Abstract

Racetrack-based modulator of increased linearity for optical links is presented and analyzed. The modulator is referred to as FLAME - Finer Linearity Amplitude Modulation Element. Linearity is improved via the introduction of a Double Injection approach. Large spurious-free-dynamic-range (SFDR) of 132dB·Hz4/5 can thus be theoretically obtained. The FLAME is studied for silicon platform and requires small footprint size (100 × 50µm2) and low operation voltage, 2.5V. This makes the FLAME an appealing candidate for large scale integration in RF photonics.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly linear ring modulator from hybrid silicon and lithium niobate

Li Chen, Jiahong Chen, Jonathan Nagy, and Ronald M. Reano
Opt. Express 23(10) 13255-13264 (2015)

Linearized silicon modulator based on a ring assisted Mach Zehnder inteferometer

Jaime Cardenas, Paul A. Morton, Jacob B. Khurgin, Austin Griffith, Carl B. Poitras, Kyle Preston, and Michal Lipson
Opt. Express 21(19) 22549-22557 (2013)

Ultralinear heterogeneously integrated ring-assisted Mach–Zehnder interferometer modulator on silicon

Chong Zhang, Paul A. Morton, Jacob B. Khurgin, Jon D. Peters, and John E. Bowers
Optica 3(12) 1483-1488 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  2. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [Crossref] [PubMed]
  3. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
    [Crossref] [PubMed]
  4. J. Ding, S. Member, R. Ji, L. Zhang, and L. Yang, “Electro-Optical Response Analysis of a 40 Gb / s Silicon Mach-Zehnder Optical Modulator,” J. Lightwave Technol. 31, 2434–2440 (2013).
  5. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  6. M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21(3), 3818–3825 (2013).
    [Crossref] [PubMed]
  7. T. Ismail and C. Liu, “High-dynamic-range wireless-over-fiber link using feedforward linearization,” IEEE Technol. J. 25, 3274–3282 (2007).
  8. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE T. Microw. Theory 54(2), 906–920 (2006).
    [Crossref]
  9. J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE T. Microw. Theory 45(8), 1390–1397 (1997).
    [Crossref]
  10. E. Ackerman and A. Daryoush, “Broad-band external modulation fiber-optic links for antenna-remoting applications,” IEEE T. Microw. Theory 45(8), 1436–1442 (1997).
    [Crossref]
  11. A.-R. H and K. S, Radio over Fiber Technologies for Mobile Comm (Artech House, 2002).
  12. M. Sauer, A. Kobyakov, and J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25(11), 3301–3320 (2007).
    [Crossref]
  13. S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol. 20(5), 886–891 (2002).
    [Crossref]
  14. W. Bridges and J. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE T. Microw. Theory 43(9), 2184–2197 (1995).
    [Crossref]
  15. F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
    [Crossref]
  16. A. Karim and J. Devenport, “Noise Figure Reduction in Externally Modulated Analog Fiber-Optic Links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
    [Crossref]
  17. H. Tazawa and W. Steier, “Bandwidth of linearized ring resonator assisted Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(9), 1851–1853 (2005).
    [Crossref]
  18. B. Dingel, N. Madamopoulos, A. Prescod, and R. Madabhushi, “Analytical model, analysis and parameter optimization of a super linear electro-optic modulator (SFDR>130dB),” Opt. Commun. 284(24), 5578–5587 (2011).
    [Crossref]
  19. P. Yue, X. Yi, Q.-N. Li, T. Wang, and Z.-J. Liu, “MMI-based ultra linear electro-optic modulator with high output RF gain,” Int. J. Light Electron Opt. 124(17), 2623–2626 (2013).
    [Crossref]
  20. A. Gutierrez and J. Galan, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in International Conference on Group IV Photonics (GFP) (2012), Vol. 4, pp. 57–59.
  21. D. M. Gill, S. S. Patel, M. Rasras, A. E. White, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-Compatible Si-Ring-Assisted Mach–Zehnder Interferometer With Internal Bandwidth Equalization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 45–52 (2010).
  22. J. Cardenas, P. A. Morton, J. B. Khurgin, A. Griffith, C. B. Poitras, K. Preston, and M. Lipson, “Linearized silicon modulator based on a ring assisted Mach Zehnder inteferometer,” Opt. Express 21(19), 22549–22557 (2013).
    [Crossref] [PubMed]
  23. M. Song, L. Zhang, S. Member, R. G. Beausoleil, S. Member, and A. E. Willner, “Nonlinear Distortion in a Silicon Microring-Based Electro-Optic Modulator for Analog Optical Links,” IEEE J. Sel. Top. Quantum Electron. 16, 185–191 (2010).
  24. A. Ayazi, T. Baehr-Jones, Y. Liu, A. E.-J. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express 20(12), 13115–13122 (2012).
    [Crossref] [PubMed]
  25. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, R. Cohen, N. Izhaky, J. Basak, and M. J. Paniccia, “Recent advances in high speed silicon optical modulator,” Proc. SPIE 6477, 647710 (2007).
  26. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  27. V. Passaro and F. Dell’Olio, “Scaling and optimization of MOS optical modulators in nanometer SOI waveguides,” IEEE Trans. NanoTechnol. 7(4), 401–408 (2008).
    [Crossref]
  28. L. Zhang, S. Member, Y. Li, J. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-Based Microring Resonator Modulators for,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
    [Crossref]
  29. C. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration,” J. Appl. Phys. 96(11), 6008 (2004).
    [Crossref]
  30. F. Gardes, G. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005).
    [Crossref] [PubMed]
  31. M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
    [Crossref] [PubMed]
  32. C. Barrios, “Electrooptic modulation of multisilicon-on-insulator photonic wires,” J. Lightwave Technol. 24(5), 2146–2155 (2006).
    [Crossref]
  33. D. Samara-Rubio and M. Paniccia, “Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator,” IEEE J. Sel. Top. Quantum Electron. 11(2), 367–372 (2005).
    [Crossref]
  34. H. Yamada and T. Chu, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
    [Crossref]
  35. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321 (2000).
    [Crossref]
  36. K. Ho and J. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” Photonics Technol. Lett. IEEE 5, (1993).
  37. A. Yariv and P. Yeh, Optical Waves in Crystals : Propagation and Control of Laser Radiation (1984), Vol. 12, p. xi, 589 p.
  38. F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express 14(9), 3872–3886 (2006).
    [Crossref] [PubMed]

