Abstract

We demonstrate a compact high power mid-infrared (MIR) optical parametric oscillator (OPO) pumped by a gain-switched linearly polarized, pulsed fiber laser. The gain-switched fiber laser was constructed with a piece of Yb doped polarization maintaining (PM) fiber, a pair of fiber Bragg gratings written into the matched passive PM fiber and 6 pigtailed pump laser diodes working at 915 nm with 30 W output peak power each. By modulating the pulse width of the pump laser diode, simple pedestal-free pulse shape or pedestal-free trailing pulse shape (“figure-of-h” as we call it) could be achieved from the gain-switched fiber laser. The laser was employed as the pump of a two-channel, periodically poled magnesium oxide lithium niobate-based OPO system. High power MIR emission was generated with average output power of 5.15 W at 3.8 μm channel and 8.54 W at 3.3 μm channel under the highest pump power of 45 W. The corresponding pump-to-idler conversion efficiency was computed to be 11.7% and 19.1%, respectively. Experimental results verify a significant improvement to signal-to-idler conversion efficiency by using “figure-of-h” pulses over simple pedestal-free pulses. Compared to the master oscillator power amplifier (MOPA) fiber laser counterpart, the presented gain switched fiber laser is more attractive in OPO pumping due to its compactness and simplicity which are beneficial to construction of OPO systems for practical MIR applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power PPMgLN-based optical parametric oscillator pumped by a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber master oscillator power amplifier

Tao Chen, Peipei Jiang, Dingzhong Yang, Chengzhi Hu, Bo Wu, and Yonghang Shen
Appl. Opt. 52(25) 6316-6321 (2013)

Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output

Kaihua Wei, Tao Chen, Peipei Jiang, Dingzhong Yang, Bo Wu, and Yonghang Shen
Opt. Express 21(21) 25364-25372 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. P. Petrov, L. Goldberg, W. K. Burns, R. F. Curl, and F. K. Tittel, “Detection of CO in air by diode-pumped 4.6-µm difference-frequency generation in quasi-phase-matched LiNbO3,” Opt. Lett. 21(1), 86–88 (1996).
    [Crossref] [PubMed]
  2. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
    [Crossref]
  3. H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
    [Crossref]
  4. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
    [Crossref]
  5. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm x 5 mm aperture,” Opt. Lett. 30(21), 2918–2920 (2005).
    [Crossref] [PubMed]
  6. Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
    [Crossref]
  7. S. Chaitanya Kumar and M. Ebrahim-Zadeh, “High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 36(13), 2578–2580 (2011).
    [Crossref] [PubMed]
  8. Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).
  9. T. Chen, P. Jiang, D. Yang, C. Hu, B. Wu, and Y. Shen, “High-power PPMgLN-based optical parametric oscillator pumped by a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber master oscillator power amplifier,” Appl. Opt. 52(25), 6316–6321 (2013).
    [Crossref] [PubMed]
  10. T. Chen, K. Wei, P. Jiang, B. Wu, and Y. Shen, “High-power multichannel PPMgLN-based optical parametric oscillator pumped by a master oscillation power amplification-structured Q-switched fiber laser,” Appl. Opt. 51(28), 6881–6885 (2012).
    [Crossref] [PubMed]
  11. Z. Sacks, O. Gayer, E. Tal, and A. Arie, “Improving the efficiency of an optical parametric oscillator by tailoring the pump pulse shape,” Opt. Express 18(12), 12669–12674 (2010).
    [Crossref] [PubMed]
  12. S. C. Kumar and M. Ebrahim-Zadeh, “High-power, fiber-laser-pumped, picosecond optical parametric oscillator based on MgO:sPPLT,” Opt. Express 19(27), 26660–26665 (2011).
    [PubMed]
  13. K. Wei, T. Chen, P. Jiang, D. Yang, B. Wu, and Y. Shen, “Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output,” Opt. Express 21(21), 25364–25372 (2013).
    [Crossref] [PubMed]
  14. O. Kimmelma, S. Chaitanya Kumar, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Multi-gigahertz picosecond optical parametric oscillator pumped by 80-MHz Yb-fiber laser,” Opt. Lett. 38(22), 4550–4553 (2013).
    [Crossref] [PubMed]
  15. X. Li, X. Xu, Y. Shang, H. Wang, and L. Liu, “Study on high power continuous-wave mid-infrared optical parametric oscillator,” Proc. SPIE 9251, 92510A1–4 (2014).
  16. L. Wang, Q. Liu, E. Ji, H. Chen, and M. Gong, “4.0 μm, high repetition rate periodically poled magnesium-oxide-doped lithium niobate mid-infrared optical parametric oscillator pumped by steep leading edge pulsed fiber laser,” Appl. Opt. 53(29), 6729–6734 (2014).
    [Crossref] [PubMed]
  17. G. Aoust, A. Godard, M. Raybaut, J. Dherbecourt, G. Canat, and M. Lefebvre, “Pump duration optimization for optical parametric oscillators,” J. Opt. Soc. Am. B (to be published).
  18. C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19(16), 14883–14891 (2011).
    [Crossref] [PubMed]
  19. V. Agrež and R. Petkovšek, “Gain-switched Yb-doped fiber laser for microprocessing,” Appl. Opt. 52(13), 3066–3072 (2013).
    [Crossref] [PubMed]
  20. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32(13), 1797–1799 (2007).
    [Crossref] [PubMed]

2014 (2)

2013 (4)

2012 (2)

T. Chen, K. Wei, P. Jiang, B. Wu, and Y. Shen, “High-power multichannel PPMgLN-based optical parametric oscillator pumped by a master oscillation power amplification-structured Q-switched fiber laser,” Appl. Opt. 51(28), 6881–6885 (2012).
[Crossref] [PubMed]

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (1)

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).

