Abstract

An optical chaos and hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) based large capacity quasi-distributed sensing network with real-time fiber fault monitoring is proposed. Chirped fiber Bragg grating (CFBG) intensity demodulation is adopted to improve the dynamic range of the measurements. Compared with the traditional sensing interrogation methods in time, radio frequency and optical wavelength domains, the measurand sensing and the precise locating of the proposed sensing network can be simultaneously interrogated by the relative amplitude change (RAC) and the time delay of the correlation peak in the cross-correlation spectrum. Assisted with the WDM/TDM technology, hundreds of sensing units could be potentially multiplexed in the multiple sensing fiber lines. Based on the proof-of-concept experiment for axial strain measurement with three sensing fiber lines, the strain sensitivity up to 0.14% RAC/με and the precise locating of the sensors are achieved. Significantly, real-time fiber fault monitoring in the three sensing fiber lines is also implemented with a spatial resolution of 2.8 cm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Static/dynamic strain sensing applications by monitoring the correlation peak from optical wideband chaos

Li Xia, Can Yu, Yanli Ran, Jun Xu, and Wei Li
Opt. Express 23(20) 26113-26123 (2015)

Ultra-short FBG based distributed sensing using shifted optical Gaussian filters and microwave-network analysis

Rui Cheng, Li Xia, Chaotan Sima, Yanli Ran, Jalal Rohollahnejad, Jiaao Zhou, Yongqiang Wen, and Can Yu
Opt. Express 24(3) 2466-2484 (2016)

TDM interrogation of intensity-modulated USFBGs network based on multichannel lasers

Jalal Rohollahnejad, Li Xia, Rui Cheng, Yanli Ran, Udaya Rahubadde, Jiaao Zhou, and Lin Zhu
Opt. Express 25(2) 670-680 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  2. A. Sanderson, S. Ogin, A. Crocombe, M. Gower, and R. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72(10), 1121–1126 (2012).
    [Crossref]
  3. Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
    [Crossref]
  4. Y. Zhang, X. Xie, and H. Xu, “Distributed temperature sensor system based on weak reflection fiber gratings combined with WDM and OTDR,” Opto-Electron. Eng. 39(8), 69–74 (2012).
  5. M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13-14), 3082–3087 (2012).
    [Crossref]
  6. C. Hu, H. Wen, and W. Bai, “A novel interrogation system for large scale sensing network with identical ultra-weak fiber Bragg gratings,” J. Lightwave Technol. 32(7), 1406–1411 (2014).
    [Crossref]
  7. X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20(11), 12076–12084 (2012).
    [Crossref] [PubMed]
  8. Z. Luo, H. Wen, H. Guo, and M. Yang, “A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings,” Opt. Express 21(19), 22799–22807 (2013).
    [Crossref] [PubMed]
  9. X. Li, Q. Sun, J. Wo, M. Zhang, and D. Liu, “Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection,” J. Lightwave Technol. 30(8), 1113–1120 (2012).
    [Crossref]
  10. Y. Dai, Y. Liu, J. Leng, G. Deng, and A. Asundi, “A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng. 47(10), 1028–1033 (2009).
    [Crossref]
  11. W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).
    [Crossref]
  12. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref] [PubMed]
  13. M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
    [Crossref]
  14. M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photon. J. 6, 1–12 (2014).
    [Crossref]
  15. Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
    [Crossref]
  16. A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
    [Crossref]
  17. L. Xia, D. Huang, J. Xu, and D. Liu, “Simultaneous and precise fault locating in WDM-PON by the generation of optical wideband chaos,” Opt. Lett. 38(19), 3762–3764 (2013).
    [Crossref] [PubMed]

2014 (2)

C. Hu, H. Wen, and W. Bai, “A novel interrogation system for large scale sensing network with identical ultra-weak fiber Bragg gratings,” J. Lightwave Technol. 32(7), 1406–1411 (2014).
[Crossref]

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photon. J. 6, 1–12 (2014).
[Crossref]

2013 (2)

2012 (7)

X. Li, Q. Sun, J. Wo, M. Zhang, and D. Liu, “Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection,” J. Lightwave Technol. 30(8), 1113–1120 (2012).
[Crossref]

X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20(11), 12076–12084 (2012).
[Crossref] [PubMed]

A. Sanderson, S. Ogin, A. Crocombe, M. Gower, and R. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72(10), 1121–1126 (2012).
[Crossref]

Y. Zhang, X. Xie, and H. Xu, “Distributed temperature sensor system based on weak reflection fiber gratings combined with WDM and OTDR,” Opto-Electron. Eng. 39(8), 69–74 (2012).