2013 (5)

2012 (1)

2011 (1)

B. Dingel, N. Madamopoulos, A. Prescod, and R. Madabhushi, “Analytical model, analysis and parameter optimization of a super linear electro-optic modulator (SFDR>130dB),” Opt. Commun. 284(24), 5578–5587 (2011).
[Crossref]

2010 (4)

D. M. Gill, S. S. Patel, M. Rasras, A. E. White, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-Compatible Si-Ring-Assisted Mach–Zehnder Interferometer With Internal Bandwidth Equalization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 45–52 (2010).

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

M. Song, L. Zhang, S. Member, R. G. Beausoleil, S. Member, and A. E. Willner, “Nonlinear Distortion in a Silicon Microring-Based Electro-Optic Modulator for Analog Optical Links,” IEEE J. Sel. Top. Quantum Electron. 16, 185–191 (2010).

L. Zhang, S. Member, Y. Li, J. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-Based Microring Resonator Modulators for,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

2009 (1)

2008 (1)

V. Passaro and F. Dell’Olio, “Scaling and optimization of MOS optical modulators in nanometer SOI waveguides,” IEEE Trans. NanoTechnol. 7(4), 401–408 (2008).
[Crossref]

2007 (4)

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, R. Cohen, N. Izhaky, J. Basak, and M. J. Paniccia, “Recent advances in high speed silicon optical modulator,” Proc. SPIE 6477, 647710 (2007).

A. Karim and J. Devenport, “Noise Figure Reduction in Externally Modulated Analog Fiber-Optic Links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
[Crossref]

M. Sauer, A. Kobyakov, and J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25(11), 3301–3320 (2007).
[Crossref]

T. Ismail and C. Liu, “High-dynamic-range wireless-over-fiber link using feedforward linearization,” IEEE Technol. J. 25, 3274–3282 (2007).

