Abstract

Visible light communication (VLC) has drawn much attention in the field of high-rate indoor wireless communication. While most existing works focused on point-to-point VLC technologies, few studies have concerned multiuser VLC, where multiple optical access points (APs) transmit data to multiple user receivers. In such scenarios, inter-user interference constitutes the major factor limiting the system performance. Therefore, a proper scheduling scheme has to be proposed to coordinate the interference and optimize the whole system performance. In this work, we aim to maximize the sum rate of the system while taking into account user fairness by appropriately assigning LED lamps to multiple users. The formulated scheduling problem turns out to be a maximum weighted independent set problem. We then propose a novel and efficient resource allocation method based on graph theory to achieve high sum rates. Moreover, we also introduce proportional fairness into our scheduling scheme to ensure the user fairness. Our proposed scheduling scheme can, with low complexity, achieve more multiplexing gains, higher sum rate, and better fairness than the existing works.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of indoor VLC network downlink scheduling and resource allocation

Yan Chen, Anthony E. Kelly, and John H. Marsh
Opt. Express 24(23) 26838-26850 (2016)

Distributed user-centric scheduling for visible light communication networks

Lingjiao Chen, Jiaheng Wang, Jiantao Zhou, Derrick Wing Kwan Ng, Robert Schober, and Chunming Zhao
Opt. Express 24(14) 15570-15589 (2016)

Smart LED allocation scheme for efficient multiuser visible light communication networks

