Abstract

We report an electrically pumped hybrid cavity AlGaInAs-silicon long-wavelength VCSEL using a high contrast grating (HCG) reflector on a silicon-on-insulator (SOI) substrate. The VCSEL operates at silicon transparent wavelengths ~1.57 μm with >1 mW CW power outcoupled from the semiconductor DBR, and single-mode operation up to 65 °C. The thermal resistance of our device is measured to be 1.46 K/mW. We demonstrate >2.5 GHz 3-dB direct modulation bandwidth, and show error-free transmission over 2.5 km single mode fiber under 5 Gb/s direct modulation. We show a theoretical design of SOI-HCG serving both as a VCSEL reflector as well as waveguide coupler for an in-plane SOI waveguide, facilitating integration of VCSEL with in-plane silicon photonic circuits. The novel HCG-VCSEL design, which employs scalable flip-chip eutectic bonding, may enable low cost light sources for integrated optical links.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon-integrated short-wavelength hybrid-cavity VCSEL

Emanuel P. Haglund, Sulakshna Kumari, Petter Westbergh, Johan S. Gustavsson, Gunther Roelkens, Roel Baets, and Anders Larsson
Opt. Express 23(26) 33634-33640 (2015)

Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings

Vadim Karagodsky, Bala Pesala, Christopher Chase, Werner Hofmann, Fumio Koyama, and Connie J. Chang-Hasnain
Opt. Express 18(2) 694-699 (2010)

1.55-μm VCSEL with polarization-independent HCG mirror on SOI

Yoshihiro Tsunemi, Nobuhide Yokota, Shota Majima, Kazuhiro Ikeda, Takeo Katayama, and Hitoshi Kawaguchi
Opt. Express 21(23) 28685-28692 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. J. Leonberger, Sun-Yuan Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
    [Crossref]
  2. D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).
    [Crossref]
  3. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref] [PubMed]
  4. A. Mutig and D. Bimberg, “Progress on high-speed 980 nm VCSELs for short-reach optical interconnects,” Adv. Opt. Technol. 2011, 1–15 (2011).
    [Crossref]
  5. P. Westbergh, J. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gbit/s,” IEEE Photon. Technol. Lett. 27(3), 296–299 (2015).
    [Crossref]
  6. M. W. Maeda, C. J. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Multi-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” Photonics Technology Lett. 3(10), 863–865 (1991).
  7. C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
    [Crossref]
  8. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
    [Crossref]
  9. N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs – InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
    [Crossref]
  10. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24(12), 4502–4513 (2006).
    [Crossref]
  11. S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
    [Crossref]
  12. E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
    [Crossref]
  13. A. Mereuta, G. Suruceanu, A. Caliman, V. Iacovlev, A. Sirbu, and E. Kapon, “10-Gb/s and 10-km error-free transmission up to 100°C with 1.3-μm wavelength wafer-fused VCSELs,” Opt. Express 17(15), 12981–12986 (2009).
    [Crossref] [PubMed]
  14. M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm High-Speed Short-Cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011).
    [Crossref]
  15. C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25(12), 1111–1113 (2013).
    [Crossref]
  16. Y. Tsunemi, N. Yokota, S. Majima, K. Ikeda, T. Katayama, and H. Kawaguchi, “1.55-μm VCSEL with polarization-independent HCG mirror on SOI,” Opt. Express 21(23), 28685–28692 (2013).
    [Crossref] [PubMed]
  17. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
    [Crossref]
  18. C. J. Chang-Hasnain and W. Yang, “High contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4(3), 379–440 (2012).
    [Crossref]
  19. W. Yang, “High contrast grating solver package,” https://light.eecs.berkeley.edu/cch/hcgsolver.html .
  20. Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
    [Crossref]
  21. L. Zhu, V. Karagodsky, and C. J. Chang-Hasnain, “Novel high efficiency vertical to in-plane optical coupler,” Proc. SPIE 8270, 82700L (2012).
    [Crossref]
  22. C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009).
    [Crossref] [PubMed]
  23. L. Zhu, W. Yang, and C. J. Chang-Hasnain, “Quality factor for high contrast grating resonators,” IEEE Photonics Conference (IEEE, 2012), pp. 338–339.
    [Crossref]
  24. N. Quack, J. Ferrara, S. Gambini, S. Han, C. Keraly, P. Qiao, Y. Rao, P. Sandborn, L. Zhu, S.-L. Chuang, E. Yablonovitch, B. Boser, C. J. Chang-Hasnain, and M. C. Wu, “Development of an FMCW LADAR source chip using MEMS-electronic-photonic heterogeneous integration”, presented at GOMACTech Conference, Las Vegas, NV, USA, 12–14 Mar. 2013.
  25. J. Piprek and S. J. B. Yoo, “Thermal comparison of long-wavelength vertical-cavity surface-emitting laser diodes,” Electron. Lett. 30(11), 866–867 (1994).
    [Crossref]
  26. T. Yao, “Thermal properties of AIAs/GaAs superlattices,” Appl. Phys. Lett. 51(22), 1798–1800 (1987).
    [Crossref]
  27. M. Osiński and W. Nakwaski, “Effective thermal conductivity analysis of 1.5μm InGaAsP/InP vertical-cavity top-surface-emitting microlasers,” Electron. Lett. 29(11), 1015–1016 (1993).
    [Crossref]
  28. W. Nakwaski, “Thermal conductivity of binary, ternary, and quaternary III-V compounds,” J. Appl. Phys. 64(1), 159–166 (1988).
    [Crossref]

