Abstract

We consider the dispersion relations of the optical excitations in a chain of silver nanoparticles situated above a metal substrate and show that they are hybrid plasmon polaritons, composed of localized surface plasmons and surface plasmon polaritons. We demonstrate a strong dependence of the system’s optical properties on the plasma frequency of the substrate and that choosing the appropriate plasma frequency allows one to engineer the modes to have a very high, very low or even negative group velocity. For the latter, Poynting vector calculations reveal opposite phase and energy propagation. We expect that our results will contribute to the design of nano-optical devices with specific transport properties.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Elliptically polarized modes for the unidirectional excitation of surface plasmon polaritons

Paul J. Compaijen, Victor A. Malyshev, and Jasper Knoester
Opt. Express 24(4) 3858-3872 (2016)

Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains

K. B. Crozier, E. Togan, E. Simsek, and T. Yang
Opt. Express 15(26) 17482-17493 (2007)

Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov
Opt. Express 15(25) 16667-16680 (2007)

References

  • View by:
  • |
  • |
  • |

  1. W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [Crossref] [PubMed]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
    [Crossref] [PubMed]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83–91 (2010).
    [Crossref]
  5. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chemical Reviews 111, 3913–3961 (2011).
    [Crossref] [PubMed]
  6. S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).
  7. L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University, 2006).
    [Crossref]
  8. J. J. Mock, D. R. Smith, and S. Schultz, “Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles,” Nano Letters 3, 485–491 (2003).
    [Crossref]
  9. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical Reviews 108, 494–521 (2008).
    [Crossref] [PubMed]
  10. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Letters 10, 2342–2348 (2010).
    [Crossref] [PubMed]
  11. M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Optics Express 19, 9213–9220 (2011).
    [Crossref] [PubMed]
  12. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Optics Letters 23, 1331–1333 (1998).
    [Crossref]
  13. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Physical Review B 67, 205402 (2003).
    [Crossref]
  14. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
    [Crossref] [PubMed]
  15. A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Physical Review B 74, 205436 (2006).
    [Crossref]
  16. B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Optics Express 19, 6450–6461 (2011).
    [Crossref] [PubMed]
  17. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Advances in Optics and Photonics 1, 438–483 (2009).
    [Crossref]
  18. A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Letters 9, 4228–4233 (2009).
    [Crossref] [PubMed]
  19. L. Novotny and N. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
    [Crossref]
  20. R. S. Pavlov, A. G. Curto, and N. F. van Hulst, “Log-periodic optical antennas with broadband directivity,” Optics Communications 285, 3334–3340 (2012).
    [Crossref]
  21. J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical Nanoantennas with Tunable Radiation Patterns,” Nano Letters 13, 444–450 (2013).
    [Crossref] [PubMed]
  22. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [Crossref] [PubMed]
  23. P. Nordlander and E. Prodan, “Plasmon Hybridization in Nanoparticles near Metallic Surfaces,” Nano Letters 4, 2209–2213 (2004).
    [Crossref]
  24. G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Optics Express 14, 9971–9981 (2006).
    [Crossref] [PubMed]
  25. J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Letters 8, 2245–2252 (2008).
    [Crossref] [PubMed]
  26. A. Farhang, N. Bigler, and O. J. F. Martin, “Coupling of multiple LSP and SPP resonances: interactions between an elongated nanoparticle and a thin metallic film,” Optics Letters 38, 4758–4761 (2013).
    [Crossref] [PubMed]
  27. C. Lemke, T. Leißner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The Interplay between Localized and Propagating Plasmonic Excitations tracked in Space and Time,” Nano Letters 14, 2431–2435 (2014).
    [Crossref] [PubMed]
  28. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Physical Review B 62, R16356 (2000).
    [Crossref]
  29. D. S. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled,” Nano Letters 5, 985–989 (2005).
    [Crossref] [PubMed]
  30. A. B. Evlyukhin and S. I. Bozhevolnyi, “Surface plasmon polariton guiding by chains of nanoparticles,” Laser Physics Letters 3, 396–400 (2006).
    [Crossref]
  31. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Optics Express 15, 16667–16680 (2007).
    [Crossref] [PubMed]
  32. I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,”, Physical Review B 90, 075405 (2014).
    [Crossref]
  33. R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2, 24–30 (2007).
    [Crossref]
  34. R. de Waele, A. F. Koenderink, and A. Polman, “Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays,” Nano Letters 7, 2004–2008 (2007).
    [Crossref]
  35. A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Frequency-controlled localization of optical signals in graded plasmonic chains,” Nano Letters 8, 2369–2372 (2008).
    [Crossref] [PubMed]
  36. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Physical Review B 70, 125429 (2004).
    [Crossref]
  37. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Physical Review B 74, 033402 (2006).
    [Crossref]
  38. V. Agranovich, Excitations in Organic Solids,, International Series of Monographs on Physics (Oxford University, 2008).
    [Crossref]
  39. J.-W. Dong and Z.-L. Deng, “Direct eigenmode analysis of plasmonic modes in metal nanoparticle chain with layered medium,” Optics Letters 38, 2244–2246 (2013).
    [Crossref] [PubMed]
  40. A. Farhang, S. A. Ramakrishna, and O. J. F. Martin, “Compound resonance-induced coupling effects in composite plasmonic metamaterials,” Optics Express 20, 29447–29456 (2012).
    [Crossref]
  41. J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Optics Express 15, 10533–10539 (2007).
    [Crossref] [PubMed]
  42. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Optics Letters 34, 244–246 (2009).
    [Crossref] [PubMed]
  43. A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Physical Review B 71, 134304 (2005).
    [Crossref]
  44. P. J. Compaijen, V. A. Malyshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Physical Review B 87, 205437 (2013).
    [Crossref]
  45. J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Physical Review B 77, 165301 (2008).
    [Crossref]
  46. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, 1998).
    [Crossref]
  47. J. D. Jackson, Classical Electrodynamics, (John Wiley & Sons, 1998).
  48. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Optics Letters 8, 581–583 (1983).
    [Crossref] [PubMed]
  49. A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Physical Review B 76, 201403 (2007).
    [Crossref]
  50. W. C. Chew, Waves and Fields in Inhomogeneous Media, (IEEE, 1999).
    [Crossref]
  51. M. Paulus, P. Gay-Balmaz, and O. Martin, “Accurate and efficient computation of the Greens tensor for stratified media,” Physical Review E 62, 5797–5807 (2000).
    [Crossref]
  52. K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Optics Letters 32, 973–975 (2007).
    [Crossref] [PubMed]
  53. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Optics Express 15, 17482–17493 (2007).
    [Crossref] [PubMed]
  54. V. M. Agranovich and Y. N. Gartstein, “Spatial dispersion and negative refraction of light,” Physics-Uspekhi 49, 1029–1044 (2006).
    [Crossref]
  55. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied optics 24, 4493–4499 (1985).
    [Crossref] [PubMed]
  56. J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Optics Express 16, 19001–19017 (2008).
    [Crossref]
  57. H. Shin and S. Fan, “All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure,” Physical Review Letters 96, 073907 (2006).
    [Crossref] [PubMed]
  58. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
    [Crossref] [PubMed]
  59. T. Yang and K. B. Crozier, “Analysis of surface plasmon waves in metal-dielectric-metal structures and the criterion for negative refractive index,” Optics Express 17, 1136–1143 (2009).
    [Crossref]