Atul Sewaiwar, Samrat Vikramaditya Tiwari, and Yeon Ho Chung
Opt. Express 23(10) 13015-13024 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Vučić, C. Kottke, S. Nerreter, K.-D. Langer, and J. W. Walewski, “513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).
  2. J. F. Li, Z. T. Huang, R. Q. Zhang, F. X. Zeng, M. Jiang, and Y. F. Ji, “Superposed pulse amplitude modulation for visible light communication,” Opt. Express 21(25), 31006–31011 (2013).
    [Crossref]
  3. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bidirectional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
    [Crossref] [PubMed]
  4. A. H. Azhar, T.-A. Tran, and D. O’Brien, “A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications,” IEEE Photonics Technol. Lett.,  25(2), 171–174 (2013).
    [Crossref]
  5. C. Kottke, J. Hilt, K. Habel, J. Vučić, and K.-D. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper We.3.B.4.
    [Crossref]
  6. S. Zhang, S. Watson, J. J. McKendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s Multi-Channel Visible Light Communications Using CMOS-Controlled GaN-Based LEDs,” J. Lightwave Technol. 31(5), 1211–1216 (2013).
  7. Y. Wang, N. Chi, Y. Wang, R. Li, X. Huang, C. Yang, and Z. Zhang, “High-speed quasi-balanced detection OFDM in visible light communication,” Opt. Express 21(23), 27558–27564 (2013).
    [Crossref]
  8. G. Cossu, A. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref] [PubMed]
  9. R. K. Mondal, M. Z. Chowdhury, N. Saha, and Y. M. Jang, “Interference-aware Optical Resource Allocation in Visible Light Communication,” in Proc. 2012 International Conference on ICT Convergence (ICTC) (IEEE, 2012), pp. 155–158.
  10. R. K. Mondal, N. Saha, and Y. M. Jang, “Joint Scheduling and Rate Allocation for IEEE 802.15.7 WPAN System,” in Ubiquitous and Future Networks (ICUFN) (IEEE, 2013), pp. 691–695.
  11. S.-H. Yang, H.-S. Kim, Y.-H. Son, and S.-K. Han, “Reduction of optical interference by wavelength filtering in RGB-LED based indoor VLC system,” in OptoeElectronics and Communications Conference (OECC) (2011), pp. 551–552.
  12. Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Mobile Adhoc and Sensor Systems (MASS) (IEEE, 2012), pp. 136–144.
  13. D. Bykhovsky and S. Arnon, “Multiple access resource allocation in visible light communication systems,” J. Lightwave Technol. 32(8), 1594–1600 (2014).
    [Crossref]
  14. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
    [Crossref]
  15. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
    [Crossref]
  16. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  17. L. Dai, S. Zhou, and Y. Yao, “Capacity analysis in CDMA distributed antenna systems,” IEEE Trans”, Wireless Commun. 4(6), 2613–2620 (2005).
    [Crossref]
  18. T. Jiang, L. Song, and Y. Zhang, Orthogonal Frequency Division Multiple Access Fundamentals and Applications (Auerbach Publications, 2010).
  19. R. Agrawal, A. Bedekar, R. La, and V. Subramanian, “Class and Channel Condition Based Weighted Proportional Fair Scheduler” in,” Proceedings of the International Teletraffic Congress (ITC) (2001) 17, pp. 553–565.
  20. J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM Trans”, Networking 8(5), 556–567 (2000).
    [Crossref]
  21. T. Girici, C. Zhu, J. R. Agre, and A. Ephremides, “Proportional fair scheduling algorithm in OFDMA-based wireless systems with QoS constraints,” J. Commun. Networks 12(1), 30–42 (2010).
    [Crossref]
  22. L.-H. Azizan, M.S. Ab-Rahman, and K. Jumiran, “Analytical approach on SNR performance of visible light communication for modern lighting layout,” in,” Innovation Management and Technology Research (ICIMTR) (2012), pp. 332–336.
  23. K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of Interference on Multi-hop Wireless Network Performance,” Wireless Networks 11(4), 471–487 (2005).
    [Crossref]
  24. E. Gelal, K. Pelechrinis, T.-S. Kim, I. Broustis, S. V. Krishnamurthy, and B. Rao, “Topology Control for Effective Interference Cancellation in Multi-User MIMO Networks,” in Proc. IEEE INFOCOM (2010).
  25. M. O. Sunay and A. Eksim, “Wireless multicast with multi-user diversity,” in Vehicular Technology Conference (VTC) (2004) 3, pp. 1584–1588.
  26. M. M. Halldórsson and J. Radhakrishnan, “Greed is Good: Approximating Independent Sets in Sparse and Bounded-Degree Graphs,” Algorithmica 18(1), 145–163 (1997).
    [Crossref]
  27. S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maximum weighted independent set problem,” Discrete Appl. Math. 126, (2)313–322 (2003).
    [Crossref]
  28. B. Bensaou, D. H. Tsang, and K. T. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Networking 9, (5)591–604 (2001).
    [Crossref]
  29. H. A. Mara’beh and A. Suleiman, “Heuristic Algorithm for Graph Coloring Based on Maximum Independent Set,” Journal of Applied Computer Science & Mathematics (13), pp. 6 (2012).
  30. Z. Wang, C. Yu, W.-D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
    [Crossref] [PubMed]

2014 (1)

2013 (5)

2012 (2)

2010 (2)

T. Girici, C. Zhu, J. R. Agre, and A. Ephremides, “Proportional fair scheduling algorithm in OFDMA-based wireless systems with QoS constraints,” J. Commun. Networks 12(1), 30–42 (2010).
[Crossref]

J. Vučić, C. Kottke, S. Nerreter, K.-D. Langer, and J. W. Walewski, “513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).

2005 (2)

K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of Interference on Multi-hop Wireless Network Performance,” Wireless Networks 11(4), 471–487 (2005).
[Crossref]

L. Dai, S. Zhou, and Y. Yao, “Capacity analysis in CDMA distributed antenna systems,” IEEE Trans”, Wireless Commun. 4(6), 2613–2620 (2005).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

2003 (1)

S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maximum weighted independent set problem,” Discrete Appl. Math. 126, (2)313–322 (2003).
[Crossref]

2001 (1)

B. Bensaou, D. H. Tsang, and K. T. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Networking 9, (5)591–604 (2001).
[Crossref]

2000 (1)

J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM Trans”, Networking 8(5), 556–567 (2000).
[Crossref]

1997 (2)

M. M. Halldórsson and J. Radhakrishnan, “Greed is Good: Approximating Independent Sets in Sparse and Bounded-Degree Graphs,” Algorithmica 18(1), 145–163 (1997).
[Crossref]

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

1993 (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Ab-Rahman, M.S.