2015 (1)

P. Westbergh, J. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gbit/s,” IEEE Photon. Technol. Lett. 27(3), 296–299 (2015).
[Crossref]

2013 (3)

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

Y. Tsunemi, N. Yokota, S. Majima, K. Ikeda, T. Katayama, and H. Kawaguchi, “1.55-μm VCSEL with polarization-independent HCG mirror on SOI,” Opt. Express 21(23), 28685–28692 (2013).
[Crossref] [PubMed]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

2012 (2)

L. Zhu, V. Karagodsky, and C. J. Chang-Hasnain, “Novel high efficiency vertical to in-plane optical coupler,” Proc. SPIE 8270, 82700L (2012).
[Crossref]

C. J. Chang-Hasnain and W. Yang, “High contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4(3), 379–440 (2012).
[Crossref]

2011 (2)

M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm High-Speed Short-Cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011).
[Crossref]

A. Mutig and D. Bimberg, “Progress on high-speed 980 nm VCSELs for short-reach optical interconnects,” Adv. Opt. Technol. 2011, 1–15 (2011).
[Crossref]

2009 (3)

2007 (1)

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

2006 (3)

F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24(12), 4502–4513 (2006).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

2005 (1)

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs – InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[Crossref]

2000 (2)

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).
[Crossref]

1994 (1)

J. Piprek and S. J. B. Yoo, “Thermal comparison of long-wavelength vertical-cavity surface-emitting laser diodes,” Electron. Lett. 30(11), 866–867 (1994).
[Crossref]

1993 (1)

M. Osiński and W. Nakwaski, “Effective thermal conductivity analysis of 1.5μm InGaAsP/InP vertical-cavity top-surface-emitting microlasers,” Electron. Lett. 29(11), 1015–1016 (1993).
[Crossref]

1991 (2)

M. W. Maeda, C. J. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Multi-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” Photonics Technology Lett. 3(10), 863–865 (1991).

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

1988 (1)

W. Nakwaski, “Thermal conductivity of binary, ternary, and quaternary III-V compounds,” J. Appl. Phys. 64(1), 159–166 (1988).
[Crossref]

1987 (1)

T. Yao, “Thermal properties of AIAs/GaAs superlattices,” Appl. Phys. Lett. 51(22), 1798–1800 (1987).
[Crossref]

1984 (1)

J. W. Goodman, F. J. Leonberger, Sun-Yuan Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[Crossref]

Amann, M.-C.

M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm High-Speed Short-Cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011).
[Crossref]

Athale, R. A.

J. W. Goodman, F. J. Leonberger, Sun-Yuan Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[Crossref]

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Baets, R.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Bakir, B. B.

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

Benbakir, B.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

Bhat, R.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs – InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[Crossref]

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Bimberg, D.

A. Mutig and D. Bimberg, “Progress on high-speed 980 nm VCSELs for short-reach optical interconnects,” Adv. Opt. Technol. 2011, 1–15 (2011).
[Crossref]

M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm High-Speed Short-Cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011).
[Crossref]

Bogaerts, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Bohm, G.

M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm High-Speed Short-Cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011).
[Crossref]

Bordel, D.

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

Boutami, S.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

Bowers, J. E.

Caliman, A.

Caneau, C.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs – InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[Crossref]

Chang-Hasnain, C. J.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

C. J. Chang-Hasnain and W. Yang, “High contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4(3), 379–440 (2012).
[Crossref]

L. Zhu, V. Karagodsky, and C. J. Chang-Hasnain, “Novel high efficiency vertical to in-plane optical coupler,” Proc. SPIE 8270, 82700L (2012).
[Crossref]

C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009).
[Crossref] [PubMed]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

M. W. Maeda, C. J. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Multi-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” Photonics Technology Lett. 3(10), 863–865 (1991).

