Abstract

Carbon aerosol is now recognized as a major uncertainty on climate change and public health, and specific instruments are required to address the time and space evolution of this aerosol, which efficiently absorbs light. In this paper, we report an experiment, based on coupling lidar remote sensing with Laser-Induced-Incandescence (LII), which allows, in agreement with Planck’s law, to retrieve the vertical profile of very low thermal radiation emitted by light-absorbing particles in an urban atmosphere over several hundred meters altitude. Accordingly, we set the LII-lidar formalism and equation and addressed the main features of LII-lidar in the atmosphere by numerically simulating the LII-lidar signal. We believe atmospheric LII-lidar to be a promising tool for radiative transfer, especially when combined with elastic backscattering lidar, as it may then allow a remote partitioning between strong/less light absorbing carbon aerosols.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
UV polarization lidar for remote sensing new particles formation in the atmosphere

Grégory David, Benjamin Thomas, Yoan Dupart, Barbara D’Anna, Christian George, Alain Miffre, and Patrick Rairoux
Opt. Express 22(S3) A1009-A1022 (2014)

Three-dimensional analysis of urban aerosols by use of a combined lidar, scanning electron microscopy, and x-ray microanalysis

Emeric Frejafon, Jérôme Kasparian, Patrick Rambaldi, Jin Yu, Brigitte Vezin, and Jean Pierre Wolf
Appl. Opt. 37(12) 2231-2237 (1998)

Stratification and size distribution of aerosols retrieved from simultaneous measurements with lidar, a sunphotometer, and an aureolemeter

Tadahiro Hayasaka, Yasuhiko Meguro, Yasuhiro Sasano, and Tamio Takamura
Appl. Opt. 37(6) 961-970 (1998)

References

  • View by:
  • |
  • |
  • |

  1. IPCC, Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, (2013).
  2. G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust, and sea-salt particle properties from two / three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
    [Crossref]
  3. A. Ansmann, A. Petzold, K. Kandler, I. Tegen, M. Wendisch, D. Muller, B. Weinzerl, T. Muller, and J. Heintzenberg, “Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned?” Tellus B Chem. Phys. Meterol. 63(4), 403–429 (2011).
    [Crossref]
  4. P. Stier, J. H. Seinfeld, S. Kinne, and O. Boucher, “Aerosol absorption and radiative forcing,” Atmos. Chem. Phys. 7(19), 5237–5261 (2007).
    [Crossref]
  5. J. Löndhal, E. Switelicki, E. Lindgren, and S. Loft, “Aerosol exposure versus aerosol cooling of climate: what is the optimal reduction strategy for human health?” Atmos. Chem. Phys. 10(19), 9441–9449 (2010).
    [Crossref]
  6. T. Bond and R. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol. 40(1), 27–67 (2006).
    [Crossref]
  7. M. Francis, J. B. Renard, E. Hadamcik, B. Couté, B. Gaubicher, and M. Jeannot, “New studies on scattering properties of different kinds of soot and carbon-black,” J. Quant.Spectrosc.Radiat.Trans. 112, 1766–1775 (2011).
  8. M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
    [Crossref]
  9. S. Baidar, H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer: “The CU Airborne MAX-DOAS Instrument: Vertical Profiling of Aerosol Extinction and Trace Gases”, A.M.T. Atm. Meas. Tech. 6, 719–719–739, (2013).
    [Crossref]
  10. B. Thomas, G. David, C. Anselmo, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of atmospheric gases with optical correlation spectroscopy and Lidar: first experimental results on water vapor profile measurements,” Appl. Phys. B 113(2), 265–275 (2013).
    [Crossref]
  11. G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B 108(1), 197–216 (2012).
    [Crossref]
  12. G. David, B. Thomas, Y. Dupart, B. D’Anna, C. George, A. Miffre, and P. Rairoux, “UV polarization lidar for remote sensing new particles formation in the atmosphere,” Opt. Express 22(S3Suppl 3), A1009–A1022 (2014).
    [Crossref] [PubMed]
  13. M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci. 34(10), 1421–1444 (2003).
    [Crossref]
  14. M. Stephens, N. Turner, and J. Sandberg, “Particle identification by laser-induced incandescence in a solid-state laser cavity,” Appl. Opt. 42(19), 3726–3736 (2003).
    [Crossref] [PubMed]
  15. H. A. Michelsen, “Laser-induced incandescence of flame-generated soot on a picosecond time scale,” Appl. Phys. B 83(3), 443–448 (2006).
    [Crossref]
  16. C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
    [Crossref]
  17. R. J. Santoro and R. Shaddix, “Laser-Induced Incandescence”, in Applied Combustion Diagnostics, Taylor and Francis, New York. p. 252–286, (2002).
  18. H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially-resolved laser-induced-incandescence signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
    [Crossref]
  19. B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII-lidar: range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B 115(1), 111–121 (2014).
    [Crossref]
  20. R. M. Measures, “Laser Remote Sensing: Fundamentals and Applications” Krieger publishing company, Malabar, Florida, USA, (1992).
  21. D. R. Snelling, F. Liu, G. Smallwood, and O. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion frame,” Combust. Flame 136(1-2), 180–190 (2004).
    [Crossref]
  22. F. Liu, K. J. Daun, D. R. Snelling, and G. J. Smallwood, “Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-incandescence,” Appl. Phys. B 83(3), 355–382 (2006).
    [Crossref]
  23. C. M. Sorensen, J. Cai, and N. Lu, “Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames,” Appl. Opt. 31(30), 6547–6557 (1992).
    [Crossref] [PubMed]
  24. J. Yon, F. Liu, A. Bescond, C. Caumont-Prim, C. Rozé, F. X. Ouf, and A. Coppalle, “Effects of multiple scattering on radiative properties of soot fractal aggregates,” J. Quant.Spectrosc.Radiat.Trans. 133, 374–381 (2014).
    [Crossref]
  25. M. Mishchenko, L. Liu, and D. W. Mackowski, “T-matrix modeling of linear depolarization by morphologically-complex soot and soot-containing particles,” J. Quant.Spectrosc.Radiat.Trans. 123, 135–144 (2013).
    [Crossref]
  26. M. Kahnert, T. Nousiainen, H. Lindqvist, and M. Ebert, “Optical properties of light absorbing carbon aggregates mixed with sulphate: assessment of different model geometries for climate forcing calculations,” Opt. Express 20(9), 10042–10058 (2012).
    [Crossref]
  27. H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N. E. Olofsson, M. Sanati, J. Pagels, and P. E. Bengtsson, “Influence of soot particle aggregation on time-resolved laser-inudced incandescence signals,” Appl. Phys. B 104(2), 331–341 (2011).
    [Crossref]
  28. A. Miffre, M. Abou Chacra, S. Geffroy, P. Rairoux, L. Soulhac, R. J. Perkins, and E. Fréjafon, “Aerosol load study in urban area by Lidar and numerical model,” Atmos. Environ. 44(9), 1152–1161 (2010).
    [Crossref]

