Abstract

The technique of molecular beam epitaxy has recently been used to demonstrate the growth of terahertz frequency GaAs/AlGaAs quantum cascade lasers (QCL) with Watt-level optical output powers. In this paper, we discuss the critical importance of achieving accurate layer thicknesses and alloy compositions during growth, and demonstrate that precise growth control as well as run-to-run growth reproducibility is possible. We also discuss the importance of minimizing background doping level in maximizing QCL performance. By selecting high-performance active region designs, and optimizing the injection doping level and device fabrication, we demonstrate total optical (two-facet) output powers as high as 1.56 W.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum cascade lasers: 20 years of challenges

Miriam Serena Vitiello, Giacomo Scalari, Benjamin Williams, and Paolo De Natale
Opt. Express 23(4) 5167-5182 (2015)

THz quantum cascade lasers with wafer bonded active regions

M. Brandstetter, C. Deutsch, A. Benz, G. D. Cole, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer
Opt. Express 20(21) 23832-23837 (2012)

Surface emitting terahertz quantum cascade laser with a double-metal waveguide

Jonathan A. Fan, Mikhail A. Belkin, Federico Capasso, Suraj Khanna, Mohamed Lachab, A. Giles Davies, and Edmund H. Linfield
Opt. Express 14(24) 11672-11680 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(1), 38–47 (2011).
    [Crossref]
  3. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [Crossref] [PubMed]
  4. D. Turčinková, G. Scalari, F. Castellano, M. I. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
    [Crossref]
  5. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
    [Crossref] [PubMed]
  6. L. H. Li, L. Chen, J. X. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 Watt output powers,” Electron. Lett. 50(4), 309–311 (2014).
    [Crossref]
  7. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42(2), 89–90 (2006).
    [Crossref]
  8. M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030 (2009).
    [Crossref]
  9. M. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
    [Crossref]
  10. S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8-THz quantum cascade laser operating significantly above the temperature of ω/kB,” Nat. Phys. 7(2), 166–171 (2011).
    [Crossref]
  11. H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Kohler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers,” J. Cryst. Growth 278(1-4), 756–764 (2005).
    [Crossref]
  12. H. C. Liu, M. Wächter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu, “Effect of doping concentration on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 87(14), 141102 (2005).
    [Crossref]
  13. A. Andrews, T. Roch, A. Benz, G. Fasching, W. Schrenk, K. Unterrainer, and G. Strasser, “Optimization of MBE growth parameters for GaAs-based THz quantum cascade lasers,” AIP Conf. Proc. 893, 51–52 (2007).
    [Crossref]
  14. T. Roch, A. Andrews, G. Fasching, A. Benz, W. Schrenk, K. Unterrainer, and G. Strasser, “High-quality MBE growth of AlχGa1-χ As-based THz quantum cascade lasers,” Cent. Eur. J. Phys. 5(2), 244–251 (2007).
    [Crossref]
  15. S. P. Khanna, S. Chakraborty, M. Lachab, N. M. Hinchcliffe, E. H. Linfield, and A. G. Davies, “The growth and measurement of terahertz quantum cascade lasers,” Physica E. 40, 1859–1861 (2008).
  16. Z. R. Wasilewski, “MBE growth of THz quantum cascade lasers,” in Molecular Beam Epitaxy: From Research to Mass Production, M. Henini, ed. (Elsevier Inc., 2013).
  17. F. G. Boebel, H. Mijller, B. Hertel, H. Grothe, G. Schraud, St. Schrader, and P. Chow, “In-situ film thickness and temperature control of molecular-beam epitaxy growth by pyrometric interferometry,” J. Cryst. Growth 150, 54–61 (1995).
    [Crossref]
  18. A. J. SpringThorpe, T. P. Humphreys, A. Majeed, and W. T. Moore, “In situ growth rate measurements during molecular beam epitaxy using an optical pyrometer,” Appl. Phys. Lett. 55(20), 2138 (1989).
    [Crossref]
  19. W. G. Breiland and K. P. Killeen, “A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductor films using in situ normal incidence reflectance,” J. Appl. Phys. 78(11), 6726 (1995).
    [Crossref]
  20. C. H. Kuo, S. Anand, R. Droopad, K. Y. Choi, and G. N. Maracas, “Measurement of GaAs temperature-dependent optical constants by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 12(2), 1214 (1994).
    [Crossref]
  21. J. Faist, Quantum Cascade Lasers (Oxford University Press, 2013), Chap. 7.
  22. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
    [Crossref]
  23. T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
    [Crossref]
  24. L. Ajili, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, “Doping in quantum cascade lasers. II. GaAs/Al0.15Ga0.85As terahertz devices,” J. Appl. Phys. 100, 043102 (2006).
  25. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflüg, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
    [Crossref]