L.-H. Azizan, M.S. Ab-Rahman, and K. Jumiran, “Analytical approach on SNR performance of visible light communication for modern lighting layout,” in,” Innovation Management and Technology Research (ICIMTR) (2012), pp. 332–336.

Agrawal, R.

R. Agrawal, A. Bedekar, R. La, and V. Subramanian, “Class and Channel Condition Based Weighted Proportional Fair Scheduler” in,” Proceedings of the International Teletraffic Congress (ITC) (2001) 17, pp. 553–565.

Agre, J. R.

T. Girici, C. Zhu, J. R. Agre, and A. Ephremides, “Proportional fair scheduling algorithm in OFDMA-based wireless systems with QoS constraints,” J. Commun. Networks 12(1), 30–42 (2010).
[Crossref]

Arnon, S.

Azhar, A. H.

A. H. Azhar, T.-A. Tran, and D. O’Brien, “A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications,” IEEE Photonics Technol. Lett.,  25(2), 171–174 (2013).
[Crossref]

Azizan, L.-H.

L.-H. Azizan, M.S. Ab-Rahman, and K. Jumiran, “Analytical approach on SNR performance of visible light communication for modern lighting layout,” in,” Innovation Management and Technology Research (ICIMTR) (2012), pp. 332–336.

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Bedekar, A.

R. Agrawal, A. Bedekar, R. La, and V. Subramanian, “Class and Channel Condition Based Weighted Proportional Fair Scheduler” in,” Proceedings of the International Teletraffic Congress (ITC) (2001) 17, pp. 553–565.

Bensaou, B.

B. Bensaou, D. H. Tsang, and K. T. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Networking 9, (5)591–604 (2001).
[Crossref]

Broustis, I.

E. Gelal, K. Pelechrinis, T.-S. Kim, I. Broustis, S. V. Krishnamurthy, and B. Rao, “Topology Control for Effective Interference Cancellation in Multi-User MIMO Networks,” in Proc. IEEE INFOCOM (2010).

Bykhovsky, D.

Chan, K. T.

B. Bensaou, D. H. Tsang, and K. T. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Networking 9, (5)591–604 (2001).
[Crossref]

Chen, J.

Chen, W.

Chi, N.

Choudhury, P.

Chowdhury, M. Z.

R. K. Mondal, M. Z. Chowdhury, N. Saha, and Y. M. Jang, “Interference-aware Optical Resource Allocation in Visible Light Communication,” in Proc. 2012 International Conference on ICT Convergence (ICTC) (IEEE, 2012), pp. 155–158.

Ciaramella, E.

Cogman, A.

Corsini, R.

Cossu, G.

Dai, L.

L. Dai, S. Zhou, and Y. Yao, “Capacity analysis in CDMA distributed antenna systems,” IEEE Trans”, Wireless Commun. 4(6), 2613–2620 (2005).
[Crossref]

Dawson, M. D.

Eksim, A.

M. O. Sunay and A. Eksim, “Wireless multicast with multi-user diversity,” in Vehicular Technology Conference (VTC) (2004) 3, pp. 1584–1588.

Ephremides, A.

T. Girici, C. Zhu, J. R. Agre, and A. Ephremides, “Proportional fair scheduling algorithm in OFDMA-based wireless systems with QoS constraints,” J. Commun. Networks 12(1), 30–42 (2010).
[Crossref]

Gelal, E.

E. Gelal, K. Pelechrinis, T.-S. Kim, I. Broustis, S. V. Krishnamurthy, and B. Rao, “Topology Control for Effective Interference Cancellation in Multi-User MIMO Networks,” in Proc. IEEE INFOCOM (2010).

Girici, T.

