Abstract

We report on the fabrication and diffraction-limited characterization of parabolic focusing micromirrors. Sub–micron beam waists are measured for mirrors with 10-μm radius aperture and measured fixed focal lengths in the range from 24 μm to 36 μm. Optical characterization of the 3D intensity in the near–field produced when the device is illuminated with collimated light is performed using a modified confocal microscope. Results are compared directly with angular spectrum simulations, yielding strong agreement between experiment and theory, and identifying the competition between diffraction and focusing in the regime probed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A high numerical aperture parabolic mirror as imaging device for confocal microscopy

M. A. Lieb and A. J. Meixner
Opt. Express 8(7) 458-474 (2001)

Continuous-relief diffractive microlenses for laser beam focusing

Matthew Day, Kaushal Choonee, David Cox, Mark Thompson, Graham Marshall, and Alastair G. Sinclair
Opt. Express 25(22) 26987-26999 (2017)

Optical trapping of nanoparticles by full solid-angle focusing

Vsevolod Salakhutdinov, Markus Sondermann, Luigi Carbone, Elisabeth Giacobino, Alberto Bramati, and Gerd Leuchs
Optica 3(11) 1181-1186 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. C. King, The History of the Telescope (Dover, 2003).
  2. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
    [Crossref]
  3. W. R. Jamroz, R. Kruzelecky, and E. I. Haddad, Applied Microphotonics (Taylor & Francis, 2006).
    [Crossref]
  4. R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67, 461–472 (2003).
    [Crossref]
  5. M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
    [Crossref]
  6. F. Merenda, J Rohner, J.-M. Fournier, and R.-P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15, 6075–6086 (2007).
    [Crossref] [PubMed]
  7. F. Merenda, M. Grossenbacher, S. Jeney, L. Forró, and R.-P. Salathé, “Three-dimensional force measurements in optical tweezers formed with high-NA micromirrors,” Opt. Lett. 34, 1063–1065 (2009).
    [Crossref] [PubMed]
  8. Y. S. Ow, M. B. H. Breese, and Sara Azimi, “Fabrication of concave silicon micro-mirrors,” Opt. Express 18, 14511–14518 (2010).
    [Crossref] [PubMed]
  9. G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97, 181110 (2010).
    [Crossref]
  10. G. Shu, N. Kurz, M. Dietrich, and B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321 (2010).
    [Crossref]
  11. J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
    [Crossref]
  12. R Maiwald, A Golla, M Fischer, M Bader, S Heugel, B Chalopin, M. Sondermann, and G. Leuchs, “Collecting more than half the fluorescence photons from a single ion,” Phys. Rev. Lett. 86043431 (2012).
  13. M. Fischer, M. Bader, R Maiwald, A Golla, M. Sondermann, and G. Leuchs, “Efficient saturation of an ion in free space,” Appl. Phys. B 117, 797–801 (2014).
    [Crossref]
  14. A. Roy, A. B. S. Jing, and M. D Barrett, “The trapping and detection of single atoms using a spherical mirror,” New J. Phys. 14, 093007 (2012).
    [Crossref]
  15. R. Noek, C. Knoernschild, J. Migacz, T. Kim, P. Maunz, T. Merrill, H. Hayden, C. S. Pai, and J. Kim, “Multiscale optics for enhanced light collection from a point source,” Opt. Lett. 35, 2460–2462 (2010).
    [Crossref] [PubMed]
  16. M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
    [Crossref]
  17. M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
    [Crossref]
  18. J. Goldwin and E. A. Hinds, “Tight focusing of plane waves from micro-fabricated spherical mirrors,” Opt. Express 16, 17808–17816 (2008).
    [Crossref] [PubMed]
  19. T. N. Bandi, V. G. Minogin, and S. Nic Chormaic, “Atom microtraps based on near-field Fresnel diffraction,” Phys. Rev. A 78, 013410 (2008).
    [Crossref]
  20. J. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  21. E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection-transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84, 2754–2756 (2004).
    [Crossref]
  22. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
    [Crossref] [PubMed]
  23. N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024–1027 (2001).
    [Crossref] [PubMed]
  24. R. Grimm, M. Weidemller, and Y. B. Ovhinnikov, “Optical dipole traps for neutral atoms,” Adv. Atom Mol. Opt. Phys. 42, 95–170 (2000).
    [Crossref]

2014 (2)

M. Fischer, M. Bader, R Maiwald, A Golla, M. Sondermann, and G. Leuchs, “Efficient saturation of an ion in free space,” Appl. Phys. B 117, 797–801 (2014).
[Crossref]

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref]

2012 (2)

R Maiwald, A Golla, M Fischer, M Bader, S Heugel, B Chalopin, M. Sondermann, and G. Leuchs, “Collecting more than half the fluorescence photons from a single ion,” Phys. Rev. Lett. 86043431 (2012).