2014 (2)

C. Lemke, T. Leißner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The Interplay between Localized and Propagating Plasmonic Excitations tracked in Space and Time,” Nano Letters 14, 2431–2435 (2014).
[Crossref] [PubMed]

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,”, Physical Review B 90, 075405 (2014).
[Crossref]

2013 (4)

A. Farhang, N. Bigler, and O. J. F. Martin, “Coupling of multiple LSP and SPP resonances: interactions between an elongated nanoparticle and a thin metallic film,” Optics Letters 38, 4758–4761 (2013).
[Crossref] [PubMed]

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical Nanoantennas with Tunable Radiation Patterns,” Nano Letters 13, 444–450 (2013).
[Crossref] [PubMed]

J.-W. Dong and Z.-L. Deng, “Direct eigenmode analysis of plasmonic modes in metal nanoparticle chain with layered medium,” Optics Letters 38, 2244–2246 (2013).
[Crossref] [PubMed]

P. J. Compaijen, V. A. Malyshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Physical Review B 87, 205437 (2013).
[Crossref]

2012 (2)

A. Farhang, S. A. Ramakrishna, and O. J. F. Martin, “Compound resonance-induced coupling effects in composite plasmonic metamaterials,” Optics Express 20, 29447–29456 (2012).
[Crossref]

R. S. Pavlov, A. G. Curto, and N. F. van Hulst, “Log-periodic optical antennas with broadband directivity,” Optics Communications 285, 3334–3340 (2012).
[Crossref]

2011 (4)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chemical Reviews 111, 3913–3961 (2011).
[Crossref] [PubMed]

M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Optics Express 19, 9213–9220 (2011).
[Crossref] [PubMed]

B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Optics Express 19, 6450–6461 (2011).
[Crossref] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
[Crossref]

2010 (3)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Letters 10, 2342–2348 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83–91 (2010).
[Crossref]

2009 (4)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Advances in Optics and Photonics 1, 438–483 (2009).
[Crossref]

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Letters 9, 4228–4233 (2009).
[Crossref] [PubMed]

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Optics Letters 34, 244–246 (2009).
[Crossref] [PubMed]

T. Yang and K. B. Crozier, “Analysis of surface plasmon waves in metal-dielectric-metal structures and the criterion for negative refractive index,” Optics Express 17, 1136–1143 (2009).
[Crossref]

2008 (5)

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Physical Review B 77, 165301 (2008).
[Crossref]

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Optics Express 16, 19001–19017 (2008).
[Crossref]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical Reviews 108, 494–521 (2008).
[Crossref] [PubMed]

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Letters 8, 2245–2252 (2008).
[Crossref] [PubMed]

A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Frequency-controlled localization of optical signals in graded plasmonic chains,” Nano Letters 8, 2369–2372 (2008).
[Crossref] [PubMed]

2007 (8)

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2, 24–30 (2007).
[Crossref]

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays,” Nano Letters 7, 2004–2008 (2007).
[Crossref]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Optics Express 15, 16667–16680 (2007).
[Crossref] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[Crossref] [PubMed]

K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Optics Letters 32, 973–975 (2007).
[Crossref] [PubMed]

K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Optics Express 15, 17482–17493 (2007).
[Crossref] [PubMed]

A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Physical Review B 76, 201403 (2007).
[Crossref]

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Optics Express 15, 10533–10539 (2007).
[Crossref] [PubMed]

2006 (7)