2014 (3)

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII-lidar: range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B 115(1), 111–121 (2014).
[Crossref]

J. Yon, F. Liu, A. Bescond, C. Caumont-Prim, C. Rozé, F. X. Ouf, and A. Coppalle, “Effects of multiple scattering on radiative properties of soot fractal aggregates,” J. Quant.Spectrosc.Radiat.Trans. 133, 374–381 (2014).
[Crossref]

G. David, B. Thomas, Y. Dupart, B. D’Anna, C. George, A. Miffre, and P. Rairoux, “UV polarization lidar for remote sensing new particles formation in the atmosphere,” Opt. Express 22(S3Suppl 3), A1009–A1022 (2014).
[Crossref] [PubMed]

2013 (3)

M. Mishchenko, L. Liu, and D. W. Mackowski, “T-matrix modeling of linear depolarization by morphologically-complex soot and soot-containing particles,” J. Quant.Spectrosc.Radiat.Trans. 123, 135–144 (2013).
[Crossref]

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust, and sea-salt particle properties from two / three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
[Crossref]

B. Thomas, G. David, C. Anselmo, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of atmospheric gases with optical correlation spectroscopy and Lidar: first experimental results on water vapor profile measurements,” Appl. Phys. B 113(2), 265–275 (2013).
[Crossref]

2012 (3)

G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B 108(1), 197–216 (2012).
[Crossref]

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

M. Kahnert, T. Nousiainen, H. Lindqvist, and M. Ebert, “Optical properties of light absorbing carbon aggregates mixed with sulphate: assessment of different model geometries for climate forcing calculations,” Opt. Express 20(9), 10042–10058 (2012).
[Crossref]

2011 (3)

M. Francis, J. B. Renard, E. Hadamcik, B. Couté, B. Gaubicher, and M. Jeannot, “New studies on scattering properties of different kinds of soot and carbon-black,” J. Quant.Spectrosc.Radiat.Trans. 112, 1766–1775 (2011).

H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N. E. Olofsson, M. Sanati, J. Pagels, and P. E. Bengtsson, “Influence of soot particle aggregation on time-resolved laser-inudced incandescence signals,” Appl. Phys. B 104(2), 331–341 (2011).
[Crossref]

A. Ansmann, A. Petzold, K. Kandler, I. Tegen, M. Wendisch, D. Muller, B. Weinzerl, T. Muller, and J. Heintzenberg, “Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned?” Tellus B Chem. Phys. Meterol. 63(4), 403–429 (2011).
[Crossref]

2010 (2)

J. Löndhal, E. Switelicki, E. Lindgren, and S. Loft, “Aerosol exposure versus aerosol cooling of climate: what is the optimal reduction strategy for human health?” Atmos. Chem. Phys. 10(19), 9441–9449 (2010).
[Crossref]

A. Miffre, M. Abou Chacra, S. Geffroy, P. Rairoux, L. Soulhac, R. J. Perkins, and E. Fréjafon, “Aerosol load study in urban area by Lidar and numerical model,” Atmos. Environ. 44(9), 1152–1161 (2010).
[Crossref]

2007 (1)

P. Stier, J. H. Seinfeld, S. Kinne, and O. Boucher, “Aerosol absorption and radiative forcing,” Atmos. Chem. Phys. 7(19), 5237–5261 (2007).
[Crossref]

2006 (5)

T. Bond and R. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol. 40(1), 27–67 (2006).
[Crossref]

H. A. Michelsen, “Laser-induced incandescence of flame-generated soot on a picosecond time scale,” Appl. Phys. B 83(3), 443–448 (2006).
[Crossref]

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially-resolved laser-induced-incandescence signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]

F. Liu, K. J. Daun, D. R. Snelling, and G. J. Smallwood, “Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-incandescence,” Appl. Phys. B 83(3), 355–382 (2006).
[Crossref]

2004 (1)

D. R. Snelling, F. Liu, G. Smallwood, and O. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion frame,” Combust. Flame 136(1-2), 180–190 (2004).
[Crossref]

2003 (2)

M. Stephens, N. Turner, and J. Sandberg, “Particle identification by laser-induced incandescence in a solid-state laser cavity,” Appl. Opt. 42(19), 3726–3736 (2003).
[Crossref] [PubMed]

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci. 34(10), 1421–1444 (2003).
[Crossref]

1992 (1)

Abdulhamid, H.

