Abstract

Recently, a novel antiresonant hollow core fiber was introduced having promising UV guiding properties. Accompanying simulations predicted ten times lower loss than observed experimentally. Increasing loss is observed in many antiresonant fibers with the origin being unknown. Here, two possible reasons for the enhanced loss are discussed: strand thickness variation and surface roughness scattering. Our analysis shows that the attenuation is sensitive to thickness variations of the strands surrounding the hollow-core which strongly increase loss at short wavelengths. The contribution of surface roughness stays below the dB/km level and can be neglected. Thus, preventing structural irregularities by improved fabrication approaches is essential for decreasing loss.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Double antiresonant hollow core fiber – guidance in the deep ultraviolet by modified tunneling leaky modes

Alexander Hartung, Jens Kobelke, Anka Schwuchow, Katrin Wondraczek, Jörg Bierlich, Jürgen Popp, Torsten Frosch, and Markus A. Schmidt
Opt. Express 22(16) 19131-19140 (2014)

Ultralow transmission loss in inhibited-coupling guiding hollow fibers

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid
Optica 4(2) 209-217 (2017)

Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St.J. Russell
Opt. Express 13(20) 8277-8285 (2005)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  2. M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. S. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013).
    [Crossref] [PubMed]
  3. K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21(9), 10942–10953 (2013).
    [Crossref] [PubMed]
  4. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
    [Crossref] [PubMed]
  5. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  6. A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber--guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
    [Crossref] [PubMed]
  7. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978).
    [Crossref]
  8. E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
    [Crossref] [PubMed]
  9. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  10. J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. 137, 282–288 (1990).
    [Crossref]
  11. D. Marcuse, “Mode conversation by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48(10), 3187–3215 (1969).
    [Crossref]
  12. E. N. Fokoua, F. Poletti, and D. J. Richardson, “Dipole radiation model for surface roughness scattering in hollow-core fibers,” Proc. OFC’12 JW2A.18 (2012).

2014 (1)

2013 (3)

2012 (1)

2011 (1)

2005 (1)

1978 (1)

1969 (1)

D. Marcuse, “Mode conversation by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48(10), 3187–3215 (1969).
[Crossref]

Babic, F.

Bierlich, J.

Biriukov, A. S.

Birks, T. A.

Couny, F.

Dianov, E. M.

Farr, L.

Fokoua, E. N.

Frosch, T.

Frosz, M. H.

Hartung, A.

Hölzer, P.

Joly, N. Y.

Knight, J. C.

Kobelke, J.

Kosolapov, A. F.

Mak, K. F.

Mangan, B. J.

Marcuse, D.

D. Marcuse, “Mode conversation by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48(10), 3187–3215 (1969).
[Crossref]

Marom, E.

Mason, M. W.

Nold, J.

Plotnichenko, V. G.

Poletti, F.

Popp, J.

Pryamikov, A. D.

Rammler, S.

Richardson, D. J.

Roberts, P. J.

Russell, P. S.

Russell, P. St. J.

Sabert, H.

Schmidt, M. A.

Schwuchow, A.

Semjonov, S. L.

St J Russell, P.

Stefani, A.

Tomlinson, A.

Travers, J. C.

Weiss, T.

Williams, D. P.

Wondraczek, K.

Yariv, A.

Yeh, P.

Yu, F.

Bell Syst. Tech. J. (1)

D. Marcuse, “Mode conversation by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48(10), 3187–3215 (1969).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (6)

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012).
[Crossref] [PubMed]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21(9), 10942–10953 (2013).
[Crossref] [PubMed]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber--guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22(16), 19131–19140 (2014).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (3)

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Dipole radiation model for surface roughness scattering in hollow-core fibers,” Proc. OFC’12 JW2A.18 (2012).

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proc. 137, 282–288 (1990).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Scanning electron microscope image of the fiber cross section (2a: core extension, t: strand thickness, b: radius of microstructured part, w: extension of outer waveguide). Dark area is air and bright area is silica. (b) Extended ring model (ERM) used for calculations shown in (c) including a high index ring and an infinite high index cladding (white is air, cyan is silica). Dashed line indicates extension to infinity. (c) Measured attenuation of the fundamental mode (blue line) and corresponding calculated leakage loss using the ERM (depicted in (b)) for a single wall thickness t = 560 nm (purple dashed line) and of a thickness variation of Δt = 70 nm (solid green line) is included. The grey vertical dotted lines refer to the order of strand resonance. Bands are labeled by the respective short-wavelength strand resonance (e.g. the band located with a minimum loss at 230 nm is named band 6).
Fig. 2
Fig. 2 Bandwidth ratio as function of band number (purple: Δt = 2 nm, green: Δt = 40 nm, blue: Δt = 100 nm, tc = 560nm). The parameter Δtcrit indicates the thickness variation at which the transmission band fully disappears. Inset: critical thickness variation (normalized to tc) as function of band number.
Fig. 3
Fig. 3 (a) Example of the distribution of the scattered intensity at a fixed radial distance from the center of the fiber (Only the inner two surfaces are considered. Figure shows the part of the sphere at which significant scattering occurs. The fiber is aligned along the z-axis. Wavelength: 830 nm). (b) Spectral distribution of the roughness-induced scattering loss contribution calculated using the ERM model and the approach from [8] (green: simulations assuming a constant electric field amplitude (wavelength: 830 nm), purple: simulations taking into account the full wavelength dependence of the field). The red circles refer to the minimum loss values and wavelengths of the respective transmission band from constant thickness simulation (purple dashed curve in Fig. 1(b)), the brown square to the calculations including Δt = 70 nm (green solid curve in Fig. 1(b)). For comparison the experimental results are shown in blue.
Fig. 4
Fig. 4 Comparison of the roughness-induced scattering loss contribution between the results from [12] and using our implementation with exactly the same parameters (radius: 10 µm, wall thickness: 372 nm, wavelength: 1550 nm). Top row: scattered power at a fixed radial distance from the center of the fiber ((a) simulations taken from [12], (b) data using our implementation, distance from fiber axis: 1 m). The corresponding angle distributions of the scattered power are compared in (c) and (d). The inset in (c) is an illustration of the simulated silica ring.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2t m n 2 1 ,
Δ λ m (Δt)=2 n 2 1 ( t c +Δt/2 m1 t c Δt/2 m )= 2 n 2 1 m(m1) ( t c + Δt 2 (12m) )
K= Δ λ m (Δt) Δ λ m (0) =1+ Δt 2 t c (12m).
K=0Δ t crit =2 t c (2m1) 1 .

Metrics