V. M. Agranovich and Y. N. Gartstein, “Spatial dispersion and negative refraction of light,” Physics-Uspekhi 49, 1029–1044 (2006).
[Crossref]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Physical Review B 74, 033402 (2006).
[Crossref]

H. Shin and S. Fan, “All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure,” Physical Review Letters 96, 073907 (2006).
[Crossref] [PubMed]

A. B. Evlyukhin and S. I. Bozhevolnyi, “Surface plasmon polariton guiding by chains of nanoparticles,” Laser Physics Letters 3, 396–400 (2006).
[Crossref]

G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Optics Express 14, 9971–9981 (2006).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Physical Review B 74, 205436 (2006).
[Crossref]

2005 (2)

D. S. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled,” Nano Letters 5, 985–989 (2005).
[Crossref] [PubMed]

A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Physical Review B 71, 134304 (2005).
[Crossref]

2004 (2)

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Physical Review B 70, 125429 (2004).
[Crossref]

P. Nordlander and E. Prodan, “Plasmon Hybridization in Nanoparticles near Metallic Surfaces,” Nano Letters 4, 2209–2213 (2004).
[Crossref]

2003 (5)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Physical Review B 67, 205402 (2003).
[Crossref]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[Crossref] [PubMed]

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

J. J. Mock, D. R. Smith, and S. Schultz, “Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles,” Nano Letters 3, 485–491 (2003).
[Crossref]

2000 (2)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Physical Review B 62, R16356 (2000).
[Crossref]

M. Paulus, P. Gay-Balmaz, and O. Martin, “Accurate and efficient computation of the Greens tensor for stratified media,” Physical Review E 62, 5797–5807 (2000).
[Crossref]

1998 (1)

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Optics Letters 23, 1331–1333 (1998).
[Crossref]

1985 (1)

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied optics 24, 4493–4499 (1985).
[Crossref] [PubMed]

1983 (1)

M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Optics Letters 8, 581–583 (1983).
[Crossref] [PubMed]

Agranovich, V.

V. Agranovich, Excitations in Organic Solids,, International Series of Monographs on Physics (Oxford University, 2008).
[Crossref]

Agranovich, V. M.

V. M. Agranovich and Y. N. Gartstein, “Spatial dispersion and negative refraction of light,” Physics-Uspekhi 49, 1029–1044 (2006).
[Crossref]

Alexander, R. W.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied optics 24, 4493–4499 (1985).
[Crossref] [PubMed]

Alù, A.

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Physical Review B 74, 205436 (2006).
[Crossref]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical Reviews 108, 494–521 (2008).
[Crossref] [PubMed]

Apuzzo, A.

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2, 24–30 (2007).
[Crossref]

Atwater, H. A.

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Optics Express 16, 19001–19017 (2008).
[Crossref]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[Crossref] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Physical Review B 67, 205402 (2003).
[Crossref]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[Crossref] [PubMed]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Physical Review B 62, R16356 (2000).
[Crossref]

Aussenegg, F. R.

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Optics Letters 23, 1331–1333 (1998).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

Barnes, W.

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Barnes, W. L.

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Optics Express 15, 10533–10539 (2007).
[Crossref] [PubMed]

Bauer, M.

C. Lemke, T. Leißner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The Interplay between Localized and Propagating Plasmonic Excitations tracked in Space and Time,” Nano Letters 14, 2431–2435 (2014).
[Crossref] [PubMed]

Bell, R. J.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied optics 24, 4493–4499 (1985).
[Crossref] [PubMed]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Advances in Optics and Photonics 1, 438–483 (2009).
[Crossref]

Bigler, N.

A. Farhang, N. Bigler, and O. J. F. Martin, “Coupling of multiple LSP and SPP resonances: interactions between an elongated nanoparticle and a thin metallic film,” Optics Letters 38, 4758–4761 (2013).
[Crossref] [PubMed]

Blaize, S.

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2, 24–30 (2007).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, 1998).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83–91 (2010).
[Crossref]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Optics Express 15, 16667–16680 (2007).
[Crossref] [PubMed]

A. B. Evlyukhin and S. I. Bozhevolnyi, “Surface plasmon polariton guiding by chains of nanoparticles,” Laser Physics Letters 3, 396–400 (2006).
[Crossref]

A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Physical Review B 71, 134304 (2005).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Physical Review B 62, R16356 (2000).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

Cesario, J.

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Optics Express 15, 10533–10539 (2007).
[Crossref] [PubMed]

Chan, C. T.

K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Optics Letters 32, 973–975 (2007).
[Crossref] [PubMed]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chemical Reviews 111, 3913–3961 (2011).
[Crossref] [PubMed]

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media, (IEEE, 1999).
[Crossref]

Cheylan, S.

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Optics Express 15, 10533–10539 (2007).
[Crossref] [PubMed]

Chichkov, B. N.

C. Lemke, T. Leißner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The Interplay between Localized and Propagating Plasmonic Excitations tracked in Space and Time,” Nano Letters 14, 2431–2435 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Optics Express 15, 16667–16680 (2007).
[Crossref] [PubMed]

Chilkoti, A.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Letters 8, 2245–2252 (2008).
[Crossref] [PubMed]

Chu, Y.

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Optics Letters 34, 244–246 (2009).
[Crossref] [PubMed]

Citrin, D. S.

D. S. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled,” Nano Letters 5, 985–989 (2005).
[Crossref] [PubMed]

Compaijen, P. J.