2006 (4)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE T. Microw. Theory 54(2), 906–920 (2006).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

C. Barrios, “Electrooptic modulation of multisilicon-on-insulator photonic wires,” J. Lightwave Technol. 24(5), 2146–2155 (2006).
[Crossref]

F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express 14(9), 3872–3886 (2006).
[Crossref] [PubMed]

2005 (5)

D. Samara-Rubio and M. Paniccia, “Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator,” IEEE J. Sel. Top. Quantum Electron. 11(2), 367–372 (2005).
[Crossref]

H. Yamada and T. Chu, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[Crossref]

F. Gardes, G. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

H. Tazawa and W. Steier, “Bandwidth of linearized ring resonator assisted Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(9), 1851–1853 (2005).
[Crossref]

2004 (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

C. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration,” J. Appl. Phys. 96(11), 6008 (2004).
[Crossref]

2002 (1)

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol. 20(5), 886–891 (2002).
[Crossref]

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321 (2000).
[Crossref]

1997 (2)

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE T. Microw. Theory 45(8), 1390–1397 (1997).
[Crossref]

E. Ackerman and A. Daryoush, “Broad-band external modulation fiber-optic links for antenna-remoting applications,” IEEE T. Microw. Theory 45(8), 1436–1442 (1997).
[Crossref]

1995 (1)

W. Bridges and J. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE T. Microw. Theory 43(9), 2184–2197 (1995).
[Crossref]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Ackerman, E.

E. Ackerman and A. Daryoush, “Broad-band external modulation fiber-optic links for antenna-remoting applications,” IEEE T. Microw. Theory 45(8), 1436–1442 (1997).
[Crossref]

Ackerman, E. I.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE T. Microw. Theory 54(2), 906–920 (2006).
[Crossref]

Ansheng Liu,

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Ayazi, A.

Baehr-Jones, T.

Barrios, C.

C. Barrios, “Electrooptic modulation of multisilicon-on-insulator photonic wires,” J. Lightwave Technol. 24(5), 2146–2155 (2006).
[Crossref]

C. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration,” J. Appl. Phys. 96(11), 6008 (2004).
[Crossref]

Basak, J.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, R. Cohen, N. Izhaky, J. Basak, and M. J. Paniccia, “Recent advances in high speed silicon optical modulator,” Proc. SPIE 6477, 647710 (2007).

Beattie, J.

D. M. Gill, S. S. Patel, M. Rasras, A. E. White, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-Compatible Si-Ring-Assisted Mach–Zehnder Interferometer With Internal Bandwidth Equalization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 45–52 (2010).

Beausoleil, R. G.

M. Song, L. Zhang, S. Member, R. G. Beausoleil, S. Member, and A. E. Willner, “Nonlinear Distortion in a Silicon Microring-Based Electro-Optic Modulator for Analog Optical Links,” IEEE J. Sel. Top. Quantum Electron. 16, 185–191 (2010).

L. Zhang, S. Member, Y. Li, J. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-Based Microring Resonator Modulators for,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Betts, G. E.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE T. Microw. Theory 54(2), 906–920 (2006).
[Crossref]

Bridges, W.

W. Bridges and J. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE T. Microw. Theory 43(9), 2184–2197 (1995).
[Crossref]

Cardenas, J.

Carothers, D.

D. M. Gill, S. S. Patel, M. Rasras, A. E. White, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-Compatible Si-Ring-Assisted Mach–Zehnder Interferometer With Internal Bandwidth Equalization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 45–52 (2010).

Chee, E. K. S.

Chetrit, Y.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, R. Cohen, N. Izhaky, J. Basak, and M. J. Paniccia, “Recent advances in high speed silicon optical modulator,” Proc. SPIE 6477, 647710 (2007).

Chu, T.

H. Yamada and T. Chu, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[Crossref]

Ciftcioglu, B.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, R. Cohen, N. Izhaky, J. Basak, and M. J. Paniccia, “Recent advances in high speed silicon optical modulator,” Proc. SPIE 6477, 647710 (2007).

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Cohen, R.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, R. Cohen, N. Izhaky, J. Basak, and M. J. Paniccia, “Recent advances in high speed silicon optical modulator,” Proc. SPIE 6477, 647710 (2007).

