Abstract

Optical bistability provides a simple way to control light with light. We demonstrate low-power thermo-optical bistability caused by the Joule heating mechanism in a one-dimensional photonic crystal (PC) nanobeam resonator with a moderate quality factor (Q ~8900) with an embedded reverse-biased pn-junction. We show that the photocurrent induced by the linear absorption in this compact resonator considerably reduces the threshold optical power. The proposed approach substantially relaxes the requirements on the input optical power for achieving optical bistability and provides a reliable way to stabilize the bistable features of the device.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity

Laurent-Daniel Haret, Takasumi Tanabe, Eiichi Kuramochi, and Masaya Notomi
Opt. Express 17(23) 21108-21117 (2009)

Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip

Takasumi Tanabe, Masaya Notomi, Satoshi Mitsugi, Akihiko Shinya, and Eiichi Kuramochi
Opt. Lett. 30(19) 2575-2577 (2005)

Experimental observations of thermo-optical bistability and self-pulsation in silicon microring resonators

Libin Zhang, Yonghao Fei, Yanmei Cao, Xun Lei, and Shaowu Chen
J. Opt. Soc. Am. B 31(2) 201-206 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
    [Crossref]
  2. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
    [Crossref]
  3. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [Crossref] [PubMed]
  4. M. Soltani, S. Yegnanarayanan, Q. Li, A. A. Eftekhar, and A. Adibi, “Self-sustained gigahertz electronic oscillations in ultrahigh-Q photonic microresonators,” Phys. Rev. A 85(5), 053819 (2012).
    [Crossref]
  5. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
    [Crossref] [PubMed]
  6. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [Crossref] [PubMed]
  7. L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009).
    [Crossref] [PubMed]
  8. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
    [Crossref] [PubMed]
  9. L. Jin, X. Fu, B. Yang, Y. Shi, and D. Dai, “Optical bistability in a high-Q racetrack resonator based on small SU-8 ridge waveguides,” Opt. Lett. 38(12), 2134–2136 (2013).
    [Crossref] [PubMed]
  10. Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19(22), 22191–22197 (2011).
    [Crossref] [PubMed]
  11. F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “Thermo-optical bistability with Si nanocrystals in a whispering gallery mode resonator,” Opt. Lett. 38(18), 3562–3565 (2013).
    [Crossref] [PubMed]
  12. A. Arbabi, P. K. Lu, B. G. Griffin, and L. L. Goddard, “Thermally-induced nonlinearity and optical bistability in Si3N4 microring resonators,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.90.
    [Crossref]
  13. T. Gu, M. Yu, D. L. Kwong, and C. W. Wong, “Molecular-absorption-induced thermal bistability in PECVD silicon nitride microring resonators,” Opt. Express 22(15), 18412–18420 (2014).
    [Crossref] [PubMed]
  14. H. Crew, General Physics: An Elementary Text-book for Colleges, first Edition (Macmillan Company, 1910).
  15. A. W. Poon, “Two-photon absorption photocurrent in p-i-n diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
    [Crossref]
  16. R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102(3), 031114 (2013).
    [Crossref]
  17. Z. Yong, X. Chao, W. W. Jun, Z. Qiang, H. Y. Lei, Y. J. Yi, W. M. Hua, and J. X. Qing, “Photocurrent effect in reverse-biased p-n Silicon waveguides in communication bands,” Chin. Phys. Lett. 28(7), 074216 (2011).
    [Crossref]
  18. H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
    [Crossref]
  19. Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. Frank, S. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper QThH6.
    [Crossref]
  20. A. P. Gonzalez-Marcos, A. Hurtado, and J. A. Martin-Pereda, “Optical bistable devices as sensing elements,” Proc. SPIE 5611, 63–70 (2004).
    [Crossref]
  21. M. F. Yanik, S. Fan, M. Soljacić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28(24), 2506–2508 (2003).
    [Crossref] [PubMed]
  22. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30(19), 2575–2577 (2005).
    [Crossref] [PubMed]
  23. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref] [PubMed]
  24. M. Miri, M. Sodagar, K. Mehrany, A. A. Eftekhar, A. Adibi, and B. Rashidian, “Design and fabrication of photonic crystal nano-beam resonator: transmission line model,” J. Lightwave Technol. 32(1), 91–98 (2014).
    [Crossref]
  25. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002).
    [Crossref] [PubMed]
  26. F. V. Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. V. Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
    [Crossref]
  27. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quan. Elec. 23(1), 123–129 (1987).
    [Crossref]
  28. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, second edition, (2008).
  29. E. Abraham and S. D. Smith, “Optical bistability and related devices,” Rep. Prog. Phys. 45(8), 815–885 (1982).
    [Crossref]
  30. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
    [Crossref]
  31. A. J. Reddy, J. V. Chan, T. A. Burr, R. Mo, C. P. Wade, C. E. D. Chidsey, J. Michel, and L. C. Kimerling, “Defect states at silicon surfaces,” Phys. B 273, 468–472 (1999).
    [Crossref]
  32. M. Borselli, T. J. Johnson, and O. Painter, “Accurate measurement of scattering and absorption loss in microphotonic devices,” Opt. Lett. 32(20), 2954–2956 (2007).
    [Crossref] [PubMed]
  33. M. Borselli, T. J. Johnson, C. P. Michael, M. D. Henry, and O. Painter, “Surface encapsulation for low-loss silicon photonics,” Appl. Phys. Lett. 91(13), 131117 (2007).
    [Crossref]
  34. M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
    [Crossref]
  35. T. Baehr-Jones, M. Hochberg, and A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16(3), 1659–1668 (2008).
    [Crossref] [PubMed]
  36. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]