A. Roy, A. B. S. Jing, and M. D Barrett, “The trapping and detection of single atoms using a spherical mirror,” New J. Phys. 14, 093007 (2012).
[Crossref]

2011 (1)

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

2010 (4)

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97, 181110 (2010).
[Crossref]

G. Shu, N. Kurz, M. Dietrich, and B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321 (2010).
[Crossref]

Y. S. Ow, M. B. H. Breese, and Sara Azimi, “Fabrication of concave silicon micro-mirrors,” Opt. Express 18, 14511–14518 (2010).
[Crossref] [PubMed]

R. Noek, C. Knoernschild, J. Migacz, T. Kim, P. Maunz, T. Merrill, H. Hayden, C. S. Pai, and J. Kim, “Multiscale optics for enhanced light collection from a point source,” Opt. Lett. 35, 2460–2462 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

T. N. Bandi, V. G. Minogin, and S. Nic Chormaic, “Atom microtraps based on near-field Fresnel diffraction,” Phys. Rev. A 78, 013410 (2008).
[Crossref]

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

J. Goldwin and E. A. Hinds, “Tight focusing of plane waves from micro-fabricated spherical mirrors,” Opt. Express 16, 17808–17816 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (1)

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

2004 (1)

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection-transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84, 2754–2756 (2004).
[Crossref]

2003 (1)

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67, 461–472 (2003).
[Crossref]

2001 (1)

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024–1027 (2001).
[Crossref] [PubMed]

2000 (1)

R. Grimm, M. Weidemller, and Y. B. Ovhinnikov, “Optical dipole traps for neutral atoms,” Adv. Atom Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref] [PubMed]

Aljunid, S. A.

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Amini, J.

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref] [PubMed]

Azimi, Sara

Bader, M

R Maiwald, A Golla, M Fischer, M Bader, S Heugel, B Chalopin, M. Sondermann, and G. Leuchs, “Collecting more than half the fluorescence photons from a single ion,” Phys. Rev. Lett. 86043431 (2012).

Bader, M.

M. Fischer, M. Bader, R Maiwald, A Golla, M. Sondermann, and G. Leuchs, “Efficient saturation of an ion in free space,” Appl. Phys. B 117, 797–801 (2014).
[Crossref]

Bandi, T. N.

T. N. Bandi, V. G. Minogin, and S. Nic Chormaic, “Atom microtraps based on near-field Fresnel diffraction,” Phys. Rev. A 78, 013410 (2008).
[Crossref]

Barrett, M. D

A. Roy, A. B. S. Jing, and M. D Barrett, “The trapping and detection of single atoms using a spherical mirror,” New J. Phys. 14, 093007 (2012).
[Crossref]

Benito, F. M.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97, 181110 (2010).
[Crossref]

Biedermann, G. W.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97, 181110 (2010).
[Crossref]

Blain, M. G.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97, 181110 (2010).
[Crossref]

Blinov, B.

G. Shu, N. Kurz, M. Dietrich, and B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321 (2010).
[Crossref]

Breese, M. B. H.

Brown, K. R.

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

Chalopin, B

R Maiwald, A Golla, M Fischer, M Bader, S Heugel, B Chalopin, M. Sondermann, and G. Leuchs, “Collecting more than half the fluorescence photons from a single ion,” Phys. Rev. Lett. 86043431 (2012).

Chen, Z.

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Chng, B.

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Choi, H. W.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection-transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84, 2754–2756 (2004).
[Crossref]

Cox, D. C.

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref]

Curtis, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Dawson, M. D.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection-transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84, 2754–2756 (2004).
[Crossref]

Dietrich, M.

G. Shu, N. Kurz, M. Dietrich, and B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321 (2010).
[Crossref]

Doret, S.

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

Eisner, M.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67, 461–472 (2003).
[Crossref]

Eriksson, S.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Faircloth, D.

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

Fischer, M

R Maiwald, A Golla, M Fischer, M Bader, S Heugel, B Chalopin, M. Sondermann, and G. Leuchs, “Collecting more than half the fluorescence photons from a single ion,” Phys. Rev. Lett. 86043431 (2012).