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13-14), 3082–3087 (2012).
[Crossref]

A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

W. Wang, J. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).
[Crossref]

2009 (1)

Y. Dai, Y. Liu, J. Leng, G. Deng, and A. Asundi, “A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng. 47(10), 1028–1033 (2009).
[Crossref]

2008 (2)

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

2006 (1)

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Askins, C.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Asundi, A.

Y. Dai, Y. Liu, J. Leng, G. Deng, and A. Asundi, “A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng. 47(10), 1028–1033 (2009).
[Crossref]

Bai, W.

Bakic, S.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Crocombe, A.

A. Sanderson, S. Ogin, A. Crocombe, M. Gower, and R. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72(10), 1121–1126 (2012).
[Crossref]

Dai, Y.

Y. Dai, Y. Liu, J. Leng, G. Deng, and A. Asundi, “A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng. 47(10), 1028–1033 (2009).
[Crossref]

Damaschke, N.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Deng, G.

Y. Dai, Y. Liu, J. Leng, G. Deng, and A. Asundi, “A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng. 47(10), 1028–1033 (2009).
[Crossref]

Dong, B.

Elsäßer, W.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Fischer, I.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Gong, J.

Gower, M.

A. Sanderson, S. Ogin, A. Crocombe, M. Gower, and R. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72(10), 1121–1126 (2012).
[Crossref]

Guo, H.

Hu, C.

Huang, D.

Ji, Y.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photon. J. 6, 1–12 (2014).
[Crossref]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Koo, K.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Lee, R.

A. Sanderson, S. Ogin, A. Crocombe, M. Gower, and R. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72(10), 1121–1126 (2012).
[Crossref]

Leng, J.

Y. Dai, Y. Liu, J. Leng, G. Deng, and A. Asundi, “A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng. 47(10), 1028–1033 (2009).
[Crossref]

Li, X.

Liang, R.

Liu, D.

Liu, H.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13-14), 3082–3087 (2012).
[Crossref]

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

Liu, Y.

Y. Dai, Y. Liu, J. Leng, G. Deng, and A. Asundi, “A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng. 47(10), 1028–1033 (2009).
[Crossref]

Luo, Z.

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Ogin, S.

A. Sanderson, S. Ogin, A. Crocombe, M. Gower, and R. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72(10), 1121–1126 (2012).
[Crossref]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Peil, M.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Putnam, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Sacher, J.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Sanderson, A.

A. Sanderson, S. Ogin, A. Crocombe, M. Gower, and R. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72(10), 1121–1126 (2012).
[Crossref]

Shillig, T. J.

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Shum, P.

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

Shum, P. P.

Stry, S.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Sun, Q.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13-14), 3082–3087 (2012).
[Crossref]

X. Li, Q. Sun, J. Wo, M. Zhang, and D. Liu, “Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection,” J. Lightwave Technol. 30(8), 1113–1120 (2012).
[Crossref]

X. Li, Q. Sun, D. Liu, R. Liang, J. Zhang, J. Wo, P. P. Shum, and D. Liu, “Simultaneous wavelength and frequency encoded microstructure based quasi-distributed temperature sensor,” Opt. Express 20(11), 12076–12084 (2012).
[Crossref] [PubMed]

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Tropea, C.

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Wang, A.

Wang, B.

A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, D. Y.

Wang, J.

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

Wang, N.

Wang, W.

Wang, Y.

A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, Z.

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13-14), 3082–3087 (2012).
[Crossref]

Wen, H.