2014 (3)

2013 (3)

2012 (1)

M. Soltani, S. Yegnanarayanan, Q. Li, A. A. Eftekhar, and A. Adibi, “Self-sustained gigahertz electronic oscillations in ultrahigh-Q photonic microresonators,” Phys. Rev. A 85(5), 053819 (2012).
[Crossref]

2011 (3)

2010 (1)

A. W. Poon, “Two-photon absorption photocurrent in p-i-n diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
[Crossref]

2009 (2)

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[Crossref]

L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (3)

M. Borselli, T. J. Johnson, and O. Painter, “Accurate measurement of scattering and absorption loss in microphotonic devices,” Opt. Lett. 32(20), 2954–2956 (2007).
[Crossref] [PubMed]

F. V. Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. V. Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

M. Borselli, T. J. Johnson, C. P. Michael, M. D. Henry, and O. Painter, “Surface encapsulation for low-loss silicon photonics,” Appl. Phys. Lett. 91(13), 131117 (2007).
[Crossref]

2006 (1)

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
[Crossref]

2005 (3)

2004 (3)

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

A. P. Gonzalez-Marcos, A. Hurtado, and J. A. Martin-Pereda, “Optical bistable devices as sensing elements,” Proc. SPIE 5611, 63–70 (2004).
[Crossref]

2003 (2)

2002 (1)

1999 (1)

A. J. Reddy, J. V. Chan, T. A. Burr, R. Mo, C. P. Wade, C. E. D. Chidsey, J. Michel, and L. C. Kimerling, “Defect states at silicon surfaces,” Phys. B 273, 468–472 (1999).
[Crossref]

1992 (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quan. Elec. 23(1), 123–129 (1987).
[Crossref]

1982 (1)

E. Abraham and S. D. Smith, “Optical bistability and related devices,” Rep. Prog. Phys. 45(8), 815–885 (1982).
[Crossref]

Abraham, E.

E. Abraham and S. D. Smith, “Optical bistability and related devices,” Rep. Prog. Phys. 45(8), 815–885 (1982).
[Crossref]

Adibi, A.

M. Miri, M. Sodagar, K. Mehrany, A. A. Eftekhar, A. Adibi, and B. Rashidian, “Design and fabrication of photonic crystal nano-beam resonator: transmission line model,” J. Lightwave Technol. 32(1), 91–98 (2014).
[Crossref]

M. Soltani, S. Yegnanarayanan, Q. Li, A. A. Eftekhar, and A. Adibi, “Self-sustained gigahertz electronic oscillations in ultrahigh-Q photonic microresonators,” Phys. Rev. A 85(5), 053819 (2012).
[Crossref]

Alic, N.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
[Crossref] [PubMed]

Baba, T.

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102(3), 031114 (2013).
[Crossref]

Baehr-Jones, T.

Baets, R.

F. V. Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. V. Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Barclay, P. E.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quan. Elec. 23(1), 123–129 (1987).
[Crossref]

Bogaerts, W.

F. V. Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. V. Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Borselli, M.