Fischer, M.

M. Fischer, M. Bader, R Maiwald, A Golla, M. Sondermann, and G. Leuchs, “Efficient saturation of an ion in free space,” Appl. Phys. B 117, 797–801 (2014).
[Crossref]

Forró, L.

Fortier, K. M.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97, 181110 (2010).
[Crossref]

Fournier, J.-M.

Girkin, J. M.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection-transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84, 2754–2756 (2004).
[Crossref]

Goldwin, J.

Golla, A

M. Fischer, M. Bader, R Maiwald, A Golla, M. Sondermann, and G. Leuchs, “Efficient saturation of an ion in free space,” Appl. Phys. B 117, 797–801 (2014).
[Crossref]

R Maiwald, A Golla, M Fischer, M Bader, S Heugel, B Chalopin, M. Sondermann, and G. Leuchs, “Collecting more than half the fluorescence photons from a single ion,” Phys. Rev. Lett. 86043431 (2012).

Goodman, J.

J. Goodman, Introduction to Fourier Optics (Roberts, 2005).

Grangier, P.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024–1027 (2001).
[Crossref] [PubMed]

Griffin, C.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection-transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84, 2754–2756 (2004).
[Crossref]

Grimm, R.

R. Grimm, M. Weidemller, and Y. B. Ovhinnikov, “Optical dipole traps for neutral atoms,” Adv. Atom Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

Grossenbacher, M.

Gu, E.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection-transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84, 2754–2756 (2004).
[Crossref]

Gurney, A. M.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection-transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84, 2754–2756 (2004).
[Crossref]

Haddad, E. I.

W. R. Jamroz, R. Kruzelecky, and E. I. Haddad, Applied Microphotonics (Taylor & Francis, 2006).
[Crossref]

Harter, A. W.

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

Hayden, H.

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

R. Noek, C. Knoernschild, J. Migacz, T. Kim, P. Maunz, T. Merrill, H. Hayden, C. S. Pai, and J. Kim, “Multiscale optics for enhanced light collection from a point source,” Opt. Lett. 35, 2460–2462 (2010).
[Crossref] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
[Crossref]

Heugel, S

R Maiwald, A Golla, M Fischer, M Bader, S Heugel, B Chalopin, M. Sondermann, and G. Leuchs, “Collecting more than half the fluorescence photons from a single ion,” Phys. Rev. Lett. 86043431 (2012).

Hinds, E. A.

J. Goldwin and E. A. Hinds, “Tight focusing of plane waves from micro-fabricated spherical mirrors,” Opt. Express 16, 17808–17816 (2008).
[Crossref] [PubMed]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Huber, F.

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Jamroz, W. R.

W. R. Jamroz, R. Kruzelecky, and E. I. Haddad, Applied Microphotonics (Taylor & Francis, 2006).
[Crossref]

Jarecki, R. L.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97, 181110 (2010).
[Crossref]

Jeney, S.

Jing, A. B. S.

A. Roy, A. B. S. Jing, and M. D Barrett, “The trapping and detection of single atoms using a spherical mirror,” New J. Phys. 14, 093007 (2012).
[Crossref]

Killian, T.

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

Kim, J.

Kim, T.

King, H. C.

H. C. King, The History of the Telescope (Dover, 2003).

Knoernschild, C.

Kraft, M.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Kruzelecky, R.

W. R. Jamroz, R. Kruzelecky, and E. I. Haddad, Applied Microphotonics (Taylor & Francis, 2006).
[Crossref]

Kukharenka, E.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Kurtsiefer, C.

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Kurz, N.

G. Shu, N. Kurz, M. Dietrich, and B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321 (2010).
[Crossref]

Landgren, D.

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

Langridge, M. T.

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref]

Leuchs, G.

M. Fischer, M. Bader, R Maiwald, A Golla, M. Sondermann, and G. Leuchs, “Efficient saturation of an ion in free space,” Appl. Phys. B 117, 797–801 (2014).
[Crossref]

R Maiwald, A Golla, M Fischer, M Bader, S Heugel, B Chalopin, M. Sondermann, and G. Leuchs, “Collecting more than half the fluorescence photons from a single ion,” Phys. Rev. Lett. 86043431 (2012).