2014 (1)

L. H. Li, L. Chen, J. X. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 Watt output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

2012 (1)

2011 (3)

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(1), 38–47 (2011).
[Crossref]

D. Turčinková, G. Scalari, F. Castellano, M. I. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8-THz quantum cascade laser operating significantly above the temperature of ω/kB,” Nat. Phys. 7(2), 166–171 (2011).
[Crossref]

2009 (3)

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030 (2009).
[Crossref]

M. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflüg, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

2008 (1)

S. P. Khanna, S. Chakraborty, M. Lachab, N. M. Hinchcliffe, E. H. Linfield, and A. G. Davies, “The growth and measurement of terahertz quantum cascade lasers,” Physica E. 40, 1859–1861 (2008).

2007 (3)

A. Andrews, T. Roch, A. Benz, G. Fasching, W. Schrenk, K. Unterrainer, and G. Strasser, “Optimization of MBE growth parameters for GaAs-based THz quantum cascade lasers,” AIP Conf. Proc. 893, 51–52 (2007).
[Crossref]

T. Roch, A. Andrews, G. Fasching, A. Benz, W. Schrenk, K. Unterrainer, and G. Strasser, “High-quality MBE growth of AlχGa1-χ As-based THz quantum cascade lasers,” Cent. Eur. J. Phys. 5(2), 244–251 (2007).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (3)

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42(2), 89–90 (2006).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

L. Ajili, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, “Doping in quantum cascade lasers. II. GaAs/Al0.15Ga0.85As terahertz devices,” J. Appl. Phys. 100, 043102 (2006).

2005 (2)

H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Kohler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers,” J. Cryst. Growth 278(1-4), 756–764 (2005).
[Crossref]

H. C. Liu, M. Wächter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu, “Effect of doping concentration on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 87(14), 141102 (2005).
[Crossref]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

2001 (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

1995 (2)

F. G. Boebel, H. Mijller, B. Hertel, H. Grothe, G. Schraud, St. Schrader, and P. Chow, “In-situ film thickness and temperature control of molecular-beam epitaxy growth by pyrometric interferometry,” J. Cryst. Growth 150, 54–61 (1995).
[Crossref]

W. G. Breiland and K. P. Killeen, “A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductor films using in situ normal incidence reflectance,” J. Appl. Phys. 78(11), 6726 (1995).
[Crossref]

1994 (1)

C. H. Kuo, S. Anand, R. Droopad, K. Y. Choi, and G. N. Maracas, “Measurement of GaAs temperature-dependent optical constants by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 12(2), 1214 (1994).
[Crossref]

1989 (1)

A. J. SpringThorpe, T. P. Humphreys, A. Majeed, and W. T. Moore, “In situ growth rate measurements during molecular beam epitaxy using an optical pyrometer,” Appl. Phys. Lett. 55(20), 2138 (1989).
[Crossref]

Aellen, T.

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Aers, G. C.

H. C. Liu, M. Wächter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu, “Effect of doping concentration on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 87(14), 141102 (2005).
[Crossref]

Ajili, L.

L. Ajili, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, “Doping in quantum cascade lasers. II. GaAs/Al0.15Ga0.85As terahertz devices,” J. Appl. Phys. 100, 043102 (2006).

H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Kohler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers,” J. Cryst. Growth 278(1-4), 756–764 (2005).
[Crossref]

Alton, J.