H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N. E. Olofsson, M. Sanati, J. Pagels, and P. E. Bengtsson, “Influence of soot particle aggregation on time-resolved laser-inudced incandescence signals,” Appl. Phys. B 104(2), 331–341 (2011).
[Crossref]

Abou Chacra, M.

A. Miffre, M. Abou Chacra, S. Geffroy, P. Rairoux, L. Soulhac, R. J. Perkins, and E. Fréjafon, “Aerosol load study in urban area by Lidar and numerical model,” Atmos. Environ. 44(9), 1152–1161 (2010).
[Crossref]

Aldén, M.

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII-lidar: range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B 115(1), 111–121 (2014).
[Crossref]

Allan, J. D.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Anselmo, C.

B. Thomas, G. David, C. Anselmo, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of atmospheric gases with optical correlation spectroscopy and Lidar: first experimental results on water vapor profile measurements,” Appl. Phys. B 113(2), 265–275 (2013).
[Crossref]

Ansmann, A.

A. Ansmann, A. Petzold, K. Kandler, I. Tegen, M. Wendisch, D. Muller, B. Weinzerl, T. Muller, and J. Heintzenberg, “Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned?” Tellus B Chem. Phys. Meterol. 63(4), 403–429 (2011).
[Crossref]

Bengtsson, P. E.

H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N. E. Olofsson, M. Sanati, J. Pagels, and P. E. Bengtsson, “Influence of soot particle aggregation on time-resolved laser-inudced incandescence signals,” Appl. Phys. B 104(2), 331–341 (2011).
[Crossref]

H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially-resolved laser-induced-incandescence signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]

Bergstrom, R.

T. Bond and R. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol. 40(1), 27–67 (2006).
[Crossref]

Berlenz, S.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Bescond, A.

J. Yon, F. Liu, A. Bescond, C. Caumont-Prim, C. Rozé, F. X. Ouf, and A. Coppalle, “Effects of multiple scattering on radiative properties of soot fractal aggregates,” J. Quant.Spectrosc.Radiat.Trans. 133, 374–381 (2014).
[Crossref]

Bladh, H.

H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N. E. Olofsson, M. Sanati, J. Pagels, and P. E. Bengtsson, “Influence of soot particle aggregation on time-resolved laser-inudced incandescence signals,” Appl. Phys. B 104(2), 331–341 (2011).
[Crossref]

H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially-resolved laser-induced-incandescence signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]

Bond, T.

T. Bond and R. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol. 40(1), 27–67 (2006).
[Crossref]

Bood, J.

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII-lidar: range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B 115(1), 111–121 (2014).
[Crossref]

Boucher, O.

P. Stier, J. H. Seinfeld, S. Kinne, and O. Boucher, “Aerosol absorption and radiative forcing,” Atmos. Chem. Phys. 7(19), 5237–5261 (2007).
[Crossref]

Bougie, B.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

Bouvier, Y.

H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially-resolved laser-induced-incandescence signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]

Brackmann, C.

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII-lidar: range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B 115(1), 111–121 (2014).
[Crossref]

Cai, J.

Cariou, J.-P.

B. Thomas, G. David, C. Anselmo, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of atmospheric gases with optical correlation spectroscopy and Lidar: first experimental results on water vapor profile measurements,” Appl. Phys. B 113(2), 265–275 (2013).
[Crossref]

Caumont-Prim, C.

J. Yon, F. Liu, A. Bescond, C. Caumont-Prim, C. Rozé, F. X. Ouf, and A. Coppalle, “Effects of multiple scattering on radiative properties of soot fractal aggregates,” J. Quant.Spectrosc.Radiat.Trans. 133, 374–381 (2014).
[Crossref]

Coe, H.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Coppalle, A.

J. Yon, F. Liu, A. Bescond, C. Caumont-Prim, C. Rozé, F. X. Ouf, and A. Coppalle, “Effects of multiple scattering on radiative properties of soot fractal aggregates,” J. Quant.Spectrosc.Radiat.Trans. 133, 374–381 (2014).
[Crossref]

Couté, B.

M. Francis, J. B. Renard, E. Hadamcik, B. Couté, B. Gaubicher, and M. Jeannot, “New studies on scattering properties of different kinds of soot and carbon-black,” J. Quant.Spectrosc.Radiat.Trans. 112, 1766–1775 (2011).

Cozic, J.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

D’Anna, B.

Dahlkötter, F.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Daun, K. J.

F. Liu, K. J. Daun, D. R. Snelling, and G. J. Smallwood, “Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-incandescence,” Appl. Phys. B 83(3), 355–382 (2006).
[Crossref]

David, G.

G. David, B. Thomas, Y. Dupart, B. D’Anna, C. George, A. Miffre, and P. Rairoux, “UV polarization lidar for remote sensing new particles formation in the atmosphere,” Opt. Express 22(S3Suppl 3), A1009–A1022 (2014).
[Crossref] [PubMed]

B. Thomas, G. David, C. Anselmo, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of atmospheric gases with optical correlation spectroscopy and Lidar: first experimental results on water vapor profile measurements,” Appl. Phys. B 113(2), 265–275 (2013).
[Crossref]

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust, and sea-salt particle properties from two / three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
[Crossref]

G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B 108(1), 197–216 (2012).
[Crossref]

Delhay, J.

