Abstract

Miniaturized passively Q-switched Nd:YAG/Cr4+:YAG lasers are promising candidates as spark sources for sophisticated laser ignition. The influence of the complex spatial-temporal pulse profile of such lasers on the process of plasma breakdown and on the energy transfer is studied. The developed measurement technique is applied to an open ignition system as well as to prototypes of laser spark plugs. A detected temporal breakdown delay causes an advantageous separation of plasma building phase from energy transfer. In case of fast rising laser pulses, an advantageous reduction of the plasma breakdown delay occurs instead.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser ignited engines: progress, challenges and prospects

Geoff Dearden and Tom Shenton
Opt. Express 21(S6) A1113-A1125 (2013)

Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices

Nicolaie Pavel, Traian Dascalu, Gabriela Salamu, Mihai Dinca, Niculae Boicea, and Adrian Birtas
Opt. Express 23(26) 33028-33037 (2015)

Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser

Chiara Manfletti and Gerhard Kroupa
Opt. Express 21(S6) A1126-A1139 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Bradley, C. Sheppard, I. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
    [Crossref]
  2. T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
    [Crossref]
  3. M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engines applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
    [Crossref]
  4. J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photon. Rev. 4(1), 99–122 (2010).
    [Crossref]
  5. S. B. Gupta, B. Munidhar, B. Bipin, and S. Raj, “Natural Gas Fired Reciprocating Engines for Power Generation: Concerns and Recent Advances,” in Natural Gas - Extraction to End Use, S. Gupta, ed. (InTech, 2012).
  6. M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
    [Crossref]
  7. D. Böker and D. Brüggemann, “Advancing lean combustion of hydrogen–air mixtures by laser-induced spark ignition,” Int. J. Hydrogen Energy 36(22), 14759–14767 (2011).
    [Crossref]
  8. D. Böker and D. Brüggemann, “Temperature measurements in a decaying laser-induced plasma in air at elevated pressures,” Spectrochim. Acta, B At. Spectrosc. 66(1), 28–38 (2011).
    [Crossref]
  9. E. Schwarz, S. Gross, B. Fischer, I. Muri, J. Tauer, H. Kofler, and E. Wintner, “Laser-induced optical breakdown applied for laser spark ignition,” Laser Part. Beams 28(01), 109 (2010).
    [Crossref]
  10. D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of focal size on the laser ignition of compressed natural gas–air mixture,” Opt. Lasers Eng. 58, 67–79 (2014).
    [Crossref]
  11. J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
    [Crossref]
  12. T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
    [Crossref]
  13. M. Weinrotter, B. Schwecherl, H. Kopecek, E. Wintner, J. Klausner, and G. Herdin, “Laser-Ignition of Methane-Air Mixtures at High Pressures and Temperatures European Combustion Meeting (2005).
  14. J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
    [Crossref]
  15. M. J. Myers, J. D. Myers, B. Guo, C. Yang, C. R. Hardy, J. J. Thomes, and F. M. Dickey, “Practical internal combustion engine laser spark plug development,” in Photonic Devices + Applications, SPIE Proceedings (SPIE, 2007), pp. 66620E.
  16. G. Herdin, J. Klausner, E. Wintner, M. Weinrotter, J. Graf, and K. Iskra, “Laser Ignition - a New Concept to Use and Increase the Potentials of Gas Engines,” in ARES-ARICE Symposium on Gas Fired Reciprocating Engines, ICEF2005–1352.
    [Crossref]
  17. G. Kroupa, F. Georg, and W. Ernst, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
  18. J. Schwarz, P. Wörner, K. Stoppel, K.-H. Nübel, and J. Engelhardt, “Pumping concepts for laser spark plugs - Requirements, options, solutions,” presented at 2nd Laser Ignition Conference, Yokohama, Japan, 21–24 Apr. 2014.
  19. T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
    [Crossref]
  20. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  21. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  22. H. Moench and G. Derra, “High Power VCSEL Systems,” Laser Technik J. 11(2), 43–47 (2014).
    [Crossref]
  23. M. Tsunekane and T. Taira, “Compact and Wide Temperature Acceptance of VCSEL-pumped Micro-Laser for Laser Ignition,” in Advanced Solid State Lasers, pp. ATu3A.58.
  24. J. Zabkar, M. Marincek, and M. Zgonik, “Mode Competition During the Pulse Formation in Passively Q-switched Nd:YAG Lasers,” IEEE J. Quantum Electron. 44(4), 312–318 (2008).
    [Crossref]
  25. L. J. Radziemski and D. A. Cremers, “Laser-induced plasmas and applications (M. Dekker, ©1989).
  26. T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
    [Crossref]
  27. E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A 10(5), 1888–1895 (1974).
    [Crossref]
  28. H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
    [Crossref]
  29. M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
    [Crossref]
  30. Y.-L. Chen, J. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transf. 67(2), 91–103 (2000).
    [Crossref]