T. Girici, C. Zhu, J. R. Agre, and A. Ephremides, “Proportional fair scheduling algorithm in OFDMA-based wireless systems with QoS constraints,” J. Commun. Networks 12(1), 30–42 (2010).
[Crossref]

Gu, E.

Habel, K.

C. Kottke, J. Hilt, K. Habel, J. Vučić, and K.-D. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper We.3.B.4.
[Crossref]

Halldórsson, M. M.

M. M. Halldórsson and J. Radhakrishnan, “Greed is Good: Approximating Independent Sets in Sparse and Bounded-Degree Graphs,” Algorithmica 18(1), 145–163 (1997).
[Crossref]

Han, S.-K.

S.-H. Yang, H.-S. Kim, Y.-H. Son, and S.-K. Han, “Reduction of optical interference by wavelength filtering in RGB-LED based indoor VLC system,” in OptoeElectronics and Communications Conference (OECC) (2011), pp. 551–552.

Henderson, R. K.

Hilt, J.

C. Kottke, J. Hilt, K. Habel, J. Vučić, and K.-D. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper We.3.B.4.
[Crossref]

Huang, X.

Huang, Z. T.

Jain, K.

K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of Interference on Multi-hop Wireless Network Performance,” Wireless Networks 11(4), 471–487 (2005).
[Crossref]

Jang, Y. M.

R. K. Mondal, N. Saha, and Y. M. Jang, “Joint Scheduling and Rate Allocation for IEEE 802.15.7 WPAN System,” in Ubiquitous and Future Networks (ICUFN) (IEEE, 2013), pp. 691–695.

R. K. Mondal, M. Z. Chowdhury, N. Saha, and Y. M. Jang, “Interference-aware Optical Resource Allocation in Visible Light Communication,” in Proc. 2012 International Conference on ICT Convergence (ICTC) (IEEE, 2012), pp. 155–158.

Ji, Y. F.

Jiang, M.

Jiang, T.

T. Jiang, L. Song, and Y. Zhang, Orthogonal Frequency Division Multiple Access Fundamentals and Applications (Auerbach Publications, 2010).

Jumiran, K.

L.-H. Azizan, M.S. Ab-Rahman, and K. Jumiran, “Analytical approach on SNR performance of visible light communication for modern lighting layout,” in,” Innovation Management and Technology Research (ICIMTR) (2012), pp. 332–336.

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Kelly, A. E.

Khalid, A.

Kim, H.-S.

S.-H. Yang, H.-S. Kim, Y.-H. Son, and S.-K. Han, “Reduction of optical interference by wavelength filtering in RGB-LED based indoor VLC system,” in OptoeElectronics and Communications Conference (OECC) (2011), pp. 551–552.

Kim, T.-S.

E. Gelal, K. Pelechrinis, T.-S. Kim, I. Broustis, S. V. Krishnamurthy, and B. Rao, “Topology Control for Effective Interference Cancellation in Multi-User MIMO Networks,” in Proc. IEEE INFOCOM (2010).

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Kottke, C.

J. Vučić, C. Kottke, S. Nerreter, K.-D. Langer, and J. W. Walewski, “513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).

C. Kottke, J. Hilt, K. Habel, J. Vučić, and K.-D. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper We.3.B.4.
[Crossref]

Krause, W. J.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Krishnamurthy, S. V.

E. Gelal, K. Pelechrinis, T.-S. Kim, I. Broustis, S. V. Krishnamurthy, and B. Rao, “Topology Control for Effective Interference Cancellation in Multi-User MIMO Networks,” in Proc. IEEE INFOCOM (2010).

Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Mobile Adhoc and Sensor Systems (MASS) (IEEE, 2012), pp. 136–144.

La, R.

R. Agrawal, A. Bedekar, R. La, and V. Subramanian, “Class and Channel Condition Based Weighted Proportional Fair Scheduler” in,” Proceedings of the International Teletraffic Congress (ITC) (2001) 17, pp. 553–565.

Langer, K.-D.

J. Vučić, C. Kottke, S. Nerreter, K.-D. Langer, and J. W. Walewski, “513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).