H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Kohler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers,” J. Cryst. Growth 278(1-4), 756–764 (2005).
[Crossref]

Amanti, M.

M. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Amanti, M. I.

D. Turčinková, G. Scalari, F. Castellano, M. I. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

Anand, S.

C. H. Kuo, S. Anand, R. Droopad, K. Y. Choi, and G. N. Maracas, “Measurement of GaAs temperature-dependent optical constants by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 12(2), 1214 (1994).
[Crossref]

Anders, W.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030 (2009).
[Crossref]

Andrews, A.

A. Andrews, T. Roch, A. Benz, G. Fasching, W. Schrenk, K. Unterrainer, and G. Strasser, “Optimization of MBE growth parameters for GaAs-based THz quantum cascade lasers,” AIP Conf. Proc. 893, 51–52 (2007).
[Crossref]

T. Roch, A. Andrews, G. Fasching, A. Benz, W. Schrenk, K. Unterrainer, and G. Strasser, “High-quality MBE growth of AlχGa1-χ As-based THz quantum cascade lasers,” Cent. Eur. J. Phys. 5(2), 244–251 (2007).
[Crossref]

Ban, D.

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
[Crossref] [PubMed]

H. C. Liu, M. Wächter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu, “Effect of doping concentration on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 87(14), 141102 (2005).
[Crossref]

Barbieri, S.

H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Kohler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers,” J. Cryst. Growth 278(1-4), 756–764 (2005).
[Crossref]

Beck, M.

D. Turčinková, G. Scalari, F. Castellano, M. I. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

M. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Beere, H. E.

H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Kohler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers,” J. Cryst. Growth 278(1-4), 756–764 (2005).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Benz, A.

A. Andrews, T. Roch, A. Benz, G. Fasching, W. Schrenk, K. Unterrainer, and G. Strasser, “Optimization of MBE growth parameters for GaAs-based THz quantum cascade lasers,” AIP Conf. Proc. 893, 51–52 (2007).
[Crossref]

T. Roch, A. Andrews, G. Fasching, A. Benz, W. Schrenk, K. Unterrainer, and G. Strasser, “High-quality MBE growth of AlχGa1-χ As-based THz quantum cascade lasers,” Cent. Eur. J. Phys. 5(2), 244–251 (2007).
[Crossref]

Boebel, F. G.

F. G. Boebel, H. Mijller, B. Hertel, H. Grothe, G. Schraud, St. Schrader, and P. Chow, “In-situ film thickness and temperature control of molecular-beam epitaxy growth by pyrometric interferometry,” J. Cryst. Growth 150, 54–61 (1995).
[Crossref]

Breiland, W. G.

W. G. Breiland and K. P. Killeen, “A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductor films using in situ normal incidence reflectance,” J. Appl. Phys. 78(11), 6726 (1995).
[Crossref]

Buchanan, M.

H. C. Liu, M. Wächter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu, “Effect of doping concentration on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 87(14), 141102 (2005).
[Crossref]

Cao, J. C.

H. C. Liu, M. Wächter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu, “Effect of doping concentration on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 87(14), 141102 (2005).
[Crossref]

Capasso, F.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflüg, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

Castellano, F.

D. Turčinková, G. Scalari, F. Castellano, M. I. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

Chakraborty, S.

S. P. Khanna, S. Chakraborty, M. Lachab, N. M. Hinchcliffe, E. H. Linfield, and A. G. Davies, “The growth and measurement of terahertz quantum cascade lasers,” Physica E. 40, 1859–1861 (2008).

Chan, C. W. I.

Chen, L.

L. H. Li, L. Chen, J. X. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 Watt output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Cho, A. Y.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

Choi, K. Y.

C. H. Kuo, S. Anand, R. Droopad, K. Y. Choi, and G. N. Maracas, “Measurement of GaAs temperature-dependent optical constants by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 12(2), 1214 (1994).
[Crossref]

Chow, P.

