Abstract

We employ AgGaSe2 for difference-frequency generation between signal and idler of synchronously-pumped picosecond / femtosecond OPOs at 80 / 53 MHz. Continuous tuning in the picosecond regime is achieved from 5 to 18 µm with average power of 140 mW at 6 µm. In the femtosecond regime the tunability extends from 5 to 17 µm with average power of 69 mW at 6 µm. Maximum single pulse energies of >1 nJ in both cases represent the highest values at such high repetition rates.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond mid-IR difference-frequency generation in LiInSe2

Marcus Beutler, Ingo Rimke, Edlef Büttner, Valentin Petrov, and Ludmila Isaenko
Opt. Mater. Express 3(11) 1834-1838 (2013)

Femtosecond mid-IR difference-frequency generation in HgGa2S4 from an 80  MHz optical parametric oscillator pumped at 800  nm

Marcus Beutler, Ingo Rimke, Edlef Büttner, Valeriy Badikov, and Valentin Petrov
J. Opt. Soc. Am. B 33(11) D7-D11 (2016)

Difference-frequency generation of fs and ps mid-IR pulses in LiInSe2 based on Yb-fiber laser pump sources

Marcus Beutler, Ingo Rimke, Edlef Büttner, Valentin Petrov, and Ludmila Isaenko
Opt. Lett. 39(15) 4353-4355 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
    [Crossref] [PubMed]
  2. V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34(3), 536–554 (2012).
    [Crossref]
  3. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron.in press.
  4. J. M. Fraser, D. Wang, A. Haché, G. R. Allan, and H. M. van Driel, “Generation of high-repetition-rate femtosecond pulses from 8 to 18 µm,” Appl. Opt. 36(21), 5044–5047 (1997).
    [Crossref] [PubMed]
  5. R. Hegenbarth, A. Steinmann, S. Sarkisov, and H. Giessen, “Milliwatt-level mid-infrared (10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator,” Opt. Lett. 37(17), 3513–3515 (2012).
    [Crossref] [PubMed]
  6. A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(2), 700–703 (1997).
    [Crossref]
  7. M. Beutler, I. Rimke, E. Büttner, V. Petrov, and L. Isaenko, “Difference-frequency generation of fs and ps mid-IR pulses in LiInSe2 based on Yb-fiber laser pump sources,” Opt. Lett. 39(15), 4353–4355 (2014).
    [Crossref] [PubMed]
  8. Ch. Grässer, S. Marzenell, J. Dörring, R. Beigang, and R. Wallenstein, “Continuous-wave mode-locked operation of a picosecond AgGaSe2 optical parametric oscillator in the mid infrared,” OSA TOPS on Advanced Solid-State Lasers (1996), Vol. 1, S. A. Payne and C. Pollock (eds), OSA, 1996, paper OP6, pp. 158–163.
  9. S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µm to 8 µm,” Appl. Phys. B 69(5-6), 423–428 (1999).
    [Crossref]
  10. R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
    [Crossref]

2014 (2)

M. Beutler, I. Rimke, E. Büttner, V. Petrov, and L. Isaenko, “Difference-frequency generation of fs and ps mid-IR pulses in LiInSe2 based on Yb-fiber laser pump sources,” Opt. Lett. 39(15), 4353–4355 (2014).
[Crossref] [PubMed]

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

2012 (2)

1999 (2)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[Crossref] [PubMed]

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µm to 8 µm,” Appl. Phys. B 69(5-6), 423–428 (1999).
[Crossref]

1997 (2)

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(2), 700–703 (1997).
[Crossref]

J. M. Fraser, D. Wang, A. Haché, G. R. Allan, and H. M. van Driel, “Generation of high-repetition-rate femtosecond pulses from 8 to 18 µm,” Appl. Opt. 36(21), 5044–5047 (1997).
[Crossref] [PubMed]

Allan, G. R.

Amarie, S.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Beigang, R.

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µm to 8 µm,” Appl. Phys. B 69(5-6), 423–428 (1999).
[Crossref]

Beutler, M.

Büttner, E.

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[Crossref] [PubMed]

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[Crossref] [PubMed]

Fraser, J. M.

Giessen, H.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

R. Hegenbarth, A. Steinmann, S. Sarkisov, and H. Giessen, “Milliwatt-level mid-infrared (10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator,” Opt. Lett. 37(17), 3513–3515 (2012).
[Crossref] [PubMed]

Haché, A.

Harasaki, A.