Cox, C. H.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE T. Microw. Theory 54(2), 906–920 (2006).
[Crossref]

Daryoush, A.

E. Ackerman and A. Daryoush, “Broad-band external modulation fiber-optic links for antenna-remoting applications,” IEEE T. Microw. Theory 45(8), 1436–1442 (1997).
[Crossref]

Dell’Olio, F.

V. Passaro and F. Dell’Olio, “Scaling and optimization of MOS optical modulators in nanometer SOI waveguides,” IEEE Trans. NanoTechnol. 7(4), 401–408 (2008).
[Crossref]

Devenport, J.

A. Karim and J. Devenport, “Noise Figure Reduction in Externally Modulated Analog Fiber-Optic Links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
[Crossref]

Ding, J.

Ding, R.

Dingel, B.

B. Dingel, N. Madamopoulos, A. Prescod, and R. Madabhushi, “Analytical model, analysis and parameter optimization of a super linear electro-optic modulator (SFDR>130dB),” Opt. Commun. 284(24), 5578–5587 (2011).
[Crossref]

Dubovitsky, S.

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol. 20(5), 886–891 (2002).
[Crossref]

Emerson, N.

Fan, J. C.

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE T. Microw. Theory 45(8), 1390–1397 (1997).
[Crossref]

Gardes, F.

George, J.

Gill, D. M.

D. M. Gill, S. S. Patel, M. Rasras, A. E. White, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-Compatible Si-Ring-Assisted Mach–Zehnder Interferometer With Internal Bandwidth Equalization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 45–52 (2010).

Griffith, A.

Hill, C. M.

D. M. Gill, S. S. Patel, M. Rasras, A. E. White, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-Compatible Si-Ring-Assisted Mach–Zehnder Interferometer With Internal Bandwidth Equalization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 45–52 (2010).

Hochberg, M.

Ismail, T.

T. Ismail and C. Liu, “High-dynamic-range wireless-over-fiber link using feedforward linearization,” IEEE Technol. J. 25, 3274–3282 (2007).

Izhaky, N.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, R. Cohen, N. Izhaky, J. Basak, and M. J. Paniccia, “Recent advances in high speed silicon optical modulator,” Proc. SPIE 6477, 647710 (2007).

Jalali, B.

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol. 20(5), 886–891 (2002).
[Crossref]

Ji, R.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Kamocsai, R. L.

D. M. Gill, S. S. Patel, M. Rasras, A. E. White, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-Compatible Si-Ring-Assisted Mach–Zehnder Interferometer With Internal Bandwidth Equalization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 45–52 (2010).

Karim, A.

A. Karim and J. Devenport, “Noise Figure Reduction in Externally Modulated Analog Fiber-Optic Links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
[Crossref]

Kazovsky, L. G.

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE T. Microw. Theory 45(8), 1390–1397 (1997).
[Crossref]

Khurgin, J. B.

Kobyakov, A.

Kuramochi, E.

Li, Q.-N.

P. Yue, X. Yi, Q.-N. Li, T. Wang, and Z.-J. Liu, “MMI-based ultra linear electro-optic modulator with high output RF gain,” Int. J. Light Electron Opt. 124(17), 2623–2626 (2013).
[Crossref]

Li, Y.

L. Zhang, S. Member, Y. Li, J. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-Based Microring Resonator Modulators for,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

Liao, L.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, R. Cohen, N. Izhaky, J. Basak, and M. J. Paniccia, “Recent advances in high speed silicon optical modulator,” Proc. SPIE 6477, 647710 (2007).

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Lim, A. E.-J.

Ling Liao, M.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Lipson, M.

J. Cardenas, P. A. Morton, J. B. Khurgin, A. Griffith, C. B. Poitras, K. Preston, and M. Lipson, “Linearized silicon modulator based on a ring assisted Mach Zehnder inteferometer,” Opt. Express 21(19), 22549–22557 (2013).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

C. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration,” J. Appl. Phys. 96(11), 6008 (2004).
[Crossref]

Liu, A.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, R. Cohen, N. Izhaky, J. Basak, and M. J. Paniccia, “Recent advances in high speed silicon optical modulator,” Proc. SPIE 6477, 647710 (2007).