F. G. Boebel, H. Mijller, B. Hertel, H. Grothe, G. Schraud, St. Schrader, and P. Chow, “In-situ film thickness and temperature control of molecular-beam epitaxy growth by pyrometric interferometry,” J. Cryst. Growth 150, 54–61 (1995).
[Crossref]

Davies, A. G.

L. H. Li, L. Chen, J. X. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 Watt output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

S. P. Khanna, S. Chakraborty, M. Lachab, N. M. Hinchcliffe, E. H. Linfield, and A. G. Davies, “The growth and measurement of terahertz quantum cascade lasers,” Physica E. 40, 1859–1861 (2008).

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Dean, P.

L. H. Li, L. Chen, J. X. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 Watt output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Diehl, L.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflüg, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Droopad, R.

C. H. Kuo, S. Anand, R. Droopad, K. Y. Choi, and G. N. Maracas, “Measurement of GaAs temperature-dependent optical constants by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 12(2), 1214 (1994).
[Crossref]

Dupont, E.

Faist, J.

D. Turčinková, G. Scalari, F. Castellano, M. I. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

M. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

L. Ajili, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, “Doping in quantum cascade lasers. II. GaAs/Al0.15Ga0.85As terahertz devices,” J. Appl. Phys. 100, 043102 (2006).

H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Kohler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers,” J. Cryst. Growth 278(1-4), 756–764 (2005).
[Crossref]

Fasching, G.

A. Andrews, T. Roch, A. Benz, G. Fasching, W. Schrenk, K. Unterrainer, and G. Strasser, “Optimization of MBE growth parameters for GaAs-based THz quantum cascade lasers,” AIP Conf. Proc. 893, 51–52 (2007).
[Crossref]

T. Roch, A. Andrews, G. Fasching, A. Benz, W. Schrenk, K. Unterrainer, and G. Strasser, “High-quality MBE growth of AlχGa1-χ As-based THz quantum cascade lasers,” Cent. Eur. J. Phys. 5(2), 244–251 (2007).
[Crossref]

Fathololoumi, S.

Feng, S. L.

H. C. Liu, M. Wächter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu, “Effect of doping concentration on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 87(14), 141102 (2005).
[Crossref]

Fischer, M.

M. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Fowler, J. C.

H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Kohler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers,” J. Cryst. Growth 278(1-4), 756–764 (2005).
[Crossref]

Freeman, J.

L. H. Li, L. Chen, J. X. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 Watt output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Gallo, P.

M. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Giehler, M.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030 (2009).
[Crossref]

Gini, E.

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Giovannini, M.

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

L. Ajili, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, “Doping in quantum cascade lasers. II. GaAs/Al0.15Ga0.85As terahertz devices,” J. Appl. Phys. 100, 043102 (2006).

Gmachl, C.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

Go, R.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflüg, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Grahn, H. T.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030 (2009).
[Crossref]

Grothe, H.

F. G. Boebel, H. Mijller, B. Hertel, H. Grothe, G. Schraud, St. Schrader, and P. Chow, “In-situ film thickness and temperature control of molecular-beam epitaxy growth by pyrometric interferometry,” J. Cryst. Growth 150, 54–61 (1995).
[Crossref]

Hertel, B.

F. G. Boebel, H. Mijller, B. Hertel, H. Grothe, G. Schraud, St. Schrader, and P. Chow, “In-situ film thickness and temperature control of molecular-beam epitaxy growth by pyrometric interferometry,” J. Cryst. Growth 150, 54–61 (1995).
[Crossref]

Hey, R.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030 (2009).
[Crossref]

Hinchcliffe, N. M.

S. P. Khanna, S. Chakraborty, M. Lachab, N. M. Hinchcliffe, E. H. Linfield, and A. G. Davies, “The growth and measurement of terahertz quantum cascade lasers,” Physica E. 40, 1859–1861 (2008).

Hoyler, N.

L. Ajili, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, “Doping in quantum cascade lasers. II. GaAs/Al0.15Ga0.85As terahertz devices,” J. Appl. Phys. 100, 043102 (2006).

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

Hu, Q.