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(2), 700–703 (1997).
[Crossref]

Hegenbarth, R.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

R. Hegenbarth, A. Steinmann, S. Sarkisov, and H. Giessen, “Milliwatt-level mid-infrared (10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator,” Opt. Lett. 37(17), 3513–3515 (2012).
[Crossref] [PubMed]

Hillenbrand, R.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Huber, A. J.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Isaenko, L.

Kato, K.

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(2), 700–703 (1997).
[Crossref]

Marzenell, S.

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µm to 8 µm,” Appl. Phys. B 69(5-6), 423–428 (1999).
[Crossref]

Mastel, S.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Petrov, V.

M. Beutler, I. Rimke, E. Büttner, V. Petrov, and L. Isaenko, “Difference-frequency generation of fs and ps mid-IR pulses in LiInSe2 based on Yb-fiber laser pump sources,” Opt. Lett. 39(15), 4353–4355 (2014).
[Crossref] [PubMed]

V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34(3), 536–554 (2012).
[Crossref]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron.in press.

Rimke, I.

Sarkisov, S.

Sarkisov, S. Y.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Steinmann, A.

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

R. Hegenbarth, A. Steinmann, S. Sarkisov, and H. Giessen, “Milliwatt-level mid-infrared (10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator,” Opt. Lett. 37(17), 3513–3515 (2012).
[Crossref] [PubMed]

van Driel, H. M.

Wallenstein, R.

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µm to 8 µm,” Appl. Phys. B 69(5-6), 423–428 (1999).
[Crossref]

Wang, D.

Appl. Opt. (1)

Appl. Phys. B (1)

S. Marzenell, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 µm to 8 µm,” Appl. Phys. B 69(5-6), 423–428 (1999).
[Crossref]

J. Opt. (1)

R. Hegenbarth, A. Steinmann, S. Mastel, S. Amarie, A. J. Huber, R. Hillenbrand, S. Y. Sarkisov, and H. Giessen, “High-power femtosecond mid-IR sources for s-SNOM applications,” J. Opt. 16(9), 094003 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Harasaki and K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36(2), 700–703 (1997).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (1)

V. Petrov, “Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources,” Opt. Mater. 34(3), 536–554 (2012).
[Crossref]

Science (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[Crossref] [PubMed]

Other (2)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron.in press.

Ch. Grässer, S. Marzenell, J. Dörring, R. Beigang, and R. Wallenstein, “Continuous-wave mode-locked operation of a picosecond AgGaSe2 optical parametric oscillator in the mid infrared,” OSA TOPS on Advanced Solid-State Lasers (1996), Vol. 1, S. A. Payne and C. Pollock (eds), OSA, 1996, paper OP6, pp. 158–163.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Internal phase-matching angle θ (black) and spatial walk-off angles ρ1,3 (red) for type-I (solid lines) and type-II (dashed lines) DFG in AGSe. (b) GVM parameters mixing signal and idler pulses from a 1034 nm pumped SPOPO. The indices 1,2,3 denote DFG, idler, and signal pulses. Sellmeier equations used are from [6].
Fig. 2
Fig. 2 Schematic of the DFG set-up: DM: dichroic mirror as beam recombiner, P: periscope for polarization rotation, L: focusing lens, R: retro-reflector in delay line (also adjusting the beam height), X: AGSe crystal, C: collimation (curved Au-mirror), F: 3.6-µm cut-on Ge-filter.
Fig. 3
Fig. 3 (a) Average power at 80 MHz obtained in the picosecond regime behind the AGSe crystal and external quantum conversion efficiency. (b) Spectral tuning versus DFG wavelength. The dotted curve in (b) indicates the measured spectral bandwidth.
Fig. 4
Fig. 4 Recorded DFG autocorrelation functions in the picosecond regime using TPA: (a) at 7 µm and (b) at 11 µm. The FWHM indicated refers to the autocorrelation traces.
Fig. 5
Fig. 5 DFG average power (black line and circles) and calculated DFG external quantum efficiency (red line and squares) in the femtosecond regime.
Fig. 6
Fig. 6 (a) Recorded DFG spectra demonstrating the achieved spectral tunability in the femtosecond regime and (b) typical autocorrelation function (ACF) recorded at 7.2 µm. The red dashed line in (a) shows the spectral bandwidth in wavenumbers (right axis). The autocorrelation trace in (b) is fitted with a Gaussian function (red solid line) corresponding to a DFG pulse duration of 305 fs (FWHM).

Metrics