N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]
R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22(13), 15804–15819 (2014).
[Crossref]
[PubMed]
S. Ahn, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Enhanced light output power of quantum cascade lasers from a tilted front facet,” Opt. Express 21(13), 15869–15877 (2013).
[Crossref]
[PubMed]
M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]
A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]
P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]
C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref]
[PubMed]
W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]
E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]
A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]
J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref]
[PubMed]
J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
[Crossref]
A. Küng and P. Robert, “Measuring integrated optical circuits using a low-coherence light source,” Opt. Eng. 34(7), 2049–2054 (1995).
[Crossref]
K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]
N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]
J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
[Crossref]
K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]
J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref]
[PubMed]
J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref]
[PubMed]
C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref]
[PubMed]
C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref]
[PubMed]
C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref]
[PubMed]
W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]
E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]
C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref]
[PubMed]
C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref]
[PubMed]
P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]
A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]
P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]
N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]
M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]
P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]
A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]
P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]
J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref]
[PubMed]
N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]
M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]
P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]
E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]
C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref]
[PubMed]
A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]
P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]
W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]
E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]
J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
[Crossref]
P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]
A. Küng and P. Robert, “Measuring integrated optical circuits using a low-coherence light source,” Opt. Eng. 34(7), 2049–2054 (1995).
[Crossref]
A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]
W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]
N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]
M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]
P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]
K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]
W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]
C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref]
[PubMed]
E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]
K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]
J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref]
[PubMed]
E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]
A. Küng and P. Robert, “Measuring integrated optical circuits using a low-coherence light source,” Opt. Eng. 34(7), 2049–2054 (1995).
[Crossref]
A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]
J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
[Crossref]
W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]
W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]
J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
[Crossref]
J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
[Crossref]
N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]
M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]
K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]
N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]
M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]
P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]
K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]
W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]
C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref]
[PubMed]
E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]
N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]
N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]
M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]
W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]
C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref]
[PubMed]
E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]
N. L. Aung, Z. Yu, Y. Yu, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “High peak power (≥ 10 mW) quantum cascade superluminescent emitter,” Appl. Phys. Lett. 105(22), 221111 (2014).
[Crossref]
J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75(17), 2527 (1999).
[Crossref]
M. C. Zheng, P. Q. Liu, X. Wang, J.-Y. Fan, M. Troccoli, and C. F. Gmachl, “Wide single mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms,” Appl. Phys. Lett. 103(21), 211112 (2013).
[Crossref]
E. A. Zibik, W. H. Ng, D. G. Revin, L. R. Wilson, J. W. Cockburn, K. M. Groom, and M. Hopkinson, “Broadband 6 μm<λ< 8 μm superluminescent quantum cascade light-emitting diodes,” Appl. Phys. Lett. 88(12), 121109 (2006).
[Crossref]
K. Böhm, P. Marten, K. Petermann, E. Weidel, and R. Ulrich, “Low-drift fibre gyro using a superluminescent diode,” Electron. Lett. 17(10), 352–353 (1981).
[Crossref]
W. H. Ng, E. A. Zibik, M. R. Soulby, L. R. Wilson, J. W. Cockburn, H. Y. Liu, M. J. Steer, and M. Hopkinson, “Broadband quantum cascade laser emitting from 7.7 to 8.4 μm operating up to 340 K,” J. Appl. Phys. 101(4), 046103 (2007).
[Crossref]
P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics 4(2), 95–98 (2010).
[Crossref]
J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000).
[Crossref]
[PubMed]
A. Küng and P. Robert, “Measuring integrated optical circuits using a low-coherence light source,” Opt. Eng. 34(7), 2049–2054 (1995).
[Crossref]
S. Ahn, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Enhanced light output power of quantum cascade lasers from a tilted front facet,” Opt. Express 21(13), 15869–15877 (2013).
[Crossref]
[PubMed]
R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22(13), 15804–15819 (2014).
[Crossref]
[PubMed]
A. B. Seddon, “Mid-infrared (IR) - A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]
A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography – principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]
C. S. Colley, J. C. Hebden, D. T. Delpy, A. D. Cambrey, R. A. Brown, E. A. Zibik, W. H. Ng, L. R. Wilson, and J. W. Cockburn, “Mid-infrared optical coherence tomography,” Rev. Sci. Instrum. 78(12), 123108 (2007).
[Crossref]
[PubMed]