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
[Crossref] [PubMed]

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8-THz quantum cascade laser operating significantly above the temperature of ω/kB,” Nat. Phys. 7(2), 166–171 (2011).
[Crossref]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42(2), 89–90 (2006).
[Crossref]

H. C. Liu, M. Wächter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu, “Effect of doping concentration on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 87(14), 141102 (2005).
[Crossref]

Humphreys, T. P.

A. J. SpringThorpe, T. P. Humphreys, A. Majeed, and W. T. Moore, “In situ growth rate measurements during molecular beam epitaxy using an optical pyrometer,” Appl. Phys. Lett. 55(20), 2138 (1989).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Jirauschek, C.

Kapon, E.

M. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Khanna, S. P.

S. P. Khanna, S. Chakraborty, M. Lachab, N. M. Hinchcliffe, E. H. Linfield, and A. G. Davies, “The growth and measurement of terahertz quantum cascade lasers,” Physica E. 40, 1859–1861 (2008).

Killeen, K. P.

W. G. Breiland and K. P. Killeen, “A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductor films using in situ normal incidence reflectance,” J. Appl. Phys. 78(11), 6726 (1995).
[Crossref]

Kohler, R.

H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Kohler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers,” J. Cryst. Growth 278(1-4), 756–764 (2005).
[Crossref]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Kumar, S.

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(1), 38–47 (2011).
[Crossref]

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8-THz quantum cascade laser operating significantly above the temperature of ω/kB,” Nat. Phys. 7(2), 166–171 (2011).
[Crossref]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42(2), 89–90 (2006).
[Crossref]

Kuo, C. H.

C. H. Kuo, S. Anand, R. Droopad, K. Y. Choi, and G. N. Maracas, “Measurement of GaAs temperature-dependent optical constants by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 12(2), 1214 (1994).
[Crossref]

Lachab, M.

S. P. Khanna, S. Chakraborty, M. Lachab, N. M. Hinchcliffe, E. H. Linfield, and A. G. Davies, “The growth and measurement of terahertz quantum cascade lasers,” Physica E. 40, 1859–1861 (2008).

Laframboise, S. R.

Li, L. H.

L. H. Li, L. Chen, J. X. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 Watt output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Linfield, E. H.

L. H. Li, L. Chen, J. X. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 Watt output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

S. P. Khanna, S. Chakraborty, M. Lachab, N. M. Hinchcliffe, E. H. Linfield, and A. G. Davies, “The growth and measurement of terahertz quantum cascade lasers,” Physica E. 40, 1859–1861 (2008).

H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Kohler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers,” J. Cryst. Growth 278(1-4), 756–764 (2005).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Liu, H. C.

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
[Crossref] [PubMed]

H. C. Liu, M. Wächter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu, “Effect of doping concentration on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 87(14), 141102 (2005).
[Crossref]

Lyakh, A.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflüg, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Majeed, A.

A. J. SpringThorpe, T. P. Humphreys, A. Majeed, and W. T. Moore, “In situ growth rate measurements during molecular beam epitaxy using an optical pyrometer,” Appl. Phys. Lett. 55(20), 2138 (1989).
[Crossref]

Maracas, G. N.

C. H. Kuo, S. Anand, R. Droopad, K. Y. Choi, and G. N. Maracas, “Measurement of GaAs temperature-dependent optical constants by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 12(2), 1214 (1994).
[Crossref]

Mátyás, A.

Maulini, R.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflüg, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Mijller, H.

F. G. Boebel, H. Mijller, B. Hertel, H. Grothe, G. Schraud, St. Schrader, and P. Chow, “In-situ film thickness and temperature control of molecular-beam epitaxy growth by pyrometric interferometry,” J. Cryst. Growth 150, 54–61 (1995).
[Crossref]

Moore, W. T.

A. J. SpringThorpe, T. P. Humphreys, A. Majeed, and W. T. Moore, “In situ growth rate measurements during molecular beam epitaxy using an optical pyrometer,” Appl. Phys. Lett. 55(20), 2138 (1989).
[Crossref]

Patel, C. K. N.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflüg, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Pflüg, C.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflüg, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Reno, J. L.