H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially-resolved laser-induced-incandescence signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]

Desgroux, P.

H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially-resolved laser-induced-incandescence signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]

Dupart, Y.

Ebert, M.

Flynn, M.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Francis, M.

M. Francis, J. B. Renard, E. Hadamcik, B. Couté, B. Gaubicher, and M. Jeannot, “New studies on scattering properties of different kinds of soot and carbon-black,” J. Quant.Spectrosc.Radiat.Trans. 112, 1766–1775 (2011).

Fréjafon, E.

A. Miffre, M. Abou Chacra, S. Geffroy, P. Rairoux, L. Soulhac, R. J. Perkins, and E. Fréjafon, “Aerosol load study in urban area by Lidar and numerical model,” Atmos. Environ. 44(9), 1152–1161 (2010).
[Crossref]

Gaubicher, B.

M. Francis, J. B. Renard, E. Hadamcik, B. Couté, B. Gaubicher, and M. Jeannot, “New studies on scattering properties of different kinds of soot and carbon-black,” J. Quant.Spectrosc.Radiat.Trans. 112, 1766–1775 (2011).

Geffroy, S.

A. Miffre, M. Abou Chacra, S. Geffroy, P. Rairoux, L. Soulhac, R. J. Perkins, and E. Fréjafon, “Aerosol load study in urban area by Lidar and numerical model,” Atmos. Environ. 44(9), 1152–1161 (2010).
[Crossref]

George, C.

Gülder, O.

D. R. Snelling, F. Liu, G. Smallwood, and O. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion frame,” Combust. Flame 136(1-2), 180–190 (2004).
[Crossref]

Gysel, M.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Hadamcik, E.

M. Francis, J. B. Renard, E. Hadamcik, B. Couté, B. Gaubicher, and M. Jeannot, “New studies on scattering properties of different kinds of soot and carbon-black,” J. Quant.Spectrosc.Radiat.Trans. 112, 1766–1775 (2011).

Heimerl, K.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Heintzenberg, J.

A. Ansmann, A. Petzold, K. Kandler, I. Tegen, M. Wendisch, D. Muller, B. Weinzerl, T. Muller, and J. Heintzenberg, “Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned?” Tellus B Chem. Phys. Meterol. 63(4), 403–429 (2011).
[Crossref]

Hitzenberger, R.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Hofmann, M.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

Horvath, H.

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci. 34(10), 1421–1444 (2003).
[Crossref]

Jeannot, M.

M. Francis, J. B. Renard, E. Hadamcik, B. Couté, B. Gaubicher, and M. Jeannot, “New studies on scattering properties of different kinds of soot and carbon-black,” J. Quant.Spectrosc.Radiat.Trans. 112, 1766–1775 (2011).

Johnsson, J.

H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N. E. Olofsson, M. Sanati, J. Pagels, and P. E. Bengtsson, “Influence of soot particle aggregation on time-resolved laser-inudced incandescence signals,” Appl. Phys. B 104(2), 331–341 (2011).
[Crossref]

Kahnert, M.

Kaldvee, B.

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII-lidar: range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B 115(1), 111–121 (2014).
[Crossref]

Kandler, K.

A. Ansmann, A. Petzold, K. Kandler, I. Tegen, M. Wendisch, D. Muller, B. Weinzerl, T. Muller, and J. Heintzenberg, “Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned?” Tellus B Chem. Phys. Meterol. 63(4), 403–429 (2011).
[Crossref]

Kinne, S.

P. Stier, J. H. Seinfeld, S. Kinne, and O. Boucher, “Aerosol absorption and radiative forcing,” Atmos. Chem. Phys. 7(19), 5237–5261 (2007).
[Crossref]

Kock, B. F.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

Laborde, M.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Laj, P.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Lindgren, E.

J. Löndhal, E. Switelicki, E. Lindgren, and S. Loft, “Aerosol exposure versus aerosol cooling of climate: what is the optimal reduction strategy for human health?” Atmos. Chem. Phys. 10(19), 9441–9449 (2010).
[Crossref]

Lindqvist, H.

Linke, C.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Liu, D.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Liu, F.

J. Yon, F. Liu, A. Bescond, C. Caumont-Prim, C. Rozé, F. X. Ouf, and A. Coppalle, “Effects of multiple scattering on radiative properties of soot fractal aggregates,” J. Quant.Spectrosc.Radiat.Trans. 133, 374–381 (2014).
[Crossref]

F. Liu, K. J. Daun, D. R. Snelling, and G. J. Smallwood, “Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-incandescence,” Appl. Phys. B 83(3), 355–382 (2006).
[Crossref]

D. R. Snelling, F. Liu, G. Smallwood, and O. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion frame,” Combust. Flame 136(1-2), 180–190 (2004).
[Crossref]

Liu, L.

M. Mishchenko, L. Liu, and D. W. Mackowski, “T-matrix modeling of linear depolarization by morphologically-complex soot and soot-containing particles,” J. Quant.Spectrosc.Radiat.Trans. 123, 135–144 (2013).
[Crossref]

Loft, S.

J. Löndhal, E. Switelicki, E. Lindgren, and S. Loft, “Aerosol exposure versus aerosol cooling of climate: what is the optimal reduction strategy for human health?” Atmos. Chem. Phys. 10(19), 9441–9449 (2010).
[Crossref]

Löndhal, J.