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Liu, C.

T. Ismail and C. Liu, “High-dynamic-range wireless-over-fiber link using feedforward linearization,” IEEE Technol. J. 25, 3274–3282 (2007).

Liu, Y.

Liu, Z.-J.

P. Yue, X. Yi, Q.-N. Li, T. Wang, and Z.-J. Liu, “MMI-based ultra linear electro-optic modulator with high output RF gain,” Int. J. Light Electron Opt. 124(17), 2623–2626 (2013).
[Crossref]

Lo, G.-Q.

Lo, P. G.-Q.

Lu, C. L.

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE T. Microw. Theory 45(8), 1390–1397 (1997).
[Crossref]

Ma, Y.

Madabhushi, R.

B. Dingel, N. Madamopoulos, A. Prescod, and R. Madabhushi, “Analytical model, analysis and parameter optimization of a super linear electro-optic modulator (SFDR>130dB),” Opt. Commun. 284(24), 5578–5587 (2011).
[Crossref]

Madamopoulos, N.

B. Dingel, N. Madamopoulos, A. Prescod, and R. Madabhushi, “Analytical model, analysis and parameter optimization of a super linear electro-optic modulator (SFDR>130dB),” Opt. Commun. 284(24), 5578–5587 (2011).
[Crossref]

Member, S.

J. Ding, S. Member, R. Ji, L. Zhang, and L. Yang, “Electro-Optical Response Analysis of a 40 Gb / s Silicon Mach-Zehnder Optical Modulator,” J. Lightwave Technol. 31, 2434–2440 (2013).

L. Zhang, S. Member, Y. Li, J. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-Based Microring Resonator Modulators for,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

M. Song, L. Zhang, S. Member, R. G. Beausoleil, S. Member, and A. E. Willner, “Nonlinear Distortion in a Silicon Microring-Based Electro-Optic Modulator for Analog Optical Links,” IEEE J. Sel. Top. Quantum Electron. 16, 185–191 (2010).

M. Song, L. Zhang, S. Member, R. G. Beausoleil, S. Member, and A. E. Willner, “Nonlinear Distortion in a Silicon Microring-Based Electro-Optic Modulator for Analog Optical Links,” IEEE J. Sel. Top. Quantum Electron. 16, 185–191 (2010).

Mirshafiei, M.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Morton, P. A.

Nguyen, H.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, R. Cohen, N. Izhaky, J. Basak, and M. J. Paniccia, “Recent advances in high speed silicon optical modulator,” Proc. SPIE 6477, 647710 (2007).

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Nishiguchi, K.

Notomi, M.

Novack, A.

Paniccia,

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Paniccia, M.

D. Samara-Rubio and M. Paniccia, “Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator,” IEEE J. Sel. Top. Quantum Electron. 11(2), 367–372 (2005).
[Crossref]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Paniccia, M. J.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, R. Cohen, N. Izhaky, J. Basak, and M. J. Paniccia, “Recent advances in high speed silicon optical modulator,” Proc. SPIE 6477, 647710 (2007).

Passaro, V.

V. Passaro and F. Dell’Olio, “Scaling and optimization of MOS optical modulators in nanometer SOI waveguides,” IEEE Trans. NanoTechnol. 7(4), 401–408 (2008).
[Crossref]

Patel, S. S.

D. M. Gill, S. S. Patel, M. Rasras, A. E. White, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-Compatible Si-Ring-Assisted Mach–Zehnder Interferometer With Internal Bandwidth Equalization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 45–52 (2010).

Png, C.

Poitras, C. B.

Pomerene, A.

D. M. Gill, S. S. Patel, M. Rasras, A. E. White, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-Compatible Si-Ring-Assisted Mach–Zehnder Interferometer With Internal Bandwidth Equalization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 45–52 (2010).

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Prescod, A.

B. Dingel, N. Madamopoulos, A. Prescod, and R. Madabhushi, “Analytical model, analysis and parameter optimization of a super linear electro-optic modulator (SFDR>130dB),” Opt. Commun. 284(24), 5578–5587 (2011).
[Crossref]

Preston, K.

