Abstract

Quantum Cascade devices with an emission wavelength centered around 5 μm have been shaped into compact, yet long (8 mm and 12 mm) spiral cavities to increase mid-infrared superluminescence (SL) power. Up to ~57 mW of SL power at 250 K is obtained with a Gaussian emission spectrum with a full width at half maximum of 56 cm−1 and a coherence length of ~107 μm.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
    [Crossref]
  2. A. Küng and P. Robert, “Measuring integrated optical circuits using a low-coherence light source,” Opt. Eng. 34(7), 2049–2054 (1995).
    [Crossref]
  3. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
    [Crossref] [PubMed]
  4. A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
    [Crossref]
  5. C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
    [Crossref] [PubMed]
  6. R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22(13), 15804–15819 (2014).
    [Crossref] [PubMed]
  7. E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
    [Crossref]
  8. W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
    [Crossref]
  9. N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
    [Crossref]
  10. J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
    [Crossref]
  11. M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
    [Crossref]
  12. S. Ahn, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Enhanced light output power of quantum cascade lasers from a tilted front facet,” Opt. Express 21(13), 15869–15877 (2013).
    [Crossref] [PubMed]
  13. P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
    [Crossref]
  14. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]

2014 (2)

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22(13), 15804–15819 (2014).
[Crossref] [PubMed]

2013 (3)

S. Ahn, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Enhanced light output power of quantum cascade lasers from a tilted front facet,” Opt. Express 21(13), 15869–15877 (2013).
[Crossref] [PubMed]

M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]

A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]

2010 (1)

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

2007 (2)

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]

2006 (1)

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

2000 (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

1999 (1)

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
[Crossref]

1995 (1)

A. Küng and P. Robert, “Measuring integrated optical circuits using a low-coherence light source,” Opt. Eng. 34(7), 2049–2054 (1995).
[Crossref]

1981 (1)

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Ahn, S.

Andrews, A. M.

Aung, N. L.

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

Blood, P.

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
[Crossref]

Böhm, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Brown, R. A.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Cambrey, A. D.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Chang, E. W.

Cockburn, J. W.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Colley, C. S.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Delpy, D. T.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Detz, H.

Dikmelik, Y.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Escarra, M. D.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Fan, J.-Y.

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Franz, K. J.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Fujimoto, J. G.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Gmachl, C. F.

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Groom, K. M.

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Hebden, J. C.

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Hoffman, A. J.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Hopkinson, M.

W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Hulyer, P. J.

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
[Crossref]

Khurgin, J. B.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Kirillin, M.

Küng, A.

A. Küng and P. Robert, “Measuring integrated optical circuits using a low-coherence light source,” Opt. Eng. 34(7), 2049–2054 (1995).
[Crossref]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Liu, H. Y.

W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]

Liu, P. Q.

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Marten, P.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Mattsson, L.

Ng, W. H.

W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Petermann, K.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Revin, D. G.

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Robert, P.

A. Küng and P. Robert, “Measuring integrated optical circuits using a low-coherence light source,” Opt. Eng. 34(7), 2049–2054 (1995).
[Crossref]

Schrenk, W.

Schwarzer, C.

Seddon, A. B.

A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]

Sergeeva, E.

Smowton, P. M.

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
[Crossref]

Soulby, M. R.

W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]

Steer, M. J.

W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]

Strasser, G.

Su, R.

Summers, H. D.

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
[Crossref]

Thomson, J. D.

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
[Crossref]

Troccoli, M.

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]

Ulrich, R.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Wang, X.

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Weidel, E.

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

Wilson, L. R.

W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Yu, Y.

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

Yu, Z.

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

Yun, S. H.

Zederbauer, T.

Zheng, M. C.

M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]

Zibik, E. A.

W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Appl. Phys. Lett. (4)

N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
[Crossref]

M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]

E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]

Electron. Lett. (1)

K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]

J. Appl. Phys. (1)

W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]

Nat. Photonics (1)

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref] [PubMed]

Opt. Eng. (1)

A. Küng and P. Robert, “Measuring integrated optical circuits using a low-coherence light source,” Opt. Eng. 34(7), 2049–2054 (1995).
[Crossref]

Opt. Express (2)

Phys. Status Solidi B (1)

A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Rev. Sci. Instrum. (1)

C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Optical microscope images of two spiral cavities with a total length of 8 mm (top) and 12 mm (bottom). (b) A schematic of the definition of positive and negative angles with respect to the 17° tilted front facet. (c) Far-field measurements taken at 80 K of the 8 mm device (blue) and the 12 mm device (red), both taken at ~2.6 A peak pulsed current.

Fig. 2
Fig. 2

Peak power vs. current taken under pulsed operation (100 ns pulse width at 5 kHz) across different temperatures for the 8 mm device (left, circles) and the 12 mm device (right, squares). The “X” marks the laser threshold. Close (open) symbols indicate the power below (above) threshold.

Fig. 3
Fig. 3

Superluminescence power taken at ~20 mA below the laser threshold vs. temperature. Blue circles and red squares correspond to the 8 mm and 12 mm device, respectively. The dashed lines are a guide to the eye.

Fig. 4
Fig. 4

(a) ASE spectra with a resolution of 0.125 cm−1 obtained in the fast scan mode of the FTIR of the 8 mm (blue) and 12 mm (red) devices at ~20 mA below threshold at 80 K. The black line corresponds to a Gaussian fit to the spectra. (b) The interferograms taken in step scan mode with a resolution of 16 cm−1 under the same operating conditions as the spectra shown in (a) of the 8 mm (blue) and 12 mm (red) devices. (c) ASE spectra taken under the same operating conditions and resolution as (a) at 250 K. The noisier spectrum in (c) would indicate that there is less power at 250 K, but the LI measurements indicate otherwise. (d) The interferograms taken under the same operating conditions and resolution as (b) at 250 K.) The offset in the Gaussian fit of (a) and (c) is due to the thermal background.

Fig. 5
Fig. 5

Coherence length vs. peak power of the 12 mm device at 200 K. The “X” marks the laser threshold.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I max (l)= T f I spon ( e C 1)l C ,
l c = 2ln2 π λ ¯ 2 Δλ

Metrics