Chase, C.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009).
[Crossref] [PubMed]

Chitgarha, M. R.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Cohen, O.

Fang, A. W.

Florez, L. T.

M. W. Maeda, C. J. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Multi-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” Photonics Technology Lett. 3(10), 863–865 (1991).

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

Goodman, J. W.

J. W. Goodman, F. J. Leonberger, Sun-Yuan Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[Crossref]

Grundl, T.

M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm High-Speed Short-Cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011).
[Crossref]

Guryanov, G.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs – InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[Crossref]

Gustavsson, J.

P. Westbergh, J. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gbit/s,” IEEE Photon. Technol. Lett. 27(3), 296–299 (2015).
[Crossref]

Hall, B.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs – InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[Crossref]

Harbison, J. P.

M. W. Maeda, C. J. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Multi-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” Photonics Technology Lett. 3(10), 863–865 (1991).

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

Hofmann, W.

M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm High-Speed Short-Cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011).
[Crossref]

Horn, M.

M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm High-Speed Short-Cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011).
[Crossref]

Hu, M. H.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs – InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[Crossref]

Huang, M. C. Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Iacovlev, V.

Ikeda, K.

Iqbal, M. Z.

M. W. Maeda, C. J. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Multi-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” Photonics Technology Lett. 3(10), 863–865 (1991).

Izadpanah, H.

M. W. Maeda, C. J. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Multi-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” Photonics Technology Lett. 3(10), 863–865 (1991).

Jones, R.

Kapon, E.

Karagodsky, V.

L. Zhu, V. Karagodsky, and C. J. Chang-Hasnain, “Novel high efficiency vertical to in-plane optical coupler,” Proc. SPIE 8270, 82700L (2012).
[Crossref]

Katayama, T.

Kawaguchi, H.

Khaleghi, S.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Koyama, F.

Larsson, A.

P. Westbergh, J. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gbit/s,” IEEE Photon. Technol. Lett. 27(3), 296–299 (2015).
[Crossref]

Leclercq, J.-L.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

Lee, T. P.

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

Leonberger, F. J.

J. W. Goodman, F. J. Leonberger, Sun-Yuan Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[Crossref]

Letartre, X.

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

Li, M.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs – InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[Crossref]

Lin, C.

M. W. Maeda, C. J. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Multi-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” Photonics Technology Lett. 3(10), 863–865 (1991).

Liu, X. S.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs – InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[Crossref]

Maeda, M. W.

M. W. Maeda, C. J. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Multi-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” Photonics Technology Lett. 3(10), 863–865 (1991).

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

Majima, S.

Menezo, S.

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

Mereuta, A.

Miller, D. A. B.

D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).
[Crossref]

Muller, M.

M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm High-Speed Short-Cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011).
[Crossref]

Mutig, A.

A. Mutig and D. Bimberg, “Progress on high-speed 980 nm VCSELs for short-reach optical interconnects,” Adv. Opt. Technol. 2011, 1–15 (2011).
[Crossref]

Nagel, R. D.

M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm High-Speed Short-Cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011).
[Crossref]

Nakwaski, W.

M. Osiński and W. Nakwaski, “Effective thermal conductivity analysis of 1.5μm InGaAsP/InP vertical-cavity top-surface-emitting microlasers,” Electron. Lett. 29(11), 1015–1016 (1993).
[Crossref]

W. Nakwaski, “Thermal conductivity of binary, ternary, and quaternary III-V compounds,” J. Appl. Phys. 64(1), 159–166 (1988).
[Crossref]

Nishiyama, N.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs – InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[Crossref]

Osinski, M.

M. Osiński and W. Nakwaski, “Effective thermal conductivity analysis of 1.5μm InGaAsP/InP vertical-cavity top-surface-emitting microlasers,” Electron. Lett. 29(11), 1015–1016 (1993).
[Crossref]

Paniccia, M. J.

Park, H.

Piprek, J.

J. Piprek and S. J. B. Yoo, “Thermal comparison of long-wavelength vertical-cavity surface-emitting laser diodes,” Electron. Lett. 30(11), 866–867 (1994).
[Crossref]

Rao, Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Ronneberg, E.

M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm High-Speed Short-Cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011).
[Crossref]

Sciancalepore, C.

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

Sirbu, A.

Stoffel, N. G.

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

Sun-Yuan Kung,

J. W. Goodman, F. J. Leonberger, Sun-Yuan Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[Crossref]

Suruceanu, G.

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Tsunemi, Y.

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Viktorovitch, P.