J. Löndhal, E. Switelicki, E. Lindgren, and S. Loft, “Aerosol exposure versus aerosol cooling of climate: what is the optimal reduction strategy for human health?” Atmos. Chem. Phys. 10(19), 9441–9449 (2010).
[Crossref]

Lu, N.

Mackowski, D. W.

M. Mishchenko, L. Liu, and D. W. Mackowski, “T-matrix modeling of linear depolarization by morphologically-complex soot and soot-containing particles,” J. Quant.Spectrosc.Radiat.Trans. 123, 135–144 (2013).
[Crossref]

Michelsen, H.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

Michelsen, H. A.

H. A. Michelsen, “Laser-induced incandescence of flame-generated soot on a picosecond time scale,” Appl. Phys. B 83(3), 443–448 (2006).
[Crossref]

Miffre, A.

G. David, B. Thomas, Y. Dupart, B. D’Anna, C. George, A. Miffre, and P. Rairoux, “UV polarization lidar for remote sensing new particles formation in the atmosphere,” Opt. Express 22(S3Suppl 3), A1009–A1022 (2014).
[Crossref] [PubMed]

B. Thomas, G. David, C. Anselmo, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of atmospheric gases with optical correlation spectroscopy and Lidar: first experimental results on water vapor profile measurements,” Appl. Phys. B 113(2), 265–275 (2013).
[Crossref]

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust, and sea-salt particle properties from two / three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
[Crossref]

G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B 108(1), 197–216 (2012).
[Crossref]

A. Miffre, M. Abou Chacra, S. Geffroy, P. Rairoux, L. Soulhac, R. J. Perkins, and E. Fréjafon, “Aerosol load study in urban area by Lidar and numerical model,” Atmos. Environ. 44(9), 1152–1161 (2010).
[Crossref]

Mishchenko, M.

M. Mishchenko, L. Liu, and D. W. Mackowski, “T-matrix modeling of linear depolarization by morphologically-complex soot and soot-containing particles,” J. Quant.Spectrosc.Radiat.Trans. 123, 135–144 (2013).
[Crossref]

Möhler, O.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci. 34(10), 1421–1444 (2003).
[Crossref]

Muller, D.

A. Ansmann, A. Petzold, K. Kandler, I. Tegen, M. Wendisch, D. Muller, B. Weinzerl, T. Muller, and J. Heintzenberg, “Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned?” Tellus B Chem. Phys. Meterol. 63(4), 403–429 (2011).
[Crossref]

Muller, T.

A. Ansmann, A. Petzold, K. Kandler, I. Tegen, M. Wendisch, D. Muller, B. Weinzerl, T. Muller, and J. Heintzenberg, “Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned?” Tellus B Chem. Phys. Meterol. 63(4), 403–429 (2011).
[Crossref]

Naumann, K.-H.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci. 34(10), 1421–1444 (2003).
[Crossref]

Nousiainen, T.

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust, and sea-salt particle properties from two / three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
[Crossref]

M. Kahnert, T. Nousiainen, H. Lindqvist, and M. Ebert, “Optical properties of light absorbing carbon aggregates mixed with sulphate: assessment of different model geometries for climate forcing calculations,” Opt. Express 20(9), 10042–10058 (2012).
[Crossref]

Olofsson, N. E.

H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N. E. Olofsson, M. Sanati, J. Pagels, and P. E. Bengtsson, “Influence of soot particle aggregation on time-resolved laser-inudced incandescence signals,” Appl. Phys. B 104(2), 331–341 (2011).
[Crossref]

Ouf, F. X.

J. Yon, F. Liu, A. Bescond, C. Caumont-Prim, C. Rozé, F. X. Ouf, and A. Coppalle, “Effects of multiple scattering on radiative properties of soot fractal aggregates,” J. Quant.Spectrosc.Radiat.Trans. 133, 374–381 (2014).
[Crossref]

Pagels, J.

H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N. E. Olofsson, M. Sanati, J. Pagels, and P. E. Bengtsson, “Influence of soot particle aggregation on time-resolved laser-inudced incandescence signals,” Appl. Phys. B 104(2), 331–341 (2011).
[Crossref]

Perkins, R. J.

A. Miffre, M. Abou Chacra, S. Geffroy, P. Rairoux, L. Soulhac, R. J. Perkins, and E. Fréjafon, “Aerosol load study in urban area by Lidar and numerical model,” Atmos. Environ. 44(9), 1152–1161 (2010).
[Crossref]

Petzold, A.

A. Ansmann, A. Petzold, K. Kandler, I. Tegen, M. Wendisch, D. Muller, B. Weinzerl, T. Muller, and J. Heintzenberg, “Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned?” Tellus B Chem. Phys. Meterol. 63(4), 403–429 (2011).
[Crossref]

Rairoux, P.

G. David, B. Thomas, Y. Dupart, B. D’Anna, C. George, A. Miffre, and P. Rairoux, “UV polarization lidar for remote sensing new particles formation in the atmosphere,” Opt. Express 22(S3Suppl 3), A1009–A1022 (2014).
[Crossref] [PubMed]

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust, and sea-salt particle properties from two / three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
[Crossref]

B. Thomas, G. David, C. Anselmo, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of atmospheric gases with optical correlation spectroscopy and Lidar: first experimental results on water vapor profile measurements,” Appl. Phys. B 113(2), 265–275 (2013).
[Crossref]

G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B 108(1), 197–216 (2012).
[Crossref]

A. Miffre, M. Abou Chacra, S. Geffroy, P. Rairoux, L. Soulhac, R. J. Perkins, and E. Fréjafon, “Aerosol load study in urban area by Lidar and numerical model,” Atmos. Environ. 44(9), 1152–1161 (2010).
[Crossref]

Renard, J. B.