2015 (1)

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
[Crossref]

2014 (2)

H. Moench and G. Derra, “High Power VCSEL Systems,” Laser Technik J. 11(2), 43–47 (2014).
[Crossref]

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of focal size on the laser ignition of compressed natural gas–air mixture,” Opt. Lasers Eng. 58, 67–79 (2014).
[Crossref]

2012 (1)

M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engines applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
[Crossref]

2011 (3)

D. Böker and D. Brüggemann, “Advancing lean combustion of hydrogen–air mixtures by laser-induced spark ignition,” Int. J. Hydrogen Energy 36(22), 14759–14767 (2011).
[Crossref]

D. Böker and D. Brüggemann, “Temperature measurements in a decaying laser-induced plasma in air at elevated pressures,” Spectrochim. Acta, B At. Spectrosc. 66(1), 28–38 (2011).
[Crossref]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

2010 (4)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
[Crossref]

E. Schwarz, S. Gross, B. Fischer, I. Muri, J. Tauer, H. Kofler, and E. Wintner, “Laser-induced optical breakdown applied for laser spark ignition,” Laser Part. Beams 28(01), 109 (2010).
[Crossref]

J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photon. Rev. 4(1), 99–122 (2010).
[Crossref]

2009 (1)

G. Kroupa, F. Georg, and W. Ernst, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).

2008 (1)

J. Zabkar, M. Marincek, and M. Zgonik, “Mode Competition During the Pulse Formation in Passively Q-switched Nd:YAG Lasers,” IEEE J. Quantum Electron. 44(4), 312–318 (2008).
[Crossref]

2007 (1)

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

2006 (1)

T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[Crossref]

2005 (2)

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[Crossref]

M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
[Crossref]

2004 (1)

D. Bradley, C. Sheppard, I. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[Crossref]

2003 (1)

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

2000 (2)

Y.-L. Chen, J. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transf. 67(2), 91–103 (2000).
[Crossref]

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
[Crossref]

1999 (1)

T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
[Crossref]

1974 (1)

E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A 10(5), 1888–1895 (1974).
[Crossref]

Agarwal, A. K.

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of focal size on the laser ignition of compressed natural gas–air mixture,” Opt. Lasers Eng. 58, 67–79 (2014).
[Crossref]

Akihama, K.

J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
[Crossref]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Böker, D.

D. Böker and D. Brüggemann, “Temperature measurements in a decaying laser-induced plasma in air at elevated pressures,” Spectrochim. Acta, B At. Spectrosc. 66(1), 28–38 (2011).
[Crossref]

D. Böker and D. Brüggemann, “Advancing lean combustion of hydrogen–air mixtures by laser-induced spark ignition,” Int. J. Hydrogen Energy 36(22), 14759–14767 (2011).
[Crossref]

Bradley, D.

D. Bradley, C. Sheppard, I. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[Crossref]

Brüggemann, D.

D. Böker and D. Brüggemann, “Advancing lean combustion of hydrogen–air mixtures by laser-induced spark ignition,” Int. J. Hydrogen Energy 36(22), 14759–14767 (2011).
[Crossref]

D. Böker and D. Brüggemann, “Temperature measurements in a decaying laser-induced plasma in air at elevated pressures,” Spectrochim. Acta, B At. Spectrosc. 66(1), 28–38 (2011).
[Crossref]

Bulanov, S. V.

J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
[Crossref]

Carroll, S. D.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Chen, Y.-L.

Y.-L. Chen, J. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transf. 67(2), 91–103 (2000).
[Crossref]

Daido, H.

J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
[Crossref]

Dascalu, T.

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
[Crossref]

Dearden, G.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Derra, G.

H. Moench and G. Derra, “High Power VCSEL Systems,” Laser Technik J. 11(2), 43–47 (2014).
[Crossref]

Dinca, M.

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
[Crossref]

Dodd, R.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Ebina, M.

J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
[Crossref]

Ernst, W.

G. Kroupa, F. Georg, and W. Ernst, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).

Fischer, B.