Prince, J. L.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE T. Microw. Theory 54(2), 906–920 (2006).
[Crossref]

Rasras, M.

D. M. Gill, S. S. Patel, M. Rasras, A. E. White, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-Compatible Si-Ring-Assisted Mach–Zehnder Interferometer With Internal Bandwidth Equalization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 45–52 (2010).

Reed, G.

Rubin, D.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, R. Cohen, N. Izhaky, J. Basak, and M. J. Paniccia, “Recent advances in high speed silicon optical modulator,” Proc. SPIE 6477, 647710 (2007).

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Rusch, L. A.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Samara-Rubio, D.

D. Samara-Rubio and M. Paniccia, “Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator,” IEEE J. Sel. Top. Quantum Electron. 11(2), 367–372 (2005).
[Crossref]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Sauer, M.

Schaffner, J.

W. Bridges and J. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE T. Microw. Theory 43(9), 2184–2197 (1995).
[Crossref]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Sekaric, L.

Song, M.

L. Zhang, S. Member, Y. Li, J. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-Based Microring Resonator Modulators for,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

M. Song, L. Zhang, S. Member, R. G. Beausoleil, S. Member, and A. E. Willner, “Nonlinear Distortion in a Silicon Microring-Based Electro-Optic Modulator for Analog Optical Links,” IEEE J. Sel. Top. Quantum Electron. 16, 185–191 (2010).

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Steier, W.

H. Tazawa and W. Steier, “Bandwidth of linearized ring resonator assisted Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(9), 1851–1853 (2005).
[Crossref]

Steier, W. H.

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol. 20(5), 886–891 (2002).
[Crossref]

Streshinsky, M.

Tanabe, T.

Tazawa, H.

H. Tazawa and W. Steier, “Bandwidth of linearized ring resonator assisted Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(9), 1851–1853 (2005).
[Crossref]

Tu, X.

Vacondio, F.

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

Vlasov, Y. A.

Wang, T.

P. Yue, X. Yi, Q.-N. Li, T. Wang, and Z.-J. Liu, “MMI-based ultra linear electro-optic modulator with high output RF gain,” Int. J. Light Electron Opt. 124(17), 2623–2626 (2013).
[Crossref]

White, A. E.

D. M. Gill, S. S. Patel, M. Rasras, A. E. White, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-Compatible Si-Ring-Assisted Mach–Zehnder Interferometer With Internal Bandwidth Equalization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 45–52 (2010).

Willner, A. E.

M. Song, L. Zhang, S. Member, R. G. Beausoleil, S. Member, and A. E. Willner, “Nonlinear Distortion in a Silicon Microring-Based Electro-Optic Modulator for Analog Optical Links,” IEEE J. Sel. Top. Quantum Electron. 16, 185–191 (2010).

L. Zhang, S. Member, Y. Li, J. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-Based Microring Resonator Modulators for,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

Xia, F.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Xuan, Z.

Yamada, H.

H. Yamada and T. Chu, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[Crossref]

Yang, J.

L. Zhang, S. Member, Y. Li, J. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-Based Microring Resonator Modulators for,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

Yang, L.

Yang, Y.

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321 (2000).
[Crossref]

Yegnanarayanan, S.

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol. 20(5), 886–891 (2002).
[Crossref]

Yi, X.

P. Yue, X. Yi, Q.-N. Li, T. Wang, and Z.-J. Liu, “MMI-based ultra linear electro-optic modulator with high output RF gain,” Int. J. Light Electron Opt. 124(17), 2623–2626 (2013).
[Crossref]

Yue, P.

P. Yue, X. Yi, Q.-N. Li, T. Wang, and Z.-J. Liu, “MMI-based ultra linear electro-optic modulator with high output RF gain,” Int. J. Light Electron Opt. 124(17), 2623–2626 (2013).
[Crossref]

Zhang, L.

J. Ding, S. Member, R. Ji, L. Zhang, and L. Yang, “Electro-Optical Response Analysis of a 40 Gb / s Silicon Mach-Zehnder Optical Modulator,” J. Lightwave Technol. 31, 2434–2440 (2013).