C. Kottke, J. Hilt, K. Habel, J. Vučić, and K.-D. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper We.3.B.4.
[Crossref]

Lee, E. A.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Li, J. F.

Li, R.

Li, Y.

Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Mobile Adhoc and Sensor Systems (MASS) (IEEE, 2012), pp. 136–144.

Mara’beh, H. A.

H. A. Mara’beh and A. Suleiman, “Heuristic Algorithm for Graph Coloring Based on Maximum Independent Set,” Journal of Applied Computer Science & Mathematics (13), pp. 6 (2012).

Massoubre, D.

McKendry, J. J.

Messerschmitt, D. G.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

Mo, J.

J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM Trans”, Networking 8(5), 556–567 (2000).
[Crossref]

Mondal, R. K.

R. K. Mondal, N. Saha, and Y. M. Jang, “Joint Scheduling and Rate Allocation for IEEE 802.15.7 WPAN System,” in Ubiquitous and Future Networks (ICUFN) (IEEE, 2013), pp. 691–695.

R. K. Mondal, M. Z. Chowdhury, N. Saha, and Y. M. Jang, “Interference-aware Optical Resource Allocation in Visible Light Communication,” in Proc. 2012 International Conference on ICT Convergence (ICTC) (IEEE, 2012), pp. 155–158.

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Nerreter, S.

Ning, J.

Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Mobile Adhoc and Sensor Systems (MASS) (IEEE, 2012), pp. 136–144.

O’Brien, D.

A. H. Azhar, T.-A. Tran, and D. O’Brien, “A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications,” IEEE Photonics Technol. Lett.,  25(2), 171–174 (2013).
[Crossref]

Padhye, J.

K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of Interference on Multi-hop Wireless Network Performance,” Wireless Networks 11(4), 471–487 (2005).
[Crossref]

Padmanabhan, V. N.

K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of Interference on Multi-hop Wireless Network Performance,” Wireless Networks 11(4), 471–487 (2005).
[Crossref]

Pelechrinis, K.

E. Gelal, K. Pelechrinis, T.-S. Kim, I. Broustis, S. V. Krishnamurthy, and B. Rao, “Topology Control for Effective Interference Cancellation in Multi-User MIMO Networks,” in Proc. IEEE INFOCOM (2010).

Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Mobile Adhoc and Sensor Systems (MASS) (IEEE, 2012), pp. 136–144.

Qiu, L.

K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of Interference on Multi-hop Wireless Network Performance,” Wireless Networks 11(4), 471–487 (2005).
[Crossref]

Radhakrishnan, J.

M. M. Halldórsson and J. Radhakrishnan, “Greed is Good: Approximating Independent Sets in Sparse and Bounded-Degree Graphs,” Algorithmica 18(1), 145–163 (1997).
[Crossref]

Rao, B.

E. Gelal, K. Pelechrinis, T.-S. Kim, I. Broustis, S. V. Krishnamurthy, and B. Rao, “Topology Control for Effective Interference Cancellation in Multi-User MIMO Networks,” in Proc. IEEE INFOCOM (2010).

Saha, N.

R. K. Mondal, N. Saha, and Y. M. Jang, “Joint Scheduling and Rate Allocation for IEEE 802.15.7 WPAN System,” in Ubiquitous and Future Networks (ICUFN) (IEEE, 2013), pp. 691–695.

R. K. Mondal, M. Z. Chowdhury, N. Saha, and Y. M. Jang, “Interference-aware Optical Resource Allocation in Visible Light Communication,” in Proc. 2012 International Conference on ICT Convergence (ICTC) (IEEE, 2012), pp. 155–158.

Sakai, S.

S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maximum weighted independent set problem,” Discrete Appl. Math. 126, (2)313–322 (2003).
[Crossref]

Shang, H.

Son, Y.-H.

S.-H. Yang, H.-S. Kim, Y.-H. Son, and S.-K. Han, “Reduction of optical interference by wavelength filtering in RGB-LED based indoor VLC system,” in OptoeElectronics and Communications Conference (OECC) (2011), pp. 551–552.