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

Von Lehmen, A.

M. W. Maeda, C. J. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Multi-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” Photonics Technology Lett. 3(10), 863–865 (1991).

Westbergh, P.

P. Westbergh, J. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gbit/s,” IEEE Photon. Technol. Lett. 27(3), 296–299 (2015).
[Crossref]

Willner, A. E.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Wolf, P.

M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm High-Speed Short-Cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011).
[Crossref]

Worland, D. P.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Yang, W.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

C. J. Chang-Hasnain and W. Yang, “High contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4(3), 379–440 (2012).
[Crossref]

Yao, T.

T. Yao, “Thermal properties of AIAs/GaAs superlattices,” Appl. Phys. Lett. 51(22), 1798–1800 (1987).
[Crossref]

Yokota, N.

Yoo, S. J. B.

J. Piprek and S. J. B. Yoo, “Thermal comparison of long-wavelength vertical-cavity surface-emitting laser diodes,” Electron. Lett. 30(11), 866–867 (1994).
[Crossref]

Zah, C. E.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs – InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[Crossref]

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

Zhou, Y.

Zhu, L.

L. Zhu, V. Karagodsky, and C. J. Chang-Hasnain, “Novel high efficiency vertical to in-plane optical coupler,” Proc. SPIE 8270, 82700L (2012).
[Crossref]

Ziyadi, M.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

Adv. Opt. Photon. (1)

Adv. Opt. Technol. (1)

A. Mutig and D. Bimberg, “Progress on high-speed 980 nm VCSELs for short-reach optical interconnects,” Adv. Opt. Technol. 2011, 1–15 (2011).
[Crossref]

Appl. Phys. Lett. (2)

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91(7), 071105 (2007).
[Crossref]

T. Yao, “Thermal properties of AIAs/GaAs superlattices,” Appl. Phys. Lett. 51(22), 1798–1800 (1987).
[Crossref]

Electron. Lett. (2)

M. Osiński and W. Nakwaski, “Effective thermal conductivity analysis of 1.5μm InGaAsP/InP vertical-cavity top-surface-emitting microlasers,” Electron. Lett. 29(11), 1015–1016 (1993).
[Crossref]

J. Piprek and S. J. B. Yoo, “Thermal comparison of long-wavelength vertical-cavity surface-emitting laser diodes,” Electron. Lett. 30(11), 866–867 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (5)

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M. Li, R. Bhat, and C. E. Zah, “Long-wavelength vertical-cavity surface-emitting lasers on InP with lattice matched AlGaInAs – InP DBR grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[Crossref]

D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1312–1317 (2000).
[Crossref]

M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M.-C. Amann, “1550-nm High-Speed Short-Cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (2)

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25(12), 1111–1113 (2013).
[Crossref]

P. Westbergh, J. Gustavsson, and A. Larsson, “VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gbit/s,” IEEE Photon. Technol. Lett. 27(3), 296–299 (2015).
[Crossref]

J. Appl. Phys. (1)

W. Nakwaski, “Thermal conductivity of binary, ternary, and quaternary III-V compounds,” J. Appl. Phys. 64(1), 159–166 (1988).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Nat. Photonics (1)

E. Kapon and A. Sirbu, “Long-wavelength VCSELs: Power-efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[Crossref]

Opt. Express (4)

Photonics Technology Lett. (1)

M. W. Maeda, C. J. Chang-Hasnain, A. Von Lehmen, H. Izadpanah, C. Lin, M. Z. Iqbal, L. T. Florez, and J. P. Harbison, “Multi-gigabit/s operation of 16-wavelength vertical cavity surface emitting laser array,” Photonics Technology Lett. 3(10), 863–865 (1991).

Proc. IEEE (1)

J. W. Goodman, F. J. Leonberger, Sun-Yuan Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[Crossref]

Proc. SPIE (1)

L. Zhu, V. Karagodsky, and C. J. Chang-Hasnain, “Novel high efficiency vertical to in-plane optical coupler,” Proc. SPIE 8270, 82700L (2012).
[Crossref]

Other (3)

L. Zhu, W. Yang, and C. J. Chang-Hasnain, “Quality factor for high contrast grating resonators,” IEEE Photonics Conference (IEEE, 2012), pp. 338–339.
[Crossref]

N. Quack, J. Ferrara, S. Gambini, S. Han, C. Keraly, P. Qiao, Y. Rao, P. Sandborn, L. Zhu, S.-L. Chuang, E. Yablonovitch, B. Boser, C. J. Chang-Hasnain, and M. C. Wu, “Development of an FMCW LADAR source chip using MEMS-electronic-photonic heterogeneous integration”, presented at GOMACTech Conference, Las Vegas, NV, USA, 12–14 Mar. 2013.