Liu, C.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection-transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84, 2754–2756 (2004).
[Crossref]

Loyd, T. K.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97, 181110 (2010).
[Crossref]

Maiwald, R

M. Fischer, M. Bader, R Maiwald, A Golla, M. Sondermann, and G. Leuchs, “Efficient saturation of an ion in free space,” Appl. Phys. B 117, 797–801 (2014).
[Crossref]

R Maiwald, A Golla, M Fischer, M Bader, S Heugel, B Chalopin, M. Sondermann, and G. Leuchs, “Collecting more than half the fluorescence photons from a single ion,” Phys. Rev. Lett. 86043431 (2012).

Maslennikov, G.

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Maunz, P.

McConnell, G.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection-transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84, 2754–2756 (2004).
[Crossref]

Merenda, F.

Merrill, J.

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

Merrill, T.

Migacz, J.

Minogin, V. G.

T. N. Bandi, V. G. Minogin, and S. Nic Chormaic, “Atom microtraps based on near-field Fresnel diffraction,” Phys. Rev. A 78, 013410 (2008).
[Crossref]

Moktadir, Z.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Nakakura, C. Y.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97, 181110 (2010).
[Crossref]

Nic Chormaic, S.

T. N. Bandi, V. G. Minogin, and S. Nic Chormaic, “Atom microtraps based on near-field Fresnel diffraction,” Phys. Rev. A 78, 013410 (2008).
[Crossref]

Noek, R.

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
[Crossref]

Ovhinnikov, Y. B.

R. Grimm, M. Weidemller, and Y. B. Ovhinnikov, “Optical dipole traps for neutral atoms,” Adv. Atom Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

Ow, Y. S.

Pai, C.

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

Pai, C. S.

Protsenko, I.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024–1027 (2001).
[Crossref] [PubMed]

Reymond, G.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024–1027 (2001).
[Crossref] [PubMed]

Rohner, J

Roy, A.

A. Roy, A. B. S. Jing, and M. D Barrett, “The trapping and detection of single atoms using a spherical mirror,” New J. Phys. 14, 093007 (2012).
[Crossref]

Salathé, R.-P.

Schlosser, N.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024–1027 (2001).
[Crossref] [PubMed]

Schwindt, P. D. D.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97, 181110 (2010).
[Crossref]

Shu, G.

G. Shu, N. Kurz, M. Dietrich, and B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321 (2010).
[Crossref]

Slusher, R. E.

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

Sondermann, M.

M. Fischer, M. Bader, R Maiwald, A Golla, M. Sondermann, and G. Leuchs, “Efficient saturation of an ion in free space,” Appl. Phys. B 117, 797–801 (2014).
[Crossref]

R Maiwald, A Golla, M Fischer, M Bader, S Heugel, B Chalopin, M. Sondermann, and G. Leuchs, “Collecting more than half the fluorescence photons from a single ion,” Phys. Rev. Lett. 86043431 (2012).

Stick, D. L.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97, 181110 (2010).
[Crossref]

Stolojan, V.

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref]

Tey, M. K.

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Trupke, M.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Volin, C.

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

Völkel, R.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67, 461–472 (2003).
[Crossref]

Watson, I. M.

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection-transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84, 2754–2756 (2004).
[Crossref]

Webb, R. P.

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref]

Weible, K. J.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67, 461–472 (2003).
[Crossref]

Weidemller, M.

R. Grimm, M. Weidemller, and Y. B. Ovhinnikov, “Optical dipole traps for neutral atoms,” Adv. Atom Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

Wright, K.

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

Adv. Atom Mol. Opt. Phys. (1)

R. Grimm, M. Weidemller, and Y. B. Ovhinnikov, “Optical dipole traps for neutral atoms,” Adv. Atom Mol. Opt. Phys. 42, 95–170 (2000).
[Crossref]

Appl. Phys. B (1)

M. Fischer, M. Bader, R Maiwald, A Golla, M. Sondermann, and G. Leuchs, “Efficient saturation of an ion in free space,” Appl. Phys. B 117, 797–801 (2014).
[Crossref]

Appl. Phys. Lett. (3)

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97, 181110 (2010).
[Crossref]

E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection-transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett. 84, 2754–2756 (2004).
[Crossref]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref] [PubMed]

Microelectron. Eng. (1)

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67, 461–472 (2003).
[Crossref]

Micron (1)

M. T. Langridge, D. C. Cox, R. P. Webb, and V. Stolojan, “The fabrication of aspherical microlenses using focused ion-beam techniques,” Micron 57, 56–66 (2014).
[Crossref]

Nat. Phys. (1)