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8-THz quantum cascade laser operating significantly above the temperature of ω/kB,” Nat. Phys. 7(2), 166–171 (2011).
[Crossref]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42(2), 89–90 (2006).
[Crossref]

Ritchie, D. A.

H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Kohler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers,” J. Cryst. Growth 278(1-4), 756–764 (2005).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Roch, T.

A. Andrews, T. Roch, A. Benz, G. Fasching, W. Schrenk, K. Unterrainer, and G. Strasser, “Optimization of MBE growth parameters for GaAs-based THz quantum cascade lasers,” AIP Conf. Proc. 893, 51–52 (2007).
[Crossref]

T. Roch, A. Andrews, G. Fasching, A. Benz, W. Schrenk, K. Unterrainer, and G. Strasser, “High-quality MBE growth of AlχGa1-χ As-based THz quantum cascade lasers,” Cent. Eur. J. Phys. 5(2), 244–251 (2007).
[Crossref]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Rudra, A.

M. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Scalari, G.

D. Turčinková, G. Scalari, F. Castellano, M. I. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

M. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

L. Ajili, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, “Doping in quantum cascade lasers. II. GaAs/Al0.15Ga0.85As terahertz devices,” J. Appl. Phys. 100, 043102 (2006).

H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Kohler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers,” J. Cryst. Growth 278(1-4), 756–764 (2005).
[Crossref]

Schrader, St.

F. G. Boebel, H. Mijller, B. Hertel, H. Grothe, G. Schraud, St. Schrader, and P. Chow, “In-situ film thickness and temperature control of molecular-beam epitaxy growth by pyrometric interferometry,” J. Cryst. Growth 150, 54–61 (1995).
[Crossref]

Schraud, G.

F. G. Boebel, H. Mijller, B. Hertel, H. Grothe, G. Schraud, St. Schrader, and P. Chow, “In-situ film thickness and temperature control of molecular-beam epitaxy growth by pyrometric interferometry,” J. Cryst. Growth 150, 54–61 (1995).
[Crossref]

Schrenk, W.

T. Roch, A. Andrews, G. Fasching, A. Benz, W. Schrenk, K. Unterrainer, and G. Strasser, “High-quality MBE growth of AlχGa1-χ As-based THz quantum cascade lasers,” Cent. Eur. J. Phys. 5(2), 244–251 (2007).
[Crossref]

A. Andrews, T. Roch, A. Benz, G. Fasching, W. Schrenk, K. Unterrainer, and G. Strasser, “Optimization of MBE growth parameters for GaAs-based THz quantum cascade lasers,” AIP Conf. Proc. 893, 51–52 (2007).
[Crossref]

Schrottke, L.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030 (2009).
[Crossref]

Sivco, D. L.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

SpringThorpe, A. J.

A. J. SpringThorpe, T. P. Humphreys, A. Majeed, and W. T. Moore, “In situ growth rate measurements during molecular beam epitaxy using an optical pyrometer,” Appl. Phys. Lett. 55(20), 2138 (1989).
[Crossref]

Strasser, G.

A. Andrews, T. Roch, A. Benz, G. Fasching, W. Schrenk, K. Unterrainer, and G. Strasser, “Optimization of MBE growth parameters for GaAs-based THz quantum cascade lasers,” AIP Conf. Proc. 893, 51–52 (2007).
[Crossref]

T. Roch, A. Andrews, G. Fasching, A. Benz, W. Schrenk, K. Unterrainer, and G. Strasser, “High-quality MBE growth of AlχGa1-χ As-based THz quantum cascade lasers,” Cent. Eur. J. Phys. 5(2), 244–251 (2007).
[Crossref]

Terazzi, R.

M. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tredicucci, A.

H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Kohler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers,” J. Cryst. Growth 278(1-4), 756–764 (2005).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Tsekoun, A.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflüg, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Turcinková, D.

D. Turčinková, G. Scalari, F. Castellano, M. I. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

Unterrainer, K.