E. Schwarz, S. Gross, B. Fischer, I. Muri, J. Tauer, H. Kofler, and E. Wintner, “Laser-induced optical breakdown applied for laser spark ignition,” Laser Part. Beams 28(01), 109 (2010).
[Crossref]

Fujikawa, T.

J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
[Crossref]

Fukuda, Y.

J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
[Crossref]

Georg, F.

G. Kroupa, F. Georg, and W. Ernst, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).

Gross, S.

E. Schwarz, S. Gross, B. Fischer, I. Muri, J. Tauer, H. Kofler, and E. Wintner, “Laser-induced optical breakdown applied for laser spark ignition,” Laser Part. Beams 28(01), 109 (2010).
[Crossref]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Keen, S.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kimura, T.

J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
[Crossref]

Kofler, H.

J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photon. Rev. 4(1), 99–122 (2010).
[Crossref]

E. Schwarz, S. Gross, B. Fischer, I. Muri, J. Tauer, H. Kofler, and E. Wintner, “Laser-induced optical breakdown applied for laser spark ignition,” Laser Part. Beams 28(01), 109 (2010).
[Crossref]

Koga, J. K.

J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
[Crossref]

Kopecek, H.

M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
[Crossref]

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[Crossref]

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Kroupa, G.

G. Kroupa, F. Georg, and W. Ernst, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).

Lackner, M.

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[Crossref]

M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
[Crossref]

Lewis, J.

Y.-L. Chen, J. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transf. 67(2), 91–103 (2000).
[Crossref]

Maier, H.

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Marincek, M.

J. Zabkar, M. Marincek, and M. Zgonik, “Mode Competition During the Pulse Formation in Passively Q-switched Nd:YAG Lasers,” IEEE J. Quantum Electron. 44(4), 312–318 (2008).
[Crossref]

Moench, H.

H. Moench and G. Derra, “High Power VCSEL Systems,” Laser Technik J. 11(2), 43–47 (2014).
[Crossref]

Moribayashi, K.

J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
[Crossref]

Morsy, M. H.

M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engines applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
[Crossref]

Mullett, J. D.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Muri, I.

E. Schwarz, S. Gross, B. Fischer, I. Muri, J. Tauer, H. Kofler, and E. Wintner, “Laser-induced optical breakdown applied for laser spark ignition,” Laser Part. Beams 28(01), 109 (2010).
[Crossref]

Ogura, K.

J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
[Crossref]

Parigger, C.

Y.-L. Chen, J. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transf. 67(2), 91–103 (2000).
[Crossref]

Pavel, N.

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
[Crossref]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

Phuoc, T. X.

T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[Crossref]

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
[Crossref]

T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
[Crossref]

Reider, G.

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Sagisaka, A.

J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
[Crossref]

Salamu, G.

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
[Crossref]

Sandu, O.

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
[Crossref]

Scarisbrick, A. D.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Schwarz, E.

E. Schwarz, S. Gross, B. Fischer, I. Muri, J. Tauer, H. Kofler, and E. Wintner, “Laser-induced optical breakdown applied for laser spark ignition,” Laser Part. Beams 28(01), 109 (2010).
[Crossref]

Shenton, A. T.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Sheppard, C.

D. Bradley, C. Sheppard, I. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[Crossref]

Srivastava, D. K.

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of focal size on the laser ignition of compressed natural gas–air mixture,” Opt. Lasers Eng. 58, 67–79 (2014).
[Crossref]

Suardjaja, I.

D. Bradley, C. Sheppard, I. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[Crossref]

Taira, T.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Tauer, J.

E. Schwarz, S. Gross, B. Fischer, I. Muri, J. Tauer, H. Kofler, and E. Wintner, “Laser-induced optical breakdown applied for laser spark ignition,” Laser Part. Beams 28(01), 109 (2010).
[Crossref]

J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photon. Rev. 4(1), 99–122 (2010).
[Crossref]

Tesch, M.

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[Crossref]

Triantos, G.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Tsunekane, M.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Watkins, K. G.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Weinrotter, M.

M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
[Crossref]

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[Crossref]

White, F. P.

T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
[Crossref]

Williams, C. J.

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

Winter, F.

M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
[Crossref]

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[Crossref]

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Wintner, E.

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of focal size on the laser ignition of compressed natural gas–air mixture,” Opt. Lasers Eng. 58, 67–79 (2014).
[Crossref]

E. Schwarz, S. Gross, B. Fischer, I. Muri, J. Tauer, H. Kofler, and E. Wintner, “Laser-induced optical breakdown applied for laser spark ignition,” Laser Part. Beams 28(01), 109 (2010).
[Crossref]

J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photon. Rev. 4(1), 99–122 (2010).
[Crossref]

M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
[Crossref]

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[Crossref]

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

Woolley, R.