M. Borselli, T. J. Johnson, C. P. Michael, M. D. Henry, and O. Painter, “Surface encapsulation for low-loss silicon photonics,” Appl. Phys. Lett. 91(13), 131117 (2007).
[Crossref]

M. Borselli, T. J. Johnson, and O. Painter, “Accurate measurement of scattering and absorption loss in microphotonic devices,” Opt. Lett. 32(20), 2954–2956 (2007).
[Crossref] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
[Crossref]

Burgess, I. B.

Burr, T. A.

A. J. Reddy, J. V. Chan, T. A. Burr, R. Mo, C. P. Wade, C. E. D. Chidsey, J. Michel, and L. C. Kimerling, “Defect states at silicon surfaces,” Phys. B 273, 468–472 (1999).
[Crossref]

Chan, J. V.

A. J. Reddy, J. V. Chan, T. A. Burr, R. Mo, C. P. Wade, C. E. D. Chidsey, J. Michel, and L. C. Kimerling, “Defect states at silicon surfaces,” Phys. B 273, 468–472 (1999).
[Crossref]

Chao, X.

Z. Yong, X. Chao, W. W. Jun, Z. Qiang, H. Y. Lei, Y. J. Yi, W. M. Hua, and J. X. Qing, “Photocurrent effect in reverse-biased p-n Silicon waveguides in communication bands,” Chin. Phys. Lett. 28(7), 074216 (2011).
[Crossref]

Chen, H.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[Crossref]

Chidsey, C. E. D.

A. J. Reddy, J. V. Chan, T. A. Burr, R. Mo, C. P. Wade, C. E. D. Chidsey, J. Michel, and L. C. Kimerling, “Defect states at silicon surfaces,” Phys. B 273, 468–472 (1999).
[Crossref]

Chitgarha, M. R.

Claes, T.

F. V. Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. V. Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Cocorullo, G.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

Dai, D.

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Eftekhar, A. A.

M. Miri, M. Sodagar, K. Mehrany, A. A. Eftekhar, A. Adibi, and B. Rashidian, “Design and fabrication of photonic crystal nano-beam resonator: transmission line model,” J. Lightwave Technol. 32(1), 91–98 (2014).
[Crossref]

M. Soltani, S. Yegnanarayanan, Q. Li, A. A. Eftekhar, and A. Adibi, “Self-sustained gigahertz electronic oscillations in ultrahigh-Q photonic microresonators,” Phys. Rev. A 85(5), 053819 (2012).
[Crossref]

Fainman, Y.

Fan, S.

Floyd, D. L.

Fu, X.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Ghulinyan, M.

Gonzalez-Marcos, A. P.

A. P. Gonzalez-Marcos, A. Hurtado, and J. A. Martin-Pereda, “Optical bistable devices as sensing elements,” Proc. SPIE 5611, 63–70 (2004).
[Crossref]

Gu, T.

Haret, L. D.

Hayakawa, R.

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102(3), 031114 (2013).
[Crossref]

Henry, M. D.

M. Borselli, T. J. Johnson, C. P. Michael, M. D. Henry, and O. Painter, “Surface encapsulation for low-loss silicon photonics,” Appl. Phys. Lett. 91(13), 131117 (2007).
[Crossref]

Hochberg, M.

Hua, W. M.

Z. Yong, X. Chao, W. W. Jun, Z. Qiang, H. Y. Lei, Y. J. Yi, W. M. Hua, and J. X. Qing, “Photocurrent effect in reverse-biased p-n Silicon waveguides in communication bands,” Chin. Phys. Lett. 28(7), 074216 (2011).
[Crossref]

Hurtado, A.

A. P. Gonzalez-Marcos, A. Hurtado, and J. A. Martin-Pereda, “Optical bistable devices as sensing elements,” Proc. SPIE 5611, 63–70 (2004).
[Crossref]

Ikeda, K.

Ishikura, N.

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102(3), 031114 (2013).
[Crossref]

Jin, L.

Joannopoulos, J. D.

Johnson, T. J.

M. Borselli, T. J. Johnson, C. P. Michael, M. D. Henry, and O. Painter, “Surface encapsulation for low-loss silicon photonics,” Appl. Phys. Lett. 91(13), 131117 (2007).
[Crossref]

M. Borselli, T. J. Johnson, and O. Painter, “Accurate measurement of scattering and absorption loss in microphotonic devices,” Opt. Lett. 32(20), 2954–2956 (2007).
[Crossref] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
[Crossref]

Jun, W. W.