M. Francis, J. B. Renard, E. Hadamcik, B. Couté, B. Gaubicher, and M. Jeannot, “New studies on scattering properties of different kinds of soot and carbon-black,” J. Quant.Spectrosc.Radiat.Trans. 112, 1766–1775 (2011).

Rissler, J.

H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N. E. Olofsson, M. Sanati, J. Pagels, and P. E. Bengtsson, “Influence of soot particle aggregation on time-resolved laser-inudced incandescence signals,” Appl. Phys. B 104(2), 331–341 (2011).
[Crossref]

Rozé, C.

J. Yon, F. Liu, A. Bescond, C. Caumont-Prim, C. Rozé, F. X. Ouf, and A. Coppalle, “Effects of multiple scattering on radiative properties of soot fractal aggregates,” J. Quant.Spectrosc.Radiat.Trans. 133, 374–381 (2014).
[Crossref]

Saathoff, H.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci. 34(10), 1421–1444 (2003).
[Crossref]

Sanati, M.

H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N. E. Olofsson, M. Sanati, J. Pagels, and P. E. Bengtsson, “Influence of soot particle aggregation on time-resolved laser-inudced incandescence signals,” Appl. Phys. B 104(2), 331–341 (2011).
[Crossref]

Sandberg, J.

Schnaiter, M.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci. 34(10), 1421–1444 (2003).
[Crossref]

Schöck, O. W.

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci. 34(10), 1421–1444 (2003).
[Crossref]

Schulz, C.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

Schwarz, J. P.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Seinfeld, J. H.

P. Stier, J. H. Seinfeld, S. Kinne, and O. Boucher, “Aerosol absorption and radiative forcing,” Atmos. Chem. Phys. 7(19), 5237–5261 (2007).
[Crossref]

Smallwood, G.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

D. R. Snelling, F. Liu, G. Smallwood, and O. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion frame,” Combust. Flame 136(1-2), 180–190 (2004).
[Crossref]

Smallwood, G. J.

F. Liu, K. J. Daun, D. R. Snelling, and G. J. Smallwood, “Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-incandescence,” Appl. Phys. B 83(3), 355–382 (2006).
[Crossref]

Snelling, D. R.

F. Liu, K. J. Daun, D. R. Snelling, and G. J. Smallwood, “Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-incandescence,” Appl. Phys. B 83(3), 355–382 (2006).
[Crossref]

D. R. Snelling, F. Liu, G. Smallwood, and O. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion frame,” Combust. Flame 136(1-2), 180–190 (2004).
[Crossref]

Sorensen, C. M.

Soulhac, L.

A. Miffre, M. Abou Chacra, S. Geffroy, P. Rairoux, L. Soulhac, R. J. Perkins, and E. Fréjafon, “Aerosol load study in urban area by Lidar and numerical model,” Atmos. Environ. 44(9), 1152–1161 (2010).
[Crossref]

Stephens, M.

Stier, P.

P. Stier, J. H. Seinfeld, S. Kinne, and O. Boucher, “Aerosol absorption and radiative forcing,” Atmos. Chem. Phys. 7(19), 5237–5261 (2007).
[Crossref]

Suntz, R.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

Switelicki, E.

J. Löndhal, E. Switelicki, E. Lindgren, and S. Loft, “Aerosol exposure versus aerosol cooling of climate: what is the optimal reduction strategy for human health?” Atmos. Chem. Phys. 10(19), 9441–9449 (2010).
[Crossref]

Taylor, J. W.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Tegen, I.

A. Ansmann, A. Petzold, K. Kandler, I. Tegen, M. Wendisch, D. Muller, B. Weinzerl, T. Muller, and J. Heintzenberg, “Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned?” Tellus B Chem. Phys. Meterol. 63(4), 403–429 (2011).
[Crossref]

Therssen, E.

H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially-resolved laser-induced-incandescence signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]

Thomas, B.

G. David, B. Thomas, Y. Dupart, B. D’Anna, C. George, A. Miffre, and P. Rairoux, “UV polarization lidar for remote sensing new particles formation in the atmosphere,” Opt. Express 22(S3Suppl 3), A1009–A1022 (2014).
[Crossref] [PubMed]

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust, and sea-salt particle properties from two / three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
[Crossref]

B. Thomas, G. David, C. Anselmo, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of atmospheric gases with optical correlation spectroscopy and Lidar: first experimental results on water vapor profile measurements,” Appl. Phys. B 113(2), 265–275 (2013).
[Crossref]

G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B 108(1), 197–216 (2012).
[Crossref]

Turner, N.

Wagner, U.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Weinzerl, B.

A. Ansmann, A. Petzold, K. Kandler, I. Tegen, M. Wendisch, D. Muller, B. Weinzerl, T. Muller, and J. Heintzenberg, “Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned?” Tellus B Chem. Phys. Meterol. 63(4), 403–429 (2011).
[Crossref]

Weinzierl, B.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Wendisch, M.

A. Ansmann, A. Petzold, K. Kandler, I. Tegen, M. Wendisch, D. Muller, B. Weinzerl, T. Muller, and J. Heintzenberg, “Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned?” Tellus B Chem. Phys. Meterol. 63(4), 403–429 (2011).
[Crossref]

Will, S.

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

Wollny, A. G.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Yon, J.