Song, L.

T. Jiang, L. Song, and Y. Zhang, Orthogonal Frequency Division Multiple Access Fundamentals and Applications (Auerbach Publications, 2010).

Subramanian, V.

R. Agrawal, A. Bedekar, R. La, and V. Subramanian, “Class and Channel Condition Based Weighted Proportional Fair Scheduler” in,” Proceedings of the International Teletraffic Congress (ITC) (2001) 17, pp. 553–565.

Suleiman, A.

H. A. Mara’beh and A. Suleiman, “Heuristic Algorithm for Graph Coloring Based on Maximum Independent Set,” Journal of Applied Computer Science & Mathematics (13), pp. 6 (2012).

Sunay, M. O.

M. O. Sunay and A. Eksim, “Wireless multicast with multi-user diversity,” in Vehicular Technology Conference (VTC) (2004) 3, pp. 1584–1588.

Togasaki, M.

S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maximum weighted independent set problem,” Discrete Appl. Math. 126, (2)313–322 (2003).
[Crossref]

Tran, T.-A.

A. H. Azhar, T.-A. Tran, and D. O’Brien, “A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications,” IEEE Photonics Technol. Lett.,  25(2), 171–174 (2013).
[Crossref]

Tsang, D. H.

B. Bensaou, D. H. Tsang, and K. T. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Networking 9, (5)591–604 (2001).
[Crossref]

Vucic, J.

J. Vučić, C. Kottke, S. Nerreter, K.-D. Langer, and J. W. Walewski, “513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).

C. Kottke, J. Hilt, K. Habel, J. Vučić, and K.-D. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper We.3.B.4.
[Crossref]

Walewski, J. W.

Walrand, J.

J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM Trans”, Networking 8(5), 556–567 (2000).
[Crossref]

Wang, L.

Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Mobile Adhoc and Sensor Systems (MASS) (IEEE, 2012), pp. 136–144.

Wang, Y.

Wang, Z.

Watson, S.

Xu, Z.

Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Mobile Adhoc and Sensor Systems (MASS) (IEEE, 2012), pp. 136–144.

Yamazaki, K.

S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maximum weighted independent set problem,” Discrete Appl. Math. 126, (2)313–322 (2003).
[Crossref]

Yang, C.

Yang, S.-H.

S.-H. Yang, H.-S. Kim, Y.-H. Son, and S.-K. Han, “Reduction of optical interference by wavelength filtering in RGB-LED based indoor VLC system,” in OptoeElectronics and Communications Conference (OECC) (2011), pp. 551–552.

Yao, Y.

L. Dai, S. Zhou, and Y. Yao, “Capacity analysis in CDMA distributed antenna systems,” IEEE Trans”, Wireless Commun. 4(6), 2613–2620 (2005).
[Crossref]

Yu, C.

Yu, J.

Zeng, F. X.

Zhang, R. Q.

Zhang, S.

Zhang, Y.

T. Jiang, L. Song, and Y. Zhang, Orthogonal Frequency Division Multiple Access Fundamentals and Applications (Auerbach Publications, 2010).

Zhang, Z.

Zhong, W.-D.

Zhou, S.

L. Dai, S. Zhou, and Y. Yao, “Capacity analysis in CDMA distributed antenna systems,” IEEE Trans”, Wireless Commun. 4(6), 2613–2620 (2005).
[Crossref]

Zhu, C.