2007 (1)

2006 (1)

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

2005 (1)

2004 (1)

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

1997 (1)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

1996 (1)

Agrež, V.

Alam, S.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).

Aoust, G.

G. Aoust, A. Godard, M. Raybaut, J. Dherbecourt, G. Canat, and M. Lefebvre, “Pump duration optimization for optical parametric oscillators,” J. Opt. Soc. Am. B (to be published).

Arie, A.

Bang, O.

Bekman, H. H. P. T.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

Burns, W. K.

Cai, S.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).

Canat, G.

G. Aoust, A. Godard, M. Raybaut, J. Dherbecourt, G. Canat, and M. Lefebvre, “Pump duration optimization for optical parametric oscillators,” J. Opt. Soc. Am. B (to be published).

Chaitanya Kumar, S.

Chen, H.

Chen, K. K.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).

Chen, T.

Curl, R. F.

Dherbecourt, J.

G. Aoust, A. Godard, M. Raybaut, J. Dherbecourt, G. Canat, and M. Lefebvre, “Pump duration optimization for optical parametric oscillators,” J. Opt. Soc. Am. B (to be published).

Ebrahim-Zadeh, M.

Esteban-Martin, A.

Gayer, O.

Geiser, P.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Godard, A.

G. Aoust, A. Godard, M. Raybaut, J. Dherbecourt, G. Canat, and M. Lefebvre, “Pump duration optimization for optical parametric oscillators,” J. Opt. Soc. Am. B (to be published).

Goldberg, L.

Gong, M.

Hansen, K. P.

Hu, C.

Hu, X. P.

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
[Crossref]

Ishizuki, H.

Ji, E.

Jiang, M.

Jiang, P.

Khorsandi, A.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Kimmelma, O.

Kumar, S. C.

Larsen, C.

Lefebvre, M.

G. Aoust, A. Godard, M. Raybaut, J. Dherbecourt, G. Canat, and M. Lefebvre, “Pump duration optimization for optical parametric oscillators,” J. Opt. Soc. Am. B (to be published).

Li, X.

X. Li, X. Xu, Y. Shang, H. Wang, and L. Liu, “Study on high power continuous-wave mid-infrared optical parametric oscillator,” Proc. SPIE 9251, 92510A1–4 (2014).

Lin, D.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).

Liu, L.

X. Li, X. Xu, Y. Shang, H. Wang, and L. Liu, “Study on high power continuous-wave mid-infrared optical parametric oscillator,” Proc. SPIE 9251, 92510A1–4 (2014).

Liu, Q.

Liu, Y. H.

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
[Crossref]

Lu, J.

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
[Crossref]

Lv, X. J.

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
[Crossref]

Malinowski, A.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).

Mattsson, K. E.

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

Noordegraaf, D.

Petkovšek, R.

Petrov, K. P.

Raybaut, M.

G. Aoust, A. Godard, M. Raybaut, J. Dherbecourt, G. Canat, and M. Lefebvre, “Pump duration optimization for optical parametric oscillators,” J. Opt. Soc. Am. B (to be published).

Richardson, D. J.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).

Sacks, Z.

Saraji, M.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Schade, W.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Schleijpen, H. M. A.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Shang, Y.

X. Li, X. Xu, Y. Shang, H. Wang, and L. Liu, “Study on high power continuous-wave mid-infrared optical parametric oscillator,” Proc. SPIE 9251, 92510A1–4 (2014).

Shen, Y.

Skovgaard, P. M. W.

Taira, T.

Tal, E.

Tayebati, P.

Tittel, F. K.

van den Heuvel, J. C.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

van Putten, F. J. M.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Wang, H.

X. Li, X. Xu, Y. Shang, H. Wang, and L. Liu, “Study on high power continuous-wave mid-infrared optical parametric oscillator,” Proc. SPIE 9251, 92510A1–4 (2014).

Wang, L.

Wei, K.

Willer, U.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Wu, B.

Xie, Z. D.

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
[Crossref]

Xu, X.

X. Li, X. Xu, Y. Shang, H. Wang, and L. Liu, “Study on high power continuous-wave mid-infrared optical parametric oscillator,” Proc. SPIE 9251, 92510A1–4 (2014).

Yang, D.

Yuan, Y.

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
[Crossref]

Zhao, L. N.

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
[Crossref]

Zhu, S. N.

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (1)

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 15, 385–392 (2009).

Opt. Express (4)

Opt. Lasers Eng. (1)

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Opt. Lett. (5)

Proc. SPIE (2)

X. Li, X. Xu, Y. Shang, H. Wang, and L. Liu, “Study on high power continuous-wave mid-infrared optical parametric oscillator,” Proc. SPIE 9251, 92510A1–4 (2014).

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Other (1)

G. Aoust, A. Godard, M. Raybaut, J. Dherbecourt, G. Canat, and M. Lefebvre, “Pump duration optimization for optical parametric oscillators,” J. Opt. Soc. Am. B (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of the gain-switched fiber laser pumped OPO system.
Fig. 2
Fig. 2 The fiber laser output pulse train under pump of 200 kHz and pump pulse width of (a)1 μs and (b) 2 μs. Inset, the single pulse shapes.
Fig. 3
Fig. 3 The spectra of signal wavelength under different pump power corresponding to MIR output at (a)3.8 μm and (b) 3.3 μm respectively.
Fig. 4
Fig. 4 Idler output power and pump-to-idler conversion efficiency dependence on the pump power.
Fig. 5
Fig. 5 Different temporal profiles of the pump, depleted pump and the signal wave from the OPO system (a) simple pedestal-free pulse (b) “figure-of-h” pulse shape

Metrics