M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4, 924–927 (2008).
[Crossref]

Nature (1)

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411, 1024–1027 (2001).
[Crossref] [PubMed]

New J. Phys. (2)

J. Merrill, C. Volin, D. Landgren, J. Amini, K. Wright, S. Doret, C. Pai, H. Hayden, T. Killian, D. Faircloth, K. R. Brown, A. W. Harter, and R. E. Slusher, “Demonstration of integrated microscale optics in surface-electrode ion traps,” New J. Phys. 13, 103005 (2011).
[Crossref]

A. Roy, A. B. S. Jing, and M. D Barrett, “The trapping and detection of single atoms using a spherical mirror,” New J. Phys. 14, 093007 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (2)

T. N. Bandi, V. G. Minogin, and S. Nic Chormaic, “Atom microtraps based on near-field Fresnel diffraction,” Phys. Rev. A 78, 013410 (2008).
[Crossref]

G. Shu, N. Kurz, M. Dietrich, and B. Blinov, “Efficient fluorescence collection from trapped ions with an integrated spherical mirror,” Phys. Rev. A 81, 042321 (2010).
[Crossref]

Phys. Rev. Lett. (1)

R Maiwald, A Golla, M Fischer, M Bader, S Heugel, B Chalopin, M. Sondermann, and G. Leuchs, “Collecting more than half the fluorescence photons from a single ion,” Phys. Rev. Lett. 86043431 (2012).

Other (4)

H. C. King, The History of the Telescope (Dover, 2003).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
[Crossref]

W. R. Jamroz, R. Kruzelecky, and E. I. Haddad, Applied Microphotonics (Taylor & Francis, 2006).
[Crossref]

J. Goodman, Introduction to Fourier Optics (Roberts, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Details of the theoretical modeling of the micro-mirrors. The depth-profile of the mirror (a) causes a phase delay (b) equivalent to a optical path length of twice the depth of the mirror. The intensity at an arbitrary plane due to this phase delay are then found using the angular spectrum method (c), the details of which are in the text.

Fig. 2
Fig. 2

The optical layout used to probe the parabolic mirrors in infinite conjugation. A 589 nm laser (a) is fiber-coupled (b) to a non-polarizing beam splitter (c) and mode-matched through the rear of the microscope objective (d). The image was rastered within the microscope (e) onto the confocal pinhole (f) and the data compiled on a computer (g). Inset; showing the collimated output of the microscope. Solid (red) lines after the optical fiber indicate the illumination path, blue (dashed) lines the imaging path.

Fig. 3
Fig. 3

Raw data from modified confocal microscope for a f = 36 μm parabolic micromirror. a) shows data collected from the surface of the mirror substrate; b) taken 25 μm before the focus (z = 11 μm in Fig 4), c) taken at the position of the focus, and d) taken 25 μm after the focus (z = 61 μm in Fig 4). The black scale bars in a), b), d) indicate a length of 10 μm, which is the width of image c). The linear colormap for each image is normalized from white to black for minimum to maximum value respectively.

Fig. 4
Fig. 4

Comparison of the measured a) and simulated data b) from the f = 36 μm mirror, using a log-scale to highlight the detail in the intensity field away from the focus. The data in each figure are each normalized, with the same color-axis for both. The color-axis, [−4 0], corresponds to a range of four orders of magnitude in intensity. The measured (solid blue line) and simulated (dashed line) on-axis intensity profiles, c), and radial intensity profiles at the focus, d), show agreement between experiment and model. Also included in d), as a red dotted line, is a Gaussian fit to the simulated data.

Fig. 5
Fig. 5

Comparison of angular spectrum simulations (red circles) and Gaussian optics (black dashed line) for the position of the peak intensity as a function of focal length for a mirror of aperture diameter 20 μm. The blue dotted line corresponds to the position of peak intensity, the spot of Arago, after an open aperture of diameter equal to that of the simulated mirror.

Tables (1)

Tables Icon

Table 1 Measured beam waists (e−2 radius) and focal lengths for a range of parabolic mirrors with 10 μm radius aperture. Errors, where quoted, are one standard deviation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y , z ) = E ^ ( k x , k y ; z = 0 ) e i ( k x x + k y y ± k z z ) d k x dk y ,
E ^ ( k x , k y ; z ) = E ^ ( k x , k y ; z = 0 ) e ± k z z ,
E ( x , y , z ) = E ^ ( k x , k y ; z ) e i ( k x x + k y y ) d k x d k y

Metrics