P. J. Compaijen, V. A. Malyshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Physical Review B 87, 205437 (2013).
[Crossref]

Crozier, K. B.

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Optics Letters 34, 244–246 (2009).
[Crossref] [PubMed]

T. Yang and K. B. Crozier, “Analysis of surface plasmon waves in metal-dielectric-metal structures and the criterion for negative refractive index,” Optics Express 17, 1136–1143 (2009).
[Crossref]

K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Optics Express 15, 17482–17493 (2007).
[Crossref] [PubMed]

Curto, A. G.

R. S. Pavlov, A. G. Curto, and N. F. van Hulst, “Log-periodic optical antennas with broadband directivity,” Optics Communications 285, 3334–3340 (2012).
[Crossref]

de Waele, R.

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays,” Nano Letters 7, 2004–2008 (2007).
[Crossref]

A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Physical Review B 76, 201403 (2007).
[Crossref]

Degiron, A.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Letters 8, 2245–2252 (2008).
[Crossref] [PubMed]

Deng, Z.-L.

J.-W. Dong and Z.-L. Deng, “Direct eigenmode analysis of plasmonic modes in metal nanoparticle chain with layered medium,” Optics Letters 38, 2244–2246 (2013).
[Crossref] [PubMed]

Dereux, A.

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Advances in Optics and Photonics 1, 438–483 (2009).
[Crossref]

Dionne, J. A.

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Optics Express 16, 19001–19017 (2008).
[Crossref]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[Crossref] [PubMed]

Dong, J.-W.

J.-W. Dong and Z.-L. Deng, “Direct eigenmode analysis of plasmonic modes in metal nanoparticle chain with layered medium,” Optics Letters 38, 2244–2246 (2013).
[Crossref] [PubMed]

Duan, S.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Physical Review B 77, 165301 (2008).
[Crossref]

Ebbesen, T.

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Physical Review B 74, 205436 (2006).
[Crossref]

Enoch, S.

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Optics Express 15, 10533–10539 (2007).
[Crossref] [PubMed]

Evlyukhin, A. B.

C. Lemke, T. Leißner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The Interplay between Localized and Propagating Plasmonic Excitations tracked in Space and Time,” Nano Letters 14, 2431–2435 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Optics Express 15, 16667–16680 (2007).
[Crossref] [PubMed]

A. B. Evlyukhin and S. I. Bozhevolnyi, “Surface plasmon polariton guiding by chains of nanoparticles,” Laser Physics Letters 3, 396–400 (2006).
[Crossref]

A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Physical Review B 71, 134304 (2005).
[Crossref]

Fan, S.

H. Shin and S. Fan, “All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure,” Physical Review Letters 96, 073907 (2006).
[Crossref] [PubMed]

Farhang, A.

A. Farhang, N. Bigler, and O. J. F. Martin, “Coupling of multiple LSP and SPP resonances: interactions between an elongated nanoparticle and a thin metallic film,” Optics Letters 38, 4758–4761 (2013).
[Crossref] [PubMed]

A. Farhang, S. A. Ramakrishna, and O. J. F. Martin, “Compound resonance-induced coupling effects in composite plasmonic metamaterials,” Optics Express 20, 29447–29456 (2012).
[Crossref]

Fevrier, M.

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2, 24–30 (2007).
[Crossref]

Fiutowski, J.

C. Lemke, T. Leißner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The Interplay between Localized and Propagating Plasmonic Excitations tracked in Space and Time,” Nano Letters 14, 2431–2435 (2014).
[Crossref] [PubMed]

Ford, G. W.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Physical Review B 70, 125429 (2004).
[Crossref]

Fung, K. H.

K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Optics Letters 32, 973–975 (2007).
[Crossref] [PubMed]

Galler, N.

M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Optics Express 19, 9213–9220 (2011).
[Crossref] [PubMed]

Gartstein, Y. N.

V. M. Agranovich and Y. N. Gartstein, “Spatial dispersion and negative refraction of light,” Physics-Uspekhi 49, 1029–1044 (2006).
[Crossref]

Gay-Balmaz, P.

M. Paulus, P. Gay-Balmaz, and O. Martin, “Accurate and efficient computation of the Greens tensor for stratified media,” Physical Review E 62, 5797–5807 (2000).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Letters 10, 2342–2348 (2010).
[Crossref] [PubMed]

Gonzalez, M. U.

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Optics Express 15, 10533–10539 (2007).
[Crossref] [PubMed]

Govorov, A. O.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Physical Review B 77, 165301 (2008).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83–91 (2010).
[Crossref]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical Reviews 108, 494–521 (2008).
[Crossref] [PubMed]

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chemical Reviews 111, 3913–3961 (2011).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[Crossref] [PubMed]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Physical Review B 62, R16356 (2000).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University, 2006).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Letters 10, 2342–2348 (2010).
[Crossref] [PubMed]

Hill, R. T.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Letters 8, 2245–2252 (2008).
[Crossref] [PubMed]

Homola, J.

M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Optics Express 19, 9213–9220 (2011).
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, 1998).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, (John Wiley & Sons, 1998).

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

Karpov, S. V.

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,”, Physical Review B 90, 075405 (2014).
[Crossref]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Physical Review B 67, 205402 (2003).
[Crossref]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[Crossref] [PubMed]

Kiyan, R.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Optics Express 15, 16667–16680 (2007).
[Crossref] [PubMed]

Kjelstrup-Hansen, J.