D. Bradley, C. Sheppard, I. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A 10(5), 1888–1895 (1974).
[Crossref]

Yamagiwa, M.

J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
[Crossref]

Zabkar, J.

J. Zabkar, M. Marincek, and M. Zgonik, “Mode Competition During the Pulse Formation in Passively Q-switched Nd:YAG Lasers,” IEEE J. Quantum Electron. 44(4), 312–318 (2008).
[Crossref]

Zgonik, M.

J. Zabkar, M. Marincek, and M. Zgonik, “Mode Competition During the Pulse Formation in Passively Q-switched Nd:YAG Lasers,” IEEE J. Quantum Electron. 44(4), 312–318 (2008).
[Crossref]

Combust. Flame (2)

D. Bradley, C. Sheppard, I. Suardjaja, and R. Woolley, “Fundamentals of high-energy spark ignition with lasers,” Combust. Flame 138(1-2), 55–77 (2004).
[Crossref]

T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
[Crossref]

Exp. Therm. Fluid Sci. (2)

H. Kopecek, H. Maier, G. Reider, F. Winter, and E. Wintner, “Laser ignition of methane–air mixtures at high pressures,” Exp. Therm. Fluid Sci. 27(4), 499–503 (2003).
[Crossref]

M. Weinrotter, H. Kopecek, M. Tesch, E. Wintner, M. Lackner, and F. Winter, “Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure,” Exp. Therm. Fluid Sci. 29(5), 569–577 (2005).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

J. Zabkar, M. Marincek, and M. Zgonik, “Mode Competition During the Pulse Formation in Passively Q-switched Nd:YAG Lasers,” IEEE J. Quantum Electron. 44(4), 312–318 (2008).
[Crossref]

Int. J. Hydrogen Energy (2)

M. Weinrotter, H. Kopecek, E. Wintner, M. Lackner, and F. Winter, “Application of laser ignition to hydrogen-air mixtures at high pressures,” Int. J. Hydrogen Energy 30(3), 319–326 (2005).
[Crossref]

D. Böker and D. Brüggemann, “Advancing lean combustion of hydrogen–air mixtures by laser-induced spark ignition,” Int. J. Hydrogen Energy 36(22), 14759–14767 (2011).
[Crossref]

J. Phys. D Appl. Phys. (2)

J. D. Mullett, R. Dodd, C. J. Williams, G. Triantos, G. Dearden, A. T. Shenton, K. G. Watkins, S. D. Carroll, A. D. Scarisbrick, and S. Keen, “The influence of beam energy, mode and focal length on the control of laser ignition in an internal combustion engine,” J. Phys. D Appl. Phys. 40(15), 4730–4739 (2007).
[Crossref]

J. K. Koga, K. Moribayashi, Y. Fukuda, S. V. Bulanov, A. Sagisaka, K. Ogura, H. Daido, M. Yamagiwa, T. Kimura, T. Fujikawa, M. Ebina, and K. Akihama, “Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses,” J. Phys. D Appl. Phys. 43(2), 025204 (2010).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

Y.-L. Chen, J. Lewis, and C. Parigger, “Spatial and temporal profiles of pulsed laser-induced air plasma emissions,” J. Quant. Spectrosc. Radiat. Transf. 67(2), 91–103 (2000).
[Crossref]

Laser Part. Beams (1)

E. Schwarz, S. Gross, B. Fischer, I. Muri, J. Tauer, H. Kofler, and E. Wintner, “Laser-induced optical breakdown applied for laser spark ignition,” Laser Part. Beams 28(01), 109 (2010).
[Crossref]

Laser Photon. Rev. (1)

J. Tauer, H. Kofler, and E. Wintner, “Laser-initiated ignition,” Laser Photon. Rev. 4(1), 99–122 (2010).
[Crossref]

Laser Technik J. (1)

H. Moench and G. Derra, “High Power VCSEL Systems,” Laser Technik J. 11(2), 43–47 (2014).
[Crossref]

Opt. Commun. (1)

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4-6), 419–423 (2000).
[Crossref]

Opt. Eng. (1)

G. Kroupa, F. Georg, and W. Ernst, “Novel miniaturized high-energy Nd-YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).