J. Yon, F. Liu, A. Bescond, C. Caumont-Prim, C. Rozé, F. X. Ouf, and A. Coppalle, “Effects of multiple scattering on radiative properties of soot fractal aggregates,” J. Quant.Spectrosc.Radiat.Trans. 133, 374–381 (2014).
[Crossref]

Zanatta, M.

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Aerosol Sci. Technol. (1)

T. Bond and R. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol. 40(1), 27–67 (2006).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (8)

H. Bladh, P. E. Bengtsson, J. Delhay, Y. Bouvier, E. Therssen, and P. Desgroux, “Experimental and theoretical comparison of spatially-resolved laser-induced-incandescence signals of soot in backward and right-angle configuration,” Appl. Phys. B 83(3), 423–433 (2006).
[Crossref]

B. Kaldvee, C. Brackmann, M. Aldén, and J. Bood, “LII-lidar: range-resolved backward picosecond laser-induced incandescence,” Appl. Phys. B 115(1), 111–121 (2014).
[Crossref]

F. Liu, K. J. Daun, D. R. Snelling, and G. J. Smallwood, “Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-incandescence,” Appl. Phys. B 83(3), 355–382 (2006).
[Crossref]

H. Bladh, J. Johnsson, J. Rissler, H. Abdulhamid, N. E. Olofsson, M. Sanati, J. Pagels, and P. E. Bengtsson, “Influence of soot particle aggregation on time-resolved laser-inudced incandescence signals,” Appl. Phys. B 104(2), 331–341 (2011).
[Crossref]

H. A. Michelsen, “Laser-induced incandescence of flame-generated soot on a picosecond time scale,” Appl. Phys. B 83(3), 443–448 (2006).
[Crossref]

C. Schulz, B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood, “Laser-induced incandescence: recent trends and current questions,” Appl. Phys. B 83(3), 333–354 (2006).
[Crossref]

B. Thomas, G. David, C. Anselmo, J.-P. Cariou, A. Miffre, and P. Rairoux, “Remote sensing of atmospheric gases with optical correlation spectroscopy and Lidar: first experimental results on water vapor profile measurements,” Appl. Phys. B 113(2), 265–275 (2013).
[Crossref]

G. David, A. Miffre, B. Thomas, and P. Rairoux, “Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols,” Appl. Phys. B 108(1), 197–216 (2012).
[Crossref]

Atmos. Chem. Phys. (3)

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust, and sea-salt particle properties from two / three-component particle mixtures using UV-VIS polarization Lidar and T-matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
[Crossref]

P. Stier, J. H. Seinfeld, S. Kinne, and O. Boucher, “Aerosol absorption and radiative forcing,” Atmos. Chem. Phys. 7(19), 5237–5261 (2007).
[Crossref]

J. Löndhal, E. Switelicki, E. Lindgren, and S. Loft, “Aerosol exposure versus aerosol cooling of climate: what is the optimal reduction strategy for human health?” Atmos. Chem. Phys. 10(19), 9441–9449 (2010).
[Crossref]

Atmos. Environ. (1)

A. Miffre, M. Abou Chacra, S. Geffroy, P. Rairoux, L. Soulhac, R. J. Perkins, and E. Fréjafon, “Aerosol load study in urban area by Lidar and numerical model,” Atmos. Environ. 44(9), 1152–1161 (2010).
[Crossref]

Atmos. Meas. Tech. (1)

M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel, “Single Particle Soot Photometer intercomparison at the AIDA chamber,” Atmos. Meas. Tech. 5(12), 3077–3097 (2012).
[Crossref]

Combust. Flame (1)

D. R. Snelling, F. Liu, G. Smallwood, and O. Gülder, “Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion frame,” Combust. Flame 136(1-2), 180–190 (2004).
[Crossref]

J. Aerosol Sci. (1)

M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” J. Aerosol Sci. 34(10), 1421–1444 (2003).
[Crossref]

J. Quant.Spectrosc.Radiat.Trans. (3)

M. Francis, J. B. Renard, E. Hadamcik, B. Couté, B. Gaubicher, and M. Jeannot, “New studies on scattering properties of different kinds of soot and carbon-black,” J. Quant.Spectrosc.Radiat.Trans. 112, 1766–1775 (2011).

J. Yon, F. Liu, A. Bescond, C. Caumont-Prim, C. Rozé, F. X. Ouf, and A. Coppalle, “Effects of multiple scattering on radiative properties of soot fractal aggregates,” J. Quant.Spectrosc.Radiat.Trans. 133, 374–381 (2014).
[Crossref]

M. Mishchenko, L. Liu, and D. W. Mackowski, “T-matrix modeling of linear depolarization by morphologically-complex soot and soot-containing particles,” J. Quant.Spectrosc.Radiat.Trans. 123, 135–144 (2013).
[Crossref]

Opt. Express (2)

Tellus B Chem. Phys. Meterol. (1)

A. Ansmann, A. Petzold, K. Kandler, I. Tegen, M. Wendisch, D. Muller, B. Weinzerl, T. Muller, and J. Heintzenberg, “Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned?” Tellus B Chem. Phys. Meterol. 63(4), 403–429 (2011).
[Crossref]

Other (4)

S. Baidar, H. Oetjen, S. Coburn, B. Dix, I. Ortega, R. Sinreich, and R. Volkamer: “The CU Airborne MAX-DOAS Instrument: Vertical Profiling of Aerosol Extinction and Trace Gases”, A.M.T. Atm. Meas. Tech. 6, 719–719–739, (2013).
[Crossref]

IPCC, Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, (2013).