C. Lemke, T. Leißner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The Interplay between Localized and Propagating Plasmonic Excitations tracked in Space and Time,” Nano Letters 14, 2431–2435 (2014).
[Crossref] [PubMed]

Klick, A.

C. Lemke, T. Leißner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The Interplay between Localized and Propagating Plasmonic Excitations tracked in Space and Time,” Nano Letters 14, 2431–2435 (2014).
[Crossref] [PubMed]

Knoester, J.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical Nanoantennas with Tunable Radiation Patterns,” Nano Letters 13, 444–450 (2013).
[Crossref] [PubMed]

P. J. Compaijen, V. A. Malyshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Physical Review B 87, 205437 (2013).
[Crossref]

A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Frequency-controlled localization of optical signals in graded plasmonic chains,” Nano Letters 8, 2369–2372 (2008).
[Crossref] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[Crossref] [PubMed]

Koenderink, A. F.

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Letters 9, 4228–4233 (2009).
[Crossref] [PubMed]

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays,” Nano Letters 7, 2004–2008 (2007).
[Crossref]

A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Physical Review B 76, 201403 (2007).
[Crossref]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Physical Review B 74, 033402 (2006).
[Crossref]

Krenn, J. R.

M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Optics Express 19, 9213–9220 (2011).
[Crossref] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Optics Letters 23, 1331–1333 (1998).
[Crossref]

Kvasnicka, P.

M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Optics Express 19, 9213–9220 (2011).
[Crossref] [PubMed]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chemical Reviews 111, 3913–3961 (2011).
[Crossref] [PubMed]

Leißner, T.

C. Lemke, T. Leißner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The Interplay between Localized and Propagating Plasmonic Excitations tracked in Space and Time,” Nano Letters 14, 2431–2435 (2014).
[Crossref] [PubMed]

Leitner, A.

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Optics Letters 23, 1331–1333 (1998).
[Crossref]

Lemke, C.

C. Lemke, T. Leißner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The Interplay between Localized and Propagating Plasmonic Excitations tracked in Space and Time,” Nano Letters 14, 2431–2435 (2014).
[Crossref] [PubMed]

Lévêque, G.

G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Optics Express 14, 9971–9981 (2006).
[Crossref] [PubMed]

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[Crossref] [PubMed]

Link, S.

B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Optics Express 19, 6450–6461 (2011).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chemical Reviews 111, 3913–3961 (2011).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Letters 10, 2342–2348 (2010).
[Crossref] [PubMed]

Long, L. L.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied optics 24, 4493–4499 (1985).
[Crossref] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Physical Review B 67, 205402 (2003).
[Crossref]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[Crossref] [PubMed]

S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).

Malyshev, A. V.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical Nanoantennas with Tunable Radiation Patterns,” Nano Letters 13, 444–450 (2013).
[Crossref] [PubMed]

A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Frequency-controlled localization of optical signals in graded plasmonic chains,” Nano Letters 8, 2369–2372 (2008).
[Crossref] [PubMed]

Malyshev, V. A.

P. J. Compaijen, V. A. Malyshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Physical Review B 87, 205437 (2013).
[Crossref]

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical Nanoantennas with Tunable Radiation Patterns,” Nano Letters 13, 444–450 (2013).
[Crossref] [PubMed]

A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Frequency-controlled localization of optical signals in graded plasmonic chains,” Nano Letters 8, 2369–2372 (2008).
[Crossref] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical Reviews 108, 494–521 (2008).
[Crossref] [PubMed]

Markel, V. A.

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,”, Physical Review B 90, 075405 (2014).
[Crossref]

Martin, O.

M. Paulus, P. Gay-Balmaz, and O. Martin, “Accurate and efficient computation of the Greens tensor for stratified media,” Physical Review E 62, 5797–5807 (2000).
[Crossref]

Martin, O. J. F.

A. Farhang, N. Bigler, and O. J. F. Martin, “Coupling of multiple LSP and SPP resonances: interactions between an elongated nanoparticle and a thin metallic film,” Optics Letters 38, 4758–4761 (2013).
[Crossref] [PubMed]

A. Farhang, S. A. Ramakrishna, and O. J. F. Martin, “Compound resonance-induced coupling effects in composite plasmonic metamaterials,” Optics Express 20, 29447–29456 (2012).
[Crossref]

G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Optics Express 14, 9971–9981 (2006).
[Crossref] [PubMed]

Meier, M.

M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Optics Letters 8, 581–583 (1983).
[Crossref] [PubMed]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Letters 10, 2342–2348 (2010).
[Crossref] [PubMed]

Mock, J. J.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Letters 8, 2245–2252 (2008).
[Crossref] [PubMed]

J. J. Mock, D. R. Smith, and S. Schultz, “Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles,” Nano Letters 3, 485–491 (2003).
[Crossref]

Munárriz, J.

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical Nanoantennas with Tunable Radiation Patterns,” Nano Letters 13, 444–450 (2013).
[Crossref] [PubMed]

Nordlander, P.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chemical Reviews 111, 3913–3961 (2011).
[Crossref] [PubMed]

P. Nordlander and E. Prodan, “Plasmon Hybridization in Nanoparticles near Metallic Surfaces,” Nano Letters 4, 2209–2213 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Advances in Optics and Photonics 1, 438–483 (2009).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University, 2006).
[Crossref]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical Reviews 108, 494–521 (2008).
[Crossref] [PubMed]

Ordal, M. A.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied optics 24, 4493–4499 (1985).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Passinger, S.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Optics Express 15, 16667–16680 (2007).
[Crossref] [PubMed]

Paulus, M.

