electroluminescence from light-emitting devices based on Nd-doped TiO2/p +-Si heterostructures,” Appl. Phys. Lett. 104(20), 201109 (2014).
[Crossref]

A. Conde-Gallardo, M. García-Rocha, I. Hernández-Calderón, and R. Palomino-Merino, “Photoluminescence properties of the Eu3+ activator ion in the TiO2 host matrix,” Appl. Phys. Lett. 78(22), 3436 (2001).
[Crossref]

Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005).
[Crossref]

Y. Zhang, X. Ma, P. Chen, D. Li, and D. Yang, “Electroluminescence from TiO2/p+-Si heterostructure,” Appl. Phys. Lett. 94(6), 061115 (2009).
[Crossref]

Y. Zhang, X. Ma, P. Chen, D. Li, X. Pi, D. Yang, and P. G. Coleman, “Enhancement of electroluminescence from TiO2/p+-Si heterostructure-based devices through engineering of oxygen vacancies in TiO2,” Appl. Phys. Lett. 95(25), 252102 (2009).
[Crossref]

J. Mater. Sci. (1)

M. Popa, L. Diamandescu, F. Vasiliu, C. M. Teodorescu, V. Cosoveanu, M. Baia, M. Feder, L. Baia, and V. Danciu, “Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels,” J. Mater. Sci. 44(2), 358–364 (2009).
[Crossref]

J. Nanosci. Nanotechnol. (1)

Y. S. Liu, W. Q. Luo, R. F. Li, and X. Y. Chen, “Optical properties of Nd3+ ion-doped ZnO nanocrystals,” J. Nanosci. Nanotechnol. 10(3), 1871–1876 (2010).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang, and H. G. Fu, “Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships,” J. Phys. Chem. B 110(36), 17860–17865 (2006).
[Crossref] [PubMed]

J. G. Li, X. H. Wang, K. Watanabe, and T. Ishigaki, “Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists,” J. Phys. Chem. B 110(3), 1121–1127 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

D. D. Wang, G. Z. Xing, M. Gao, L. L. Yang, J. H. Yang, and T. Wu, “Defects-mediated energy transfer in red-light-emitting Eu-doped ZnO nanowire arrays,” J. Phys. Chem. C 115(46), 22729–22735 (2011).
[Crossref]

Y. P. Du, Y. W. Zhang, L. D. Sun, and C. H. Yan, “Efficient energy transfer in monodisperse Eu-doped ZnO nanocrystals synthesized from metal acetylacetonates in high-boiling solvents,” J. Phys. Chem. C 112(32), 12234–12241 (2008).
[Crossref]

J. Phys. Soc. Jpn. (1)

T. Ohsaka, “Temperature dependence of the Raman spectrum in anatase TiO2,” J. Phys. Soc. Jpn. 48(5), 1661–1668 (1980).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M. A. J. Klik, T. Gregorkiewicz, I. V. Bradley, and J. P. R. Wells, “Optically induced deexcitation of Rare-Earth ions in a semiconductor matrix,” Phys. Rev. Lett. 89(22), 227401 (2002).
[Crossref] [PubMed]

Scr. Mater. (1)

Q. Zeng, Z. Zhang, Z. Ding, Y. Wang, and Y. Sheng, “Strong photoluminescence emission of Eu:TiO2 nanotubes,” Scr. Mater. 57(10), 897–900 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) XRD patterns and (b) Raman spectra of the TiO2:Eu (1.2%) and TiO2:Eu (1.7%) films annealed at 550 and 650 °C, respectively, for 2h in O2 ambient.
Fig. 2
Fig. 2 PL spectra for the TiO2:Eu (1.2%) and TiO2:Eu (1.7%) films annealed at 550 and 650 °C, respectively. Direct comparison of PL intensities can be made between parts a and b.
Fig. 3
Fig. 3 (a) PLE spectra monitoring the emissions at 616 and 420 nm, respectively, for the TiO2:Eu (1.7%) film annealed at 650 °C. (b) Schematic diagram of the proposed energy transfer from TiO2 host to Eu3+ ions in the case of PL.
Fig. 4
Fig. 4 EL spectra acquired with different forward injection currents for the TiO2:Eu/p+-Si heterostructured devices using (a) 550 °C-annealed TiO2:Eu (1.2%) film, (b) 650 °C-annealed TiO2:Eu (1.2%) film, (c) 550 °C-annealed TiO2:Eu (1.7%) film and (d) 650 °C-annealed TiO2:Eu (1.7%) film. The upper-right insets show the digital camera images of the light emissions at 20 mA from the four devices. Direct comparison of EL intensities can be made among parts a-d.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E u 2 O 3 2 T i O 2 2 E u T i ' + V O + 3 O o ×

Metrics