T. Girici, C. Zhu, J. R. Agre, and A. Ephremides, “Proportional fair scheduling algorithm in OFDMA-based wireless systems with QoS constraints,” J. Commun. Networks 12(1), 30–42 (2010).
[Crossref]

Algorithmica (1)

M. M. Halldórsson and J. Radhakrishnan, “Greed is Good: Approximating Independent Sets in Sparse and Bounded-Degree Graphs,” Algorithmica 18(1), 145–163 (1997).
[Crossref]

Discrete Appl. Math. (1)

S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maximum weighted independent set problem,” Discrete Appl. Math. 126, (2)313–322 (2003).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11(3), 367–379 (1993).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. H. Azhar, T.-A. Tran, and D. O’Brien, “A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications,” IEEE Photonics Technol. Lett.,  25(2), 171–174 (2013).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

IEEE/ACM Trans. Networking (1)

B. Bensaou, D. H. Tsang, and K. T. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Networking 9, (5)591–604 (2001).
[Crossref]

J. Commun. Networks (1)

T. Girici, C. Zhu, J. R. Agre, and A. Ephremides, “Proportional fair scheduling algorithm in OFDMA-based wireless systems with QoS constraints,” J. Commun. Networks 12(1), 30–42 (2010).
[Crossref]

J. Lightwave Technol. (3)

Networking (1)

J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM Trans”, Networking 8(5), 556–567 (2000).
[Crossref]

Opt. Express (5)

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Wireless Commun. (1)

L. Dai, S. Zhou, and Y. Yao, “Capacity analysis in CDMA distributed antenna systems,” IEEE Trans”, Wireless Commun. 4(6), 2613–2620 (2005).
[Crossref]

Wireless Networks (1)

K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of Interference on Multi-hop Wireless Network Performance,” Wireless Networks 11(4), 471–487 (2005).
[Crossref]

Other (11)

E. Gelal, K. Pelechrinis, T.-S. Kim, I. Broustis, S. V. Krishnamurthy, and B. Rao, “Topology Control for Effective Interference Cancellation in Multi-User MIMO Networks,” in Proc. IEEE INFOCOM (2010).

M. O. Sunay and A. Eksim, “Wireless multicast with multi-user diversity,” in Vehicular Technology Conference (VTC) (2004) 3, pp. 1584–1588.

C. Kottke, J. Hilt, K. Habel, J. Vučić, and K.-D. Langer, “1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary,” in European Conference and Exhibition on Optical Communication (Optical Society of America, 2012), paper We.3.B.4.
[Crossref]

T. Jiang, L. Song, and Y. Zhang, Orthogonal Frequency Division Multiple Access Fundamentals and Applications (Auerbach Publications, 2010).

R. Agrawal, A. Bedekar, R. La, and V. Subramanian, “Class and Channel Condition Based Weighted Proportional Fair Scheduler” in,” Proceedings of the International Teletraffic Congress (ITC) (2001) 17, pp. 553–565.

R. K. Mondal, M. Z. Chowdhury, N. Saha, and Y. M. Jang, “Interference-aware Optical Resource Allocation in Visible Light Communication,” in Proc. 2012 International Conference on ICT Convergence (ICTC) (IEEE, 2012), pp. 155–158.

R. K. Mondal, N. Saha, and Y. M. Jang, “Joint Scheduling and Rate Allocation for IEEE 802.15.7 WPAN System,” in Ubiquitous and Future Networks (ICUFN) (IEEE, 2013), pp. 691–695.

S.-H. Yang, H.-S. Kim, Y.-H. Son, and S.-K. Han, “Reduction of optical interference by wavelength filtering in RGB-LED based indoor VLC system,” in OptoeElectronics and Communications Conference (OECC) (2011), pp. 551–552.

Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Mobile Adhoc and Sensor Systems (MASS) (IEEE, 2012), pp. 136–144.

L.-H. Azizan, M.S. Ab-Rahman, and K. Jumiran, “Analytical approach on SNR performance of visible light communication for modern lighting layout,” in,” Innovation Management and Technology Research (ICIMTR) (2012), pp. 332–336.