T. Roch, A. Andrews, G. Fasching, A. Benz, W. Schrenk, K. Unterrainer, and G. Strasser, “High-quality MBE growth of AlχGa1-χ As-based THz quantum cascade lasers,” Cent. Eur. J. Phys. 5(2), 244–251 (2007).
[Crossref]

A. Andrews, T. Roch, A. Benz, G. Fasching, W. Schrenk, K. Unterrainer, and G. Strasser, “Optimization of MBE growth parameters for GaAs-based THz quantum cascade lasers,” AIP Conf. Proc. 893, 51–52 (2007).
[Crossref]

Valavanis, A.

L. H. Li, L. Chen, J. X. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 Watt output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

Wächter, M.

H. C. Liu, M. Wächter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu, “Effect of doping concentration on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 87(14), 141102 (2005).
[Crossref]

Wasilewski, Z. R.

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express 20(4), 3866–3876 (2012).
[Crossref] [PubMed]

H. C. Liu, M. Wächter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu, “Effect of doping concentration on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 87(14), 141102 (2005).
[Crossref]

Wienold, M.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030 (2009).
[Crossref]

Williams, B. S.

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42(2), 89–90 (2006).
[Crossref]

H. C. Liu, M. Wächter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu, “Effect of doping concentration on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 87(14), 141102 (2005).
[Crossref]

Zhu, J. X.

L. H. Li, L. Chen, J. X. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 Watt output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

AIP Conf. Proc. (1)

A. Andrews, T. Roch, A. Benz, G. Fasching, W. Schrenk, K. Unterrainer, and G. Strasser, “Optimization of MBE growth parameters for GaAs-based THz quantum cascade lasers,” AIP Conf. Proc. 893, 51–52 (2007).
[Crossref]

Appl. Phys. Lett. (4)

H. C. Liu, M. Wächter, D. Ban, Z. R. Wasilewski, M. Buchanan, G. C. Aers, J. C. Cao, S. L. Feng, B. S. Williams, and Q. Hu, “Effect of doping concentration on the performance of terahertz quantum-cascade lasers,” Appl. Phys. Lett. 87(14), 141102 (2005).
[Crossref]

D. Turčinková, G. Scalari, F. Castellano, M. I. Amanti, M. Beck, and J. Faist, “Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz,” Appl. Phys. Lett. 99(19), 191104 (2011).
[Crossref]

A. J. SpringThorpe, T. P. Humphreys, A. Majeed, and W. T. Moore, “In situ growth rate measurements during molecular beam epitaxy using an optical pyrometer,” Appl. Phys. Lett. 55(20), 2138 (1989).
[Crossref]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflüg, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009).
[Crossref]

Cent. Eur. J. Phys. (1)

T. Roch, A. Andrews, G. Fasching, A. Benz, W. Schrenk, K. Unterrainer, and G. Strasser, “High-quality MBE growth of AlχGa1-χ As-based THz quantum cascade lasers,” Cent. Eur. J. Phys. 5(2), 244–251 (2007).
[Crossref]

Electron. Lett. (3)

L. H. Li, L. Chen, J. X. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with >1 Watt output powers,” Electron. Lett. 50(4), 309–311 (2014).
[Crossref]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett. 42(2), 89–90 (2006).
[Crossref]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, W. Anders, and H. T. Grahn, “Low-voltage terahertz quantum cascade lasers based on LO-phonon-assisted interminiband transitions,” Electron. Lett. 45(20), 1030 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Kumar, “Recent progress in terahertz quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron. 17(1), 38–47 (2011).
[Crossref]

J. Appl. Phys. (3)

W. G. Breiland and K. P. Killeen, “A virtual interface method for extracting growth rates and high temperature optical constants from thin semiconductor films using in situ normal incidence reflectance,” J. Appl. Phys. 78(11), 6726 (1995).
[Crossref]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs-InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[Crossref]

L. Ajili, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, “Doping in quantum cascade lasers. II. GaAs/Al0.15Ga0.85As terahertz devices,” J. Appl. Phys. 100, 043102 (2006).