Z. Yong, X. Chao, W. W. Jun, Z. Qiang, H. Y. Lei, Y. J. Yi, W. M. Hua, and J. X. Qing, “Photocurrent effect in reverse-biased p-n Silicon waveguides in communication bands,” Chin. Phys. Lett. 28(7), 074216 (2011).
[Crossref]

Khaleghi, S.

Kimerling, L. C.

A. J. Reddy, J. V. Chan, T. A. Burr, R. Mo, C. P. Wade, C. E. D. Chidsey, J. Michel, and L. C. Kimerling, “Defect states at silicon surfaces,” Phys. B 273, 468–472 (1999).
[Crossref]

Kira, G.

Kuramochi, E.

Kwong, D. L.

Laere, F. V.

F. V. Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. V. Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Lei, H. Y.

Z. Yong, X. Chao, W. W. Jun, Z. Qiang, H. Y. Lei, Y. J. Yi, W. M. Hua, and J. X. Qing, “Photocurrent effect in reverse-biased p-n Silicon waveguides in communication bands,” Chin. Phys. Lett. 28(7), 074216 (2011).
[Crossref]

Li, Q.

M. Soltani, S. Yegnanarayanan, Q. Li, A. A. Eftekhar, and A. Adibi, “Self-sustained gigahertz electronic oscillations in ultrahigh-Q photonic microresonators,” Phys. Rev. A 85(5), 053819 (2012).
[Crossref]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
[Crossref] [PubMed]

Loncar, M.

Luo, X.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[Crossref]

Martin-Pereda, J. A.

A. P. Gonzalez-Marcos, A. Hurtado, and J. A. Martin-Pereda, “Optical bistable devices as sensing elements,” Proc. SPIE 5611, 63–70 (2004).
[Crossref]

Mehrany, K.

Michael, C. P.

M. Borselli, T. J. Johnson, C. P. Michael, M. D. Henry, and O. Painter, “Surface encapsulation for low-loss silicon photonics,” Appl. Phys. Lett. 91(13), 131117 (2007).
[Crossref]

Michel, J.

A. J. Reddy, J. V. Chan, T. A. Burr, R. Mo, C. P. Wade, C. E. D. Chidsey, J. Michel, and L. C. Kimerling, “Defect states at silicon surfaces,” Phys. B 273, 468–472 (1999).
[Crossref]

Miri, M.

Mitsugi, S.

Mo, R.

A. J. Reddy, J. V. Chan, T. A. Burr, R. Mo, C. P. Wade, C. E. D. Chidsey, J. Michel, and L. C. Kimerling, “Defect states at silicon surfaces,” Phys. B 273, 468–472 (1999).
[Crossref]

Nguyen, H. C.

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102(3), 031114 (2013).
[Crossref]

Notomi, M.

O’Faolain, L.

F. V. Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. V. Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Painter, O.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Pavesi, L.

Poon, A. W.

A. W. Poon, “Two-photon absorption photocurrent in p-i-n diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
[Crossref]

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[Crossref]

Prtljaga, N.

Pucker, G.

Qiang, Z.

Z. Yong, X. Chao, W. W. Jun, Z. Qiang, H. Y. Lei, Y. J. Yi, W. M. Hua, and J. X. Qing, “Photocurrent effect in reverse-biased p-n Silicon waveguides in communication bands,” Chin. Phys. Lett. 28(7), 074216 (2011).
[Crossref]

Qing, J. X.

Z. Yong, X. Chao, W. W. Jun, Z. Qiang, H. Y. Lei, Y. J. Yi, W. M. Hua, and J. X. Qing, “Photocurrent effect in reverse-biased p-n Silicon waveguides in communication bands,” Chin. Phys. Lett. 28(7), 074216 (2011).
[Crossref]

Quan, Q.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Ramiro-Manzano, F.

Rashidian, B.

Reddy, A. J.

A. J. Reddy, J. V. Chan, T. A. Burr, R. Mo, C. P. Wade, C. E. D. Chidsey, J. Michel, and L. C. Kimerling, “Defect states at silicon surfaces,” Phys. B 273, 468–472 (1999).
[Crossref]

Rendina, I.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

Saperstein, R. E.

Scheerlinck, S.

F. V. Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. V. Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Scherer, A.