M. Paulus, P. Gay-Balmaz, and O. Martin, “Accurate and efficient computation of the Greens tensor for stratified media,” Physical Review E 62, 5797–5807 (2000).
[Crossref]

Pavlov, R. S.

R. S. Pavlov, A. G. Curto, and N. F. van Hulst, “Log-periodic optical antennas with broadband directivity,” Optics Communications 285, 3334–3340 (2012).
[Crossref]

Piliarik, M.

M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Optics Express 19, 9213–9220 (2011).
[Crossref] [PubMed]

Polman, A.

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Optics Express 16, 19001–19017 (2008).
[Crossref]

A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Physical Review B 76, 201403 (2007).
[Crossref]

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays,” Nano Letters 7, 2004–2008 (2007).
[Crossref]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Physical Review B 74, 033402 (2006).
[Crossref]

Prangsma, J. C.

A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Physical Review B 76, 201403 (2007).
[Crossref]

Prodan, E.

P. Nordlander and E. Prodan, “Plasmon Hybridization in Nanoparticles near Metallic Surfaces,” Nano Letters 4, 2209–2213 (2004).
[Crossref]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Querry, M. R.

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied optics 24, 4493–4499 (1985).
[Crossref] [PubMed]

Quidant, R.

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Optics Express 15, 10533–10539 (2007).
[Crossref] [PubMed]

Quinten, M.

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Optics Letters 23, 1331–1333 (1998).
[Crossref]

Radke, J. W.

C. Lemke, T. Leißner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The Interplay between Localized and Propagating Plasmonic Excitations tracked in Space and Time,” Nano Letters 14, 2431–2435 (2014).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

Ramakrishna, S. A.

A. Farhang, S. A. Ramakrishna, and O. J. F. Martin, “Compound resonance-induced coupling effects in composite plasmonic metamaterials,” Optics Express 20, 29447–29456 (2012).
[Crossref]

Rasskazov, I. L.

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,”, Physical Review B 90, 075405 (2014).
[Crossref]

Reinhardt, C.

C. Lemke, T. Leißner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The Interplay between Localized and Propagating Plasmonic Excitations tracked in Space and Time,” Nano Letters 14, 2431–2435 (2014).
[Crossref] [PubMed]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Optics Express 15, 16667–16680 (2007).
[Crossref] [PubMed]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[Crossref] [PubMed]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical Reviews 108, 494–521 (2008).
[Crossref] [PubMed]

Rubahn, H.-G.

C. Lemke, T. Leißner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The Interplay between Localized and Propagating Plasmonic Excitations tracked in Space and Time,” Nano Letters 14, 2431–2435 (2014).
[Crossref] [PubMed]

Salas-Montiel, R.

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2, 24–30 (2007).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

Schultz, S.

J. J. Mock, D. R. Smith, and S. Schultz, “Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles,” Nano Letters 3, 485–491 (2003).
[Crossref]

Shin, H.

H. Shin and S. Fan, “All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure,” Physical Review Letters 96, 073907 (2006).
[Crossref] [PubMed]

Simsek, E.

K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Optics Express 15, 17482–17493 (2007).
[Crossref] [PubMed]

Smith, D. R.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Letters 8, 2245–2252 (2008).
[Crossref] [PubMed]

J. J. Mock, D. R. Smith, and S. Schultz, “Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles,” Nano Letters 3, 485–491 (2003).
[Crossref]

Stepanov, A. L.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Optics Express 15, 16667–16680 (2007).
[Crossref] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical Reviews 108, 494–521 (2008).
[Crossref] [PubMed]

Tellez-Limon, R.

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2, 24–30 (2007).
[Crossref]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical Reviews 108, 494–521 (2008).
[Crossref] [PubMed]

Togan, E.

K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Optics Express 15, 17482–17493 (2007).
[Crossref] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
[Crossref]

van Hulst, N. F.

R. S. Pavlov, A. G. Curto, and N. F. van Hulst, “Log-periodic optical antennas with broadband directivity,” Optics Communications 285, 3334–3340 (2012).
[Crossref]

Verhagen, E.

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Optics Express 16, 19001–19017 (2008).
[Crossref]

Weber, W. H.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Physical Review B 70, 125429 (2004).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Letters 10, 2342–2348 (2010).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

Willingham, B.

B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Optics Express 19, 6450–6461 (2011).
[Crossref] [PubMed]

Wokaun, A.

M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Optics Letters 8, 581–583 (1983).
[Crossref] [PubMed]

Yan, J.-Y.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Physical Review B 77, 165301 (2008).
[Crossref]

Yang, T.