H. A. Mara’beh and A. Suleiman, “Heuristic Algorithm for Graph Coloring Based on Maximum Independent Set,” Journal of Applied Computer Science & Mathematics (13), pp. 6 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Layout of the indoor VLC system.
Fig. 2
Fig. 2 (a) Layout of APs and receivers projected on horizontal plane. (b) The corresponding interference graph and one of its MIS.
Fig. 3
Fig. 3 (a) Vertical view of APs layout. (b) Receiving SNR in the area.
Fig. 4
Fig. 4 (a) Sum capacity by using different schemes. (b) SFI by using different schemes.
Fig. 5
Fig. 5 (a) Sum capacity with different FOV. (b) Average active user number with different FOV. (c) SFI with different FOV.
Fig. 6
Fig. 6 (a) Sum capacity with different priority factors. (b) SFI with different priority factors. (c) Average latencies with different priority factors.
Fig. 7
Fig. 7 (a) Sum capacity of maximum throughput scheduling and PFS. (b) SFI of maximum throughput scheduling and PFS.
Fig. 8
Fig. 8 (a) Vertical view of the second LED arrangement. (b) The corresponding SNR distribution.
Fig. 9
Fig. 9 (a) Sum capacity with different schemes under the second LED arrangement. (b) SFI with different schemes under the second LED arrangement.

Tables (3)

Tables Icon

Algorithm 1 GWMIN algorithm

Tables Icon

Algorithm 2 Scheduling algorithm

Tables Icon

Table 1 Parameters used in the simulation

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

H ( 0 ) = A ( k + 1 ) 2 π l 2 cos k ( θ 1 ) cos ( θ 2 ) ,
k = ln 2 ln ( cos ϕ 1 2 ) ) ,
P o r = { H ( 0 ) P o t , θ 2 θ FOV 0 , θ 2 > θ FOV ,
P e r = ( P o r R ) 2 ,
σ s 2 = 2 q R P o r B + 2 q I b g I 2 B ,
σ t 2 = 8 π k B T K η C A I 2 B 2 G + 16 π 2 k B T K Γ A 2 η C 2 B 3 I 3 g m ,
γ = ( H ( 0 ) P o t R ) 2 σ s 2 + σ t 2 .
γ = ( j h j P o t R ) 2 σ s 2 + σ t 2 ,
i = 1 K U i ( r i , k ¯ ) ,
r k = [ r 1 , k , r 2 , k , , r K , k ] T ,
max i = 1 K U i ( r i , k ¯ ) r i , k .
U i ( r i , k ¯ ) = { α 1 r i , k ¯ α , α 1 , α 0 log ( r i , k ¯ ) , α = 0 ,
max i = 1 K r i , k ¯ α 1 r i , k .
max i = 1 K r i , k ¯ r i , k ¯ .
max i = 1 K 1 r i , k ¯ ¯ log 2 ( 1 + ( AP j V i h i j P o t R ) 2 σ 2 + I i )
s . t . V i V j = ϕ , i , j = 1 , , K , i j
i = 1 K V i A .
I i = m = 1 , m i K ( AP n V m h i n P o t R ) 2 .
c i j = { 1 , h i j 0 0 , h i j = 0 .
n i j = { max { c i k c j k , k = 1 , , N } , i j 0 , i = j .
max i = 1 K 1 r i , k ¯ ¯ log 2 ( 1 + ( AP j V i h i j P o t R ) 2 σ 2 )
s . t . I i = 0
V i V j = ϕ , i , j = 1 , , K , i j
i = 1 K V i A .
p i , k = r i , k ¯ r i , k ¯ .
r i , k ¯ = { ( 1 1 T C ) r i , k 1 ¯ + 1 T C r i , k 1 , i k 1 * = i ( 1 1 T C ) r i , k 1 ¯ , i k 1 * i ,
D i , k ¯ = 1 K 1 j = 1 , j i K D j , k .
p i , k = ( r i , k ¯ r i , k ¯ ) s exp ( D i , k D i , k ¯ 1 + D i , k ¯ ) .
s u m _ c a p a c i t y = i = 1 K log 2 ( 1 + ( AP j V i h i j P o t R ) 2 σ 2 + I i ) ,
S F I = max i , j | r i ¯ r j ¯ | / ( 1 k l = 1 K r l ¯ )
max i = 1 K r i , k ,

Metrics