Schrauwen, J.

F. V. Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. V. Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Shi, Y.

Shinya, A.

Smith, S. D.

E. Abraham and S. D. Smith, “Optical bistability and related devices,” Rep. Prog. Phys. 45(8), 815–885 (1982).
[Crossref]

Sodagar, M.

Soljacic, M.

Soltani, M.

M. Soltani, S. Yegnanarayanan, Q. Li, A. A. Eftekhar, and A. Adibi, “Self-sustained gigahertz electronic oscillations in ultrahigh-Q photonic microresonators,” Phys. Rev. A 85(5), 053819 (2012).
[Crossref]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quan. Elec. 23(1), 123–129 (1987).
[Crossref]

Srinivasan, K.

Taillaert, D.

F. V. Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. V. Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Tanabe, T.

Tang, S. K. Y.

Thourhout, D. V.

F. V. Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. V. Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

Wade, C. P.

A. J. Reddy, J. V. Chan, T. A. Burr, R. Mo, C. P. Wade, C. E. D. Chidsey, J. Michel, and L. C. Kimerling, “Defect states at silicon surfaces,” Phys. B 273, 468–472 (1999).
[Crossref]

Willner, A. E.

Wong, C. W.

Yang, B.

Yanik, M. F.

Yegnanarayanan, S.

M. Soltani, S. Yegnanarayanan, Q. Li, A. A. Eftekhar, and A. Adibi, “Self-sustained gigahertz electronic oscillations in ultrahigh-Q photonic microresonators,” Phys. Rev. A 85(5), 053819 (2012).
[Crossref]

Yi, Y. J.

Z. Yong, X. Chao, W. W. Jun, Z. Qiang, H. Y. Lei, Y. J. Yi, W. M. Hua, and J. X. Qing, “Photocurrent effect in reverse-biased p-n Silicon waveguides in communication bands,” Chin. Phys. Lett. 28(7), 074216 (2011).
[Crossref]

Yilmaz, O. F.

Yong, Z.

Z. Yong, X. Chao, W. W. Jun, Z. Qiang, H. Y. Lei, Y. J. Yi, W. M. Hua, and J. X. Qing, “Photocurrent effect in reverse-biased p-n Silicon waveguides in communication bands,” Chin. Phys. Lett. 28(7), 074216 (2011).
[Crossref]

Yu, M.

Appl. Phys. Lett. (6)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

A. W. Poon, “Two-photon absorption photocurrent in p-i-n diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
[Crossref]

R. Hayakawa, N. Ishikura, H. C. Nguyen, and T. Baba, “Two-photon-absorption photodiodes in Si photonic-crystal slow-light waveguides,” Appl. Phys. Lett. 102(3), 031114 (2013).
[Crossref]

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[Crossref]

M. Borselli, T. J. Johnson, C. P. Michael, M. D. Henry, and O. Painter, “Surface encapsulation for low-loss silicon photonics,” Appl. Phys. Lett. 91(13), 131117 (2007).
[Crossref]

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
[Crossref]

Chin. Phys. Lett. (1)

Z. Yong, X. Chao, W. W. Jun, Z. Qiang, H. Y. Lei, Y. J. Yi, W. M. Hua, and J. X. Qing, “Photocurrent effect in reverse-biased p-n Silicon waveguides in communication bands,” Chin. Phys. Lett. 28(7), 074216 (2011).
[Crossref]

Electron. Lett. (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 μm in silicon etalon,” Electron. Lett. 28(1), 83–85 (1992).
[Crossref]

IEEE J. Quan. Elec. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quan. Elec. 23(1), 123–129 (1987).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. V. Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. V. Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19(23), 1919–1921 (2007).
[Crossref]

J. Lightwave Technol. (2)

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (9)

T. Baehr-Jones, M. Hochberg, and A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16(3), 1659–1668 (2008).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

T. Gu, M. Yu, D. L. Kwong, and C. W. Wong, “Molecular-absorption-induced thermal bistability in PECVD silicon nitride microring resonators,” Opt. Express 22(15), 18412–18420 (2014).
[Crossref] [PubMed]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[Crossref] [PubMed]

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
[Crossref] [PubMed]

L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17(23), 21108–21117 (2009).
[Crossref] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
[Crossref] [PubMed]

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express 19(22), 22191–22197 (2011).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. B (1)