W. Yang, “High contrast grating solver package,” https://light.eecs.berkeley.edu/cch/hcgsolver.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Schematic of HCG, where Λ, HCG period; s, bar width; a, air gap width; tg, HCG thickness. (b) Reflectivity contour plot of HCG versus normalized wavelength (λ/Λ) and normalized thickness (tg/Λ). (c) Intensity profile inside a HCG designed to high a high Q-value for surface-normal incidence/output and the grating showing a very high (108) resonant energy buildup.
Fig. 2
Fig. 2 HCG reflector and coupler simulation with FDTD. (a) Schematic indicating incident beam as vertical input. Total output consists light coupled into opposite traveling in-plane waveguides and transmitted through HCG. The HCG layer consists of a 358-nm thick silicon layer on an SOI substrate. The HCG is designed to have 863 nm period and 0.6 duty cycle. (b) >99.4% reflectivity for VCSEL, 0.6% total output power; 47% of the output power is coupled to waveguide, 53% is transmitted through the HCG.
Fig. 3
Fig. 3 Schematic of VCSEL with silicon HCG as bottom mirror. (a) Tilted-view of VCSEL cross-section with circulating red arrows indicating optical cavity, drawn to scale. The two material systems are heterogeneously integrated via AuSn thin film, with a hermetically sealed air gap of length L within the cavity. (b) The VCSEL employs a proton implant-defined aperture for current confinement, indicated by red curved lines between contacts.
Fig. 4
Fig. 4 Parameter space of HCG designs using analytical method in [19]. (a) Contour map for reflectivity >99%, highest possible reflectivity is 100%. (b) Corresponding phase response of HCG for same dimensions. An HCG design with 660 nm period and 275 nm air gap has a reflectivity >99.5% and a phase response of ~1.2π.
Fig. 5
Fig. 5 TMM simulation of the VCSEL cavity. Red trace: indicates the refractive index of the epitaxial structure; green trace: energy bands; and blue trace: optical field intensity within the cavity. (a) Illustrates the numerous alternating pairs of DBR and the decaying optical field into the III-V mirror. (b) Expanded view of region near semiconductor-air interface. The confinement factor is with the quantum well (QW) is 2.1%. The emerging wave A from the semiconductor must be in phase with the reflected wave B returning from silicon HCG to maintain resonance.
Fig. 6
Fig. 6 Radially-symmetric COMSOL FEM simulation modeling temperature distribution in VCSEL using 45 mW heat source in active region. (a) Bonded Si-HCG VCSEL on SOI substrate; active region z = 0, DBR extends from 0.8z11.3μm , air z11.3μm (since InP substrate is removed), thermal oxide 3z4μm , silicon substrate z4μm and 350μm thick. (b) Standalone III-V VCSEL with InP substrate; structure has air above active region from z0.8μm , DBR extends from 0.8z11.3μm , InP substrate z11.3μm and 350μm thick. (c) Maximum temperature vs DBR quaternary alloy thermal conductivity. The standalone III-V structure reaches higher temperature for DBR thermal conductivities below 7.2 W/mK.
Fig. 7
Fig. 7 (a) Tilted-view colorized SEM of Si HCG reflector (blue hue) surrounded by AuSn film (yellow hue). (b) Cross section view of (i) Si HCG on oxide and (ii) AuSn alloy. (c) 3D-scanned confocal microscope image of fabricated VCSEL.
Fig. 8
Fig. 8 Temperature dependent CW LIV of Si HCG VCSEL from 15 to 60 °C. Inset shows near field intensity below and above threshold.
Fig. 9
Fig. 9 Spectrum at different bias currents and temperatures. Wavelength peaks are recorded to measure shift for varying injection biases, and heat sink temperatures.
Fig. 10
Fig. 10 (a) Wavelength shift versus dissipated power and (b) versus heat sink temperature.
Fig. 11
Fig. 11 (a) Small signal direct modulation (S21) for Si HCG VCSEL at 20 °C for different current biases. A resonance frequency fR = 2.5 GHz, parasitic pole frequency fp = 1.4 GHz, and damping factor γ = 9.6x109 s−1, are extracted from the family of curves. (b) D-factor fitting of VCSEL exhibiting thermal damping at 5.4 GHz.
Fig. 12
Fig. 12 BERs and eye diagrams.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2π λ 2L+ φ HCG =2mπ.
L= 2mπ φ HCG 4π λ.
R th = ΔT ΔP = Δλ ΔP Δλ ΔT .

Metrics