T. Yang and K. B. Crozier, “Analysis of surface plasmon waves in metal-dielectric-metal structures and the criterion for negative refractive index,” Optics Express 17, 1136–1143 (2009).
[Crossref]

K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Optics Express 15, 17482–17493 (2007).
[Crossref] [PubMed]

Zauscher, S.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Letters 8, 2245–2252 (2008).
[Crossref] [PubMed]

Zhang, W.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Physical Review B 77, 165301 (2008).
[Crossref]

Zhao, X.-G.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Physical Review B 77, 165301 (2008).
[Crossref]

Advances in Optics and Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Advances in Optics and Photonics 1, 438–483 (2009).
[Crossref]

Applied optics (1)

M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Applied optics 24, 4493–4499 (1985).
[Crossref] [PubMed]

Chemical Reviews (2)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chemical Reviews 111, 3913–3961 (2011).
[Crossref] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chemical Reviews 108, 494–521 (2008).
[Crossref] [PubMed]

Laser Physics Letters (1)

A. B. Evlyukhin and S. I. Bozhevolnyi, “Surface plasmon polariton guiding by chains of nanoparticles,” Laser Physics Letters 3, 396–400 (2006).
[Crossref]

Nano Letters (10)

C. Lemke, T. Leißner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The Interplay between Localized and Propagating Plasmonic Excitations tracked in Space and Time,” Nano Letters 14, 2431–2435 (2014).
[Crossref] [PubMed]

R. de Waele, A. F. Koenderink, and A. Polman, “Tunable Nanoscale Localization of Energy on Plasmon Particle Arrays,” Nano Letters 7, 2004–2008 (2007).
[Crossref]

A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Frequency-controlled localization of optical signals in graded plasmonic chains,” Nano Letters 8, 2369–2372 (2008).
[Crossref] [PubMed]

J. J. Mock, D. R. Smith, and S. Schultz, “Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles,” Nano Letters 3, 485–491 (2003).
[Crossref]

J. Munárriz, A. V. Malyshev, V. A. Malyshev, and J. Knoester, “Optical Nanoantennas with Tunable Radiation Patterns,” Nano Letters 13, 444–450 (2013).
[Crossref] [PubMed]

P. Nordlander and E. Prodan, “Plasmon Hybridization in Nanoparticles near Metallic Surfaces,” Nano Letters 4, 2209–2213 (2004).
[Crossref]

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Letters 8, 2245–2252 (2008).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Letters 10, 2342–2348 (2010).
[Crossref] [PubMed]

A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Letters 9, 4228–4233 (2009).
[Crossref] [PubMed]

D. S. Citrin, “Plasmon polaritons in finite-length metal-nanoparticle chains: the role of chain length unravelled,” Nano Letters 5, 985–989 (2005).
[Crossref] [PubMed]

Nature (1)

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Nature Materials (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials 9, 193–204 (2010).
[Crossref] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229–232 (2003).
[Crossref] [PubMed]

Nature Photonics (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photonics 5, 83–90 (2011).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics 4, 83–91 (2010).
[Crossref]

Optics Communications (1)

R. S. Pavlov, A. G. Curto, and N. F. van Hulst, “Log-periodic optical antennas with broadband directivity,” Optics Communications 285, 3334–3340 (2012).
[Crossref]

Optics Express (9)

M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Optics Express 19, 9213–9220 (2011).
[Crossref] [PubMed]

G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Optics Express 14, 9971–9981 (2006).
[Crossref] [PubMed]

B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant plasmon modes,” Optics Express 19, 6450–6461 (2011).
[Crossref] [PubMed]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Optics Express 15, 16667–16680 (2007).
[Crossref] [PubMed]

K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Optics Express 15, 17482–17493 (2007).
[Crossref] [PubMed]

A. Farhang, S. A. Ramakrishna, and O. J. F. Martin, “Compound resonance-induced coupling effects in composite plasmonic metamaterials,” Optics Express 20, 29447–29456 (2012).
[Crossref]

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Optics Express 15, 10533–10539 (2007).
[Crossref] [PubMed]

J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries,” Optics Express 16, 19001–19017 (2008).
[Crossref]

T. Yang and K. B. Crozier, “Analysis of surface plasmon waves in metal-dielectric-metal structures and the criterion for negative refractive index,” Optics Express 17, 1136–1143 (2009).
[Crossref]

Optics Letters (6)

K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Optics Letters 32, 973–975 (2007).
[Crossref] [PubMed]

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Optics Letters 34, 244–246 (2009).
[Crossref] [PubMed]

J.-W. Dong and Z.-L. Deng, “Direct eigenmode analysis of plasmonic modes in metal nanoparticle chain with layered medium,” Optics Letters 38, 2244–2246 (2013).
[Crossref] [PubMed]

M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Optics Letters 8, 581–583 (1983).
[Crossref] [PubMed]

A. Farhang, N. Bigler, and O. J. F. Martin, “Coupling of multiple LSP and SPP resonances: interactions between an elongated nanoparticle and a thin metallic film,” Optics Letters 38, 4758–4761 (2013).
[Crossref] [PubMed]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Optics Letters 23, 1331–1333 (1998).
[Crossref]

Photonics Research (1)

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photonics Research 2, 24–30 (2007).
[Crossref]

Physical Review B (10)

A. F. Koenderink, R. de Waele, J. C. Prangsma, and A. Polman, “Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides,” Physical Review B 76, 201403 (2007).
[Crossref]

A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Physical Review B 71, 134304 (2005).
[Crossref]

P. J. Compaijen, V. A. Malyshev, and J. Knoester, “Surface-mediated light transmission in metal nanoparticle chains,” Physical Review B 87, 205437 (2013).
[Crossref]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Physical Review B 77, 165301 (2008).
[Crossref]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Physical Review B 67, 205402 (2003).
[Crossref]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Physical Review B 74, 205436 (2006).
[Crossref]

I. L. Rasskazov, S. V. Karpov, and V. A. Markel, “Surface plasmon polaritons in curved chains of metal nanoparticles,”, Physical Review B 90, 075405 (2014).
[Crossref]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Physical Review B 62, R16356 (2000).
[Crossref]

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Physical Review B 70, 125429 (2004).
[Crossref]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Physical Review B 74, 033402 (2006).
[Crossref]

Physical Review E (1)

M. Paulus, P. Gay-Balmaz, and O. Martin, “Accurate and efficient computation of the Greens tensor for stratified media,” Physical Review E 62, 5797–5807 (2000).
[Crossref]

Physical Review Letters (1)

H. Shin and S. Fan, “All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure,” Physical Review Letters 96, 073907 (2006).
[Crossref] [PubMed]

Physics-Uspekhi (1)

V. M. Agranovich and Y. N. Gartstein, “Spatial dispersion and negative refraction of light,” Physics-Uspekhi 49, 1029–1044 (2006).
[Crossref]

Science (3)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Other (6)

S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, 2007).