J. Cryst. Growth (2)

F. G. Boebel, H. Mijller, B. Hertel, H. Grothe, G. Schraud, St. Schrader, and P. Chow, “In-situ film thickness and temperature control of molecular-beam epitaxy growth by pyrometric interferometry,” J. Cryst. Growth 150, 54–61 (1995).
[Crossref]

H. E. Beere, J. C. Fowler, J. Alton, E. H. Linfield, D. A. Ritchie, R. Kohler, A. Tredicucci, G. Scalari, L. Ajili, J. Faist, and S. Barbieri, “MBE growth of terahertz quantum cascade lasers,” J. Cryst. Growth 278(1-4), 756–764 (2005).
[Crossref]

J. Vac. Sci. Technol. B (1)

C. H. Kuo, S. Anand, R. Droopad, K. Y. Choi, and G. N. Maracas, “Measurement of GaAs temperature-dependent optical constants by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 12(2), 1214 (1994).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nat. Phys. (1)

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8-THz quantum cascade laser operating significantly above the temperature of ω/kB,” Nat. Phys. 7(2), 166–171 (2011).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

New J. Phys. (1)

M. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage,” New J. Phys. 11(12), 125022 (2009).
[Crossref]

Opt. Express (1)

Physica E. (1)

S. P. Khanna, S. Chakraborty, M. Lachab, N. M. Hinchcliffe, E. H. Linfield, and A. G. Davies, “The growth and measurement of terahertz quantum cascade lasers,” Physica E. 40, 1859–1861 (2008).

Rep. Prog. Phys. (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001).
[Crossref]

Other (2)

J. Faist, Quantum Cascade Lasers (Oxford University Press, 2013), Chap. 7.

Z. R. Wasilewski, “MBE growth of THz quantum cascade lasers,” in Molecular Beam Epitaxy: From Research to Mass Production, M. Henini, ed. (Elsevier Inc., 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Refractive index (n) for GaAs and AlAs as a function of wavelength. Inset: the dependence of n on the Al composition in an AlGaAs layer. The solid black circles and line are experimental data and the least fitting curve, respectively.

Fig. 2
Fig. 2

Typical variation of the gallium cell temperature required to achieve a 1 µm/hour GaAs growth rate as a function of the total thickness of deposited GaAs during a growth campaign. Each data point corresponds to a single wafer growth. The aluminum data reflecting the required cell temperature to achieve a constant growth rate of 0.176 um/hr, as used for the majority of THz QCL growths, are also shown. These aluminum data points correspond to THz QCL growths during the campaign.

Fig. 3
Fig. 3

Typical pyrometric oscillation recorded during growth of a THz QCL structure based on [5] using growth rate compensation. The theoretical simulation assumed a constant GQCL of 1.036 um/hr. No account is made for any shutter transients.

Fig. 4
Fig. 4

Variation of (a) peak output power and (b) Jmax and Jth with injector doping level for devices with dimension of 3 mm × 145 μm. The active region (BTC-RP) is based on [9]. Two Ga cells (Ga1, Ga2) were used for these growths. Ga1 had extremely high purity, but Ga2 was known to be contaminated and hence the GaAs was of lower quality. The total net unintentional background doping level from both cells was, however, <2 x 1014 cm–3 (p-type) – rather less than the intended injector doping levels.

Fig. 5
Fig. 5

Dependencies of the measured peak output powers on ridge area (L × w) for as-cleaved devices. The devices were fabricated from two different QCL wafers which have M-BTC-RP and MQW-LO active regions designs. The output powers were recorded from a single facet, and do not include any corrections to account for the measurement system.

Fig. 6
Fig. 6

LIV characteristics of two test devices (1.8 mm × 325 μm) with, and without, facet coating. The active region is based on the M-BTC-RP design. The output power was recorded from the front facet.

Fig. 7
Fig. 7

Typical LIV characteristics of two as-cleaved devices with the same dimension of 3 mm × 425 μm (ridge area of 1.28 mm2). The devices were fabricated from wafers grown during different growth campaigns, i.e., (a) on May 20, 2013 and (b) on March 11, 2014. The output powers in this figure account for radiation from both laser facets. Insets: lasing spectra for different device current densities at 10 K.

Metrics