Wo, J.

Wu, Y.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photon. J. 6, 1–12 (2014).
[Crossref]

Xia, L.

L. Xia, D. Huang, J. Xu, and D. Liu, “Simultaneous and precise fault locating in WDM-PON by the generation of optical wideband chaos,” Opt. Lett. 38(19), 3762–3764 (2013).
[Crossref] [PubMed]

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

Xie, X.

Y. Zhang, X. Xie, and H. Xu, “Distributed temperature sensor system based on weak reflection fiber gratings combined with WDM and OTDR,” Opto-Electron. Eng. 39(8), 69–74 (2012).

Xu, H.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photon. J. 6, 1–12 (2014).
[Crossref]

Y. Zhang, X. Xie, and H. Xu, “Distributed temperature sensor system based on weak reflection fiber gratings combined with WDM and OTDR,” Opto-Electron. Eng. 39(8), 69–74 (2012).

Xu, J.

Xu, W.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photon. J. 6, 1–12 (2014).
[Crossref]

Yang, M.

Yang, Y.

Zhang, J.

Zhang, M.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photon. J. 6, 1–12 (2014).
[Crossref]

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13-14), 3082–3087 (2012).
[Crossref]

X. Li, Q. Sun, J. Wo, M. Zhang, and D. Liu, “Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection,” J. Lightwave Technol. 30(8), 1113–1120 (2012).
[Crossref]

A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

Zhang, Y.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photon. J. 6, 1–12 (2014).
[Crossref]

Y. Zhang, X. Xie, and H. Xu, “Distributed temperature sensor system based on weak reflection fiber gratings combined with WDM and OTDR,” Opto-Electron. Eng. 39(8), 69–74 (2012).

Appl. Phys. Lett. (1)

M. Peil, I. Fischer, W. Elsäßer, S. Bakić, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, “Rainbow refractometry with a tailored incoherent semiconductor laser source,” Appl. Phys. Lett. 89(9), 091106 (2006).
[Crossref]

Compos. Sci. Technol. (1)

A. Sanderson, S. Ogin, A. Crocombe, M. Gower, and R. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72(10), 1121–1126 (2012).
[Crossref]

IEEE Photon. J. (1)

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote radar based on chaos generation and radio over fiber,” IEEE Photon. J. 6, 1–12 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

J. Lightwave Technol. (5)

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Opt. Commun. 285(13-14), 3082–3087 (2012).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

Y. Dai, Y. Liu, J. Leng, G. Deng, and A. Asundi, “A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring,” Opt. Lasers Eng. 47(10), 1028–1033 (2009).
[Crossref]

Opt. Lett. (1)

Opto-Electron. Eng. (1)

Y. Zhang, X. Xie, and H. Xu, “Distributed temperature sensor system based on weak reflection fiber gratings combined with WDM and OTDR,” Opto-Electron. Eng. 39(8), 69–74 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the large capacity quasi-distributed sensing network.
Fig. 2
Fig. 2 (a) Optical spectrum, (b) time series and (c) auto-correlation spectrum of the broadband chaos.
Fig. 3
Fig. 3 (a) Transmission spectrum and reflection spectrum of the wavelength channel and the corresponding CFBG sensor. (b) Spectral overlaps with different strain. (c) Optical power of the probe light as a function of strain.
Fig. 4
Fig. 4 (a) OSN of the proof-of-concept experiment. (b) Optical spectrum of the multi-channel chaos (including three wavelength channels and a testing channel). (c) RF spectrum and (d) auto-correlation spectrum of the multi-channel chaos.
Fig. 5
Fig. 5 (a) Correlation spectra free of strain (blue solid line) and with strain applied (red solid strain). (b) FWHM of the correlation spectrum with a spatial resolution of 2.8 cm.
Fig. 6
Fig. 6 Normalized intensity change of S11, S12, S21 and S31 as a function of strain.
Fig. 7
Fig. 7 Experiment results of the real-time fiber fault monitoring.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I= X( t ) i=1 N σ i X( t τ i )dt.

Metrics