L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University, 2006).
[Crossref]

V. Agranovich, Excitations in Organic Solids,, International Series of Monographs on Physics (Oxford University, 2008).
[Crossref]

W. C. Chew, Waves and Fields in Inhomogeneous Media, (IEEE, 1999).
[Crossref]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, 1998).
[Crossref]

J. D. Jackson, Classical Electrodynamics, (John Wiley & Sons, 1998).

Supplementary Material (3)

» Media 1: MP4 (449 KB)     
» Media 2: MP4 (442 KB)     
» Media 3: MP4 (505 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A schematic illustration of the considered system: a linear chain of equally spaced, identical silver nanospheres, embedded in medium 1, situated above and parallel to a metallic substrate (medium 2).
Fig. 2
Fig. 2 Dispersion relations for non-interacting chain and substrate plasmons are shown, excluding (left panel) and including (right panel) retardation. These relations are obtained by solving Eq. (3) with N = 20, r = 25, d = 75, h = 50 nm, and ε1 = 2.25 (glass). The substrate is described by a Drude model with ωp = 6.00 rad/fs and γ = 0.0835 rad/fs. ωsp is the non-propagating surface plasmon (SP) of the substrate, given by ωp(1 + ε1)−1/2. The wavevector q runs from 0 to π/d, the edge of the first Brillouin zone.
Fig. 3
Fig. 3 Dispersion relations of a chain of silver MNPs, with r = 25, d = 75, h = 50 nm, and ε1 = 2.25, calculated using the eigendecomposition method. Plotted is Im[α̃] on a logarithmic scale as a function of the frequency ω and quasi-wavevector q. The left column of b) and c) shows the result for x-polarization for two specific plasma frequencies, the middle column for y-polarization and the right column for z-polarization. Animations presenting these dispersion relations for a wide range of plasma frequencies for x ( Media 1), y ( Media 2) and z-polarization ( Media 3) can be found in the supplementary material. The solid white line gives the substrate surface plasmon polariton (SPP) dispersion. The steep dashed and dotted horizontal lines represent the light line and the substrate surface plasmon (SP), respectively. The ripples that occur close to the light line for the transverse mode of the isolated chain, result from the fact that a finite, but very long, chain is used for the calculations. Close to the light line the slowly decaying radiative interactions are very important and effects of the finiteness of chain can be seen. The labels AS, S, ‖ and ⊥ refer to the sign of the coupling and the polarization of the hybrid polaritons, explained in more detail in Fig. 4. The wavevector q runs from 0 to π/d, the edge of the first Brillouin zone.
Fig. 4
Fig. 4 Hybridization diagram for the plasmons of an MNP and a metal substrate. The black and blurred arrows indicate the polarization of the induced charge distributions in the MNP and substrate, respectively. It is shown that the LSP of the MNP hybridizes with the SP of the substrate into a symmetric (S) and anti-symmetric (AS) mode. The sign of the interaction is different for polarization parallel (‖) or perpendicular (⊥) to the substrate.
Fig. 5
Fig. 5 a) Similar to Fig. 3, but now for a Platinum substrate (ωp = 7.81 rad/fs, γ = 0.1051 1/fs [55]). The full first Brillouin zone is shown for the x-polarized mode. b) The x-component of the Poynting vector (i.e. parallel to the chain axis) is plotted over a surface perpendicular to the chain axis, bisecting the chain between two neighboring particles. Mode A corresponds to a point on the lower branch with a negative wavevector, mode B to a point on the upper branch with a positive wavevector (also indicated in a)). The integrated value of the energy flux of mode B is about 4 times larger than that of mode A, and both values are positive. Mode A has opposite phase and energy flux, and therefore, it is a negative index mode.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1 α ( ω ) = 1 α ( 0 ) ( ω ) k 1 2 a 2 i 3 k 1 3 ,
α ( 0 ) ( ω ) = ε ( ω ) ε 1 ε ( ω ) + 2 ε 1 a 3 .
1 ε 1 m [ 1 α δ n m I ^ k 1 2 ( G ^ 0 ( ω ; r n , r m ) + G ^ refl ( ω ; r n , r m ) ) ] p m = E n ext .
G ^ 0 ( ω ; r n , r m ) = [ I ^ + k 1 2 ] exp ( i k 1 | r n r m | ) | r n r m | .
1 ε 1 [ 1 α I ^ k 1 2 m = ( G ^ 0 ( ω ; 0 x ^ , m d x ^ ) + G ^ refl ( ω ; 0 x ^ , m d x ^ ) ) e i q m d ] p = E ext .
S = 1 2 Re [ E × H * ] , with E = k i 2 ε i G ^ p , H = i ω [ × G ^ ] p .

Metrics