R. J. Santoro and R. Shaddix, “Laser-Induced Incandescence”, in Applied Combustion Diagnostics, Taylor and Francis, New York. p. 252–286, (2002).

R. M. Measures, “Laser Remote Sensing: Fundamentals and Applications” Krieger publishing company, Malabar, Florida, USA, (1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) LAP-peak temperature Tmax at a range R from the lidar laser source computed from Eq. (7) at λL = 532 nm for four laser beam divergence: θL = 0.01 mrad (dotted line), θL = 0.07 mrad (full line), θL = 0.1 mrad (dash-dotted line), θL = 0.5 mrad (dashed line), for the following set of laser parameters (EL = 150 mJ, d0 = 30 mm). LAP are assumed to be Diesel soot particles (m = 1.49 + 0.67i, ρ = 1700 kg.m−3, cp = 1900 J.kg−1.K−1), as published by Schnaiter et al. [13]. The atmospheric transmission T is equal to one and Ta = 280 K. (b) Same as panel (a) for λL = 1064 nm and EL = 500 mJ, to be used in Section 4.2.

Fig. 2
Fig. 2

Numerical simulation of the LII-lidar signal (red) for an input flat-top LAP profile (Heaviside step function up to R0 = 300 meters, black). The laser characteristics are EL = 500 mJ, λL = 1064 nm, θL = 0.07 mrad and d0 = 30 mm. LAP are assumed to be Diesel soot particles (27 nm monomer size, 2.0 fractal dimension from [13]). The cooling time shaping the LII-lidar signal is 1 μs and the particles size distribution is also taken from [13]. The LII-radiation is detected at wavelength λ = 633 nm. To ease the reading, the LII-lidar signal has been normalized to its maximal value.

Fig. 3
Fig. 3

Experimental set-up for spectrally-resolved atmospheric LII-lidar measurements. After laser pulse excitation at λL = 532 nm wavelength, the elastic/non-elastic backscattering radiations and the LII-radiation are collected with a f/3 Newtonian telescope. The 532 nm-Notch filter aims at removing the elastic contribution from the atmosphere and from the adjacent lidar laser source. The 250 mm focal length Imaging Czerny-Turner Spectrometer coupled with the ICDD gated camera allows time (range) and spectrally-resolved LII-lidar measurements, in the VIS and near IR spectral ranges.

Fig. 4
Fig. 4

Experimental set-up for range-resolved atmospheric LII-lidar measurements at a single detection wavelength (1λ-LII-lidar). The lidar laser source and telescope are identical to Fig. 3. Elastic backscattering is detected with the 532 nm-channel composed of an interference filter (IF532), a focusing lens (L532) and a photomultiplier (PM 532 nm). The LII-lidar radiation is discriminated from elastic backscattering with the dichroic beam-splitter and is detected at λ = 633 nm after laser excitation at λL = 1064 nm to avoid PAH fluorescence and remove the detected signal from its Raman inelastic contributions. The LII-channel is composed of a dual Notch filter (OD 8, 0.2 nm-bandwidth), an interference filter (IF633), a focusing lens (L633) and a PM (633 nm). The VIS and IR laser pulses are not simultaneously emitted to avoid wavelength cross-talks between the elastic (λL = λ = 532 nm) and the LII-channel (λL = 1064 nm, λ = 633 nm).

Fig. 5
Fig. 5

Spectrum of the remotely detected atmospheric electromagnetic radiation recorded with the set-up presented in Fig. 3 above Lyon lidar station, over a range of 300 meters starting from the ground, during a moonless night. From panel (a) to (c), the spectrum is vertically magnified by a factor of 60. Once removed the panel (b)-Raman inelastic contributions, we get the panel (c) spectrum, obtained with a 30 minutes average photon counting over 18 000 laser shots, after a three-points smoothing (noise averaging). It can be adjusted with the Planck’s distribution, as a clear LII-signature.

Fig. 6
Fig. 6

Vertical profiles of LII-lidar signal (a) and elastic backscattering-lidar signal (b) acquired in the low troposphere of an urban city (Lyon, France) by using the 1λ-LII-lidar detector presented in Fig. 4. For the LII-radiation (a), the acquisition time is 30 minutes, λL = 1064 nm, λ = 633 nm, EL = 500 mJ, θL = 0.07 mrad, leading to reliable photon-counting data between 325 and 600 meters. The laser fluence was limited by the available laser energy and emitting optics. The range-corrected lidar vertical profile (b) at λL = 532 nm is alternatively acquired during 100 s, with EL = 5 mJ. The vertical resolution of both profiles is 22.5 m, as explained in Section 3.2.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I LII (λ,a,R)= I LII (λ,a)× A 0 4πR² =4 σ abs B λ ( T p )× A 0 4πR²
P LII (λ,R)= 0 da n p (a,R) A L (R)c τ L I LII (λ,a,R)
P LII (λ,R)= K 0 0 da n p (a,R) σ abs (a) B λ ( T p )
S LIIlidar (λ,R)= S 0 4π 0 R dR' 0 da n p (a,R') σ abs (a)T(λ,R') B λ [λ, T p (a,RR')]
β LII ( λ L ,R)= 1 4π 0 da n p (a,R) σ abs ( λ L ,a)
S LIIlidar (λ,R)= S 0 β LII ( λ L )T(λ) R B λ [λ, T p ]
T max (R)= T a + 6πE(m) λ L ρ c p E L T( λ L ,R) π( R 2 θ L ²+ d 0 2 )

Metrics