Opt. Express (1)

Opt. Laser Technol. (1)

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
[Crossref]

Opt. Lasers Eng. (2)

T. X. Phuoc, “Laser-induced spark ignition fundamental and applications,” Opt. Lasers Eng. 44(5), 351–397 (2006).
[Crossref]

D. K. Srivastava, E. Wintner, and A. K. Agarwal, “Effect of focal size on the laser ignition of compressed natural gas–air mixture,” Opt. Lasers Eng. 58, 67–79 (2014).
[Crossref]

Phys. Rev. A (1)

E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A 10(5), 1888–1895 (1974).
[Crossref]

Renew. Sustain. Energy Rev. (1)

M. H. Morsy, “Review and recent developments of laser ignition for internal combustion engines applications,” Renew. Sustain. Energy Rev. 16(7), 4849–4875 (2012).
[Crossref]

Spectrochim. Acta, B At. Spectrosc. (1)

D. Böker and D. Brüggemann, “Temperature measurements in a decaying laser-induced plasma in air at elevated pressures,” Spectrochim. Acta, B At. Spectrosc. 66(1), 28–38 (2011).
[Crossref]

Other (7)

S. B. Gupta, B. Munidhar, B. Bipin, and S. Raj, “Natural Gas Fired Reciprocating Engines for Power Generation: Concerns and Recent Advances,” in Natural Gas - Extraction to End Use, S. Gupta, ed. (InTech, 2012).

J. Schwarz, P. Wörner, K. Stoppel, K.-H. Nübel, and J. Engelhardt, “Pumping concepts for laser spark plugs - Requirements, options, solutions,” presented at 2nd Laser Ignition Conference, Yokohama, Japan, 21–24 Apr. 2014.

M. Weinrotter, B. Schwecherl, H. Kopecek, E. Wintner, J. Klausner, and G. Herdin, “Laser-Ignition of Methane-Air Mixtures at High Pressures and Temperatures European Combustion Meeting (2005).

M. J. Myers, J. D. Myers, B. Guo, C. Yang, C. R. Hardy, J. J. Thomes, and F. M. Dickey, “Practical internal combustion engine laser spark plug development,” in Photonic Devices + Applications, SPIE Proceedings (SPIE, 2007), pp. 66620E.

G. Herdin, J. Klausner, E. Wintner, M. Weinrotter, J. Graf, and K. Iskra, “Laser Ignition - a New Concept to Use and Increase the Potentials of Gas Engines,” in ARES-ARICE Symposium on Gas Fired Reciprocating Engines, ICEF2005–1352.
[Crossref]

M. Tsunekane and T. Taira, “Compact and Wide Temperature Acceptance of VCSEL-pumped Micro-Laser for Laser Ignition,” in Advanced Solid State Lasers, pp. ATu3A.58.

L. J. Radziemski and D. A. Cremers, “Laser-induced plasmas and applications (M. Dekker, ©1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a): Setup for measuring the global energy deposition; (b): Spatially averaged temporal pulse profiles of a PQL pulse before plasma (black line) and after plasma (red line).

Fig. 2
Fig. 2

Time-resolved energy distribution of beam profile before (a) and after plasma (b).

Fig. 3
Fig. 3

Prototype of a miniaturized passively Q-switched end-pumped laser spark plug produced by Robert Bosch GmbH.

Fig. 4
Fig. 4

Setup for measuring the global and local energy deposition of laser spark plugs.

Fig. 5
Fig. 5

Global temporal pulse profiles of five different spark plugs in vacuum.

Fig. 6
Fig. 6

Global temporal pulse profiles of plug 12.3 mJ for different pressure levels.

Fig. 7
Fig. 7

Deposited energy of five different laser spark plugs at various pressure levels.

Fig. 8
Fig. 8

Global (black) and local (colored) temporal pulse profiles of the 12.3 mJ plug in vacuum and sum of all local profiles (dashed black line).

Fig. 9
Fig. 9

Temporal pulse profiles for different ring areas of the spatial profile of plug 12.3 mJ. Vacuum conditions are plotted in dashed lines, solid lines indicate situation at 9 bar pressure.

Fig. 10
Fig. 10

Temporal power density of the spatially separated pulse profile of the 12.3 mJ plug at 9 bar pressure.

Fig. 11
Fig. 11

Breakdown delay of five different laser spark plugs at different pressure levels.

Fig. 12
Fig. 12

Spatially separated energy distribution within the transmitted laser pulse profile of 12.3 mJ plug (a) and 9.2 mJ plug (b) at different pressure.

Tables (1)

Tables Icon

Table 1 Examined laser spark plugs

Metrics