A. J. Reddy, J. V. Chan, T. A. Burr, R. Mo, C. P. Wade, C. E. D. Chidsey, J. Michel, and L. C. Kimerling, “Defect states at silicon surfaces,” Phys. B 273, 468–472 (1999).
[Crossref]

Phys. Rev. A (1)

M. Soltani, S. Yegnanarayanan, Q. Li, A. A. Eftekhar, and A. Adibi, “Self-sustained gigahertz electronic oscillations in ultrahigh-Q photonic microresonators,” Phys. Rev. A 85(5), 053819 (2012).
[Crossref]

Proc. SPIE (1)

A. P. Gonzalez-Marcos, A. Hurtado, and J. A. Martin-Pereda, “Optical bistable devices as sensing elements,” Proc. SPIE 5611, 63–70 (2004).
[Crossref]

Rep. Prog. Phys. (1)

E. Abraham and S. D. Smith, “Optical bistability and related devices,” Rep. Prog. Phys. 45(8), 815–885 (1982).
[Crossref]

Other (4)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, second edition, (2008).

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. Frank, S. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper QThH6.
[Crossref]

H. Crew, General Physics: An Elementary Text-book for Colleges, first Edition (Macmillan Company, 1910).

A. Arbabi, P. K. Lu, B. G. Griffin, and L. L. Goddard, “Thermally-induced nonlinearity and optical bistability in Si3N4 microring resonators,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.90.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The 3D schematic of the nanobeam PC resonator; (b) Normalized band diagram of the periodic mirror regions showing a photonic band gap in the range 181 THz < f < 204 THz (for a = 330 nm, the corresponding wavelength range is 1469 nm < λ < 1656 nm); (c) The field profiles of the first (λ1 = 1579.71 nm) and the second (λ2 = 1609.95 nm) TE resonant modes of the device in (a) with mode volumes of 0.97(λ1/nsi)3 and 1.36(λ2/nsi)3 respectively;(d) Tabulated air-hole radii calculated via the TL technique for the resonant region in part (a).
Fig. 2
Fig. 2 (a) Optical micrograph of the fabricated device showing the copper pads on a 50 nm thick pedestal around the PC nanobeam resonator as well as the 400 µm long inline feeding WG along with the focusing grating couplers at the two ends. (b) False-colored SEM of the fabricated PC nanobeam resonator (taken before metallization). The purple and green colors represent the n-type and p-type regions, respectively.
Fig. 3
Fig. 3 Measured normalized transmission spectrum of the PC nanobeam resonator in Fig. 2. The inset shows a closer look at the linewidth around the first mode. The designed photonic bandgap of the PC mirrors covers the range 1469 nm < λ < 1656 nm.
Fig. 4
Fig. 4 (a) Measured transmitted power spectrum of the nanobeam resonator at different laser output powers (PL) with the applied voltage of the pn-junction device kept fixed (Vr = 0), (b) Transmitted power spectrum of the nanobeam resonator at a fixed laser power (PL = 1.84 mW) with varying reverse bias applied to the pn-junction device.
Fig. 5
Fig. 5 (a) Measured pn-junction leakage current in the resonator region as the laser wavelength is swept (the top and bottom horizontal axes are the sweeping time and the corresponding laser wavelength, respectively). In these measurements the laser power is kept fixed at PL = 1.84 mW. To clarify the speed of the wavelength sweep, the sweeping time is also shown in the figure. (b) Measured photocurrent generated for different laser powers (bias is kept fixed at Vr = 22 V) as a function of the sweeping time. The inset shows the photocurrent jump versus the laser power (PL).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I p =η qλ hc γ L E c .
γ TPA ( E c )= Γ TPA β Si c 2 n Si 2 V TPA E c , V TPA = ( n 2 ( r ) E 2 ( r )dr ) 2 n 4 ( r ) E 4 ( r )dr , Γ TPA = Si n 4 ( r ) E 4 ( r )dr n 4 ( r ) E 4 ( r )dr .
γ FCA ( E c )= Γ FCA ( τ σ Si c 3 β Si 2 n Si 3 ω 0 E c 2 V FCA 2 ), V FCA 2 = ( n 2 ( r ) E 2 ( r )dr ) 3 n 6 ( r ) E 6 ( r )dr , Γ FCA = Si n 6 ( r ) E 6 ( r )dr n 6 ( r ) E 6 ( r )dr .

Metrics