L. Zhang, S. Member, Y. Li, J. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-Based Microring Resonator Modulators for,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

M. Song, L. Zhang, S. Member, R. G. Beausoleil, S. Member, and A. E. Willner, “Nonlinear Distortion in a Silicon Microring-Based Electro-Optic Modulator for Analog Optical Links,” IEEE J. Sel. Top. Quantum Electron. 16, 185–191 (2010).

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (6)

L. Zhang, S. Member, Y. Li, J. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-Based Microring Resonator Modulators for,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

D. Samara-Rubio and M. Paniccia, “Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator,” IEEE J. Sel. Top. Quantum Electron. 11(2), 367–372 (2005).
[Crossref]

F. Vacondio, M. Mirshafiei, J. Basak, Ansheng Liu, M. Ling Liao, Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron. 16(1), 141–148 (2010).
[Crossref]

D. M. Gill, S. S. Patel, M. Rasras, A. E. White, A. Pomerene, D. Carothers, R. L. Kamocsai, C. M. Hill, and J. Beattie, “CMOS-Compatible Si-Ring-Assisted Mach–Zehnder Interferometer With Internal Bandwidth Equalization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 45–52 (2010).

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

M. Song, L. Zhang, S. Member, R. G. Beausoleil, S. Member, and A. E. Willner, “Nonlinear Distortion in a Silicon Microring-Based Electro-Optic Modulator for Analog Optical Links,” IEEE J. Sel. Top. Quantum Electron. 16, 185–191 (2010).

IEEE Photon. Technol. Lett. (2)

A. Karim and J. Devenport, “Noise Figure Reduction in Externally Modulated Analog Fiber-Optic Links,” IEEE Photon. Technol. Lett. 19(5), 312–314 (2007).
[Crossref]

H. Yamada and T. Chu, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett. 17(3), 585–587 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Tazawa and W. Steier, “Bandwidth of linearized ring resonator assisted Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(9), 1851–1853 (2005).
[Crossref]

IEEE T. Microw. Theory (4)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE T. Microw. Theory 54(2), 906–920 (2006).
[Crossref]

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE T. Microw. Theory 45(8), 1390–1397 (1997).
[Crossref]

E. Ackerman and A. Daryoush, “Broad-band external modulation fiber-optic links for antenna-remoting applications,” IEEE T. Microw. Theory 45(8), 1436–1442 (1997).
[Crossref]

W. Bridges and J. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE T. Microw. Theory 43(9), 2184–2197 (1995).
[Crossref]

IEEE Technol. J. (1)

T. Ismail and C. Liu, “High-dynamic-range wireless-over-fiber link using feedforward linearization,” IEEE Technol. J. 25, 3274–3282 (2007).

IEEE Trans. NanoTechnol. (1)

V. Passaro and F. Dell’Olio, “Scaling and optimization of MOS optical modulators in nanometer SOI waveguides,” IEEE Trans. NanoTechnol. 7(4), 401–408 (2008).
[Crossref]

Int. J. Light Electron Opt. (1)

P. Yue, X. Yi, Q.-N. Li, T. Wang, and Z.-J. Liu, “MMI-based ultra linear electro-optic modulator with high output RF gain,” Int. J. Light Electron Opt. 124(17), 2623–2626 (2013).
[Crossref]

J. Appl. Phys. (1)

C. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration,” J. Appl. Phys. 96(11), 6008 (2004).
[Crossref]

J. Lightwave Technol. (4)

Nature (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

B. Dingel, N. Madamopoulos, A. Prescod, and R. Madabhushi, “Analytical model, analysis and parameter optimization of a super linear electro-optic modulator (SFDR>130dB),” Opt. Commun. 284(24), 5578–5587 (2011).
[Crossref]

Opt. Express (7)

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[Crossref] [PubMed]

A. Ayazi, T. Baehr-Jones, Y. Liu, A. E.-J. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express 20(12), 13115–13122 (2012).
[Crossref] [PubMed]

M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21(3), 3818–3825 (2013).
[Crossref] [PubMed]

F. Gardes, G. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 13(22), 8845–8854 (2005).
[Crossref] [PubMed]

F. Xia, L. Sekaric, and Y. A. Vlasov, “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators,” Opt. Express 14(9), 3872–3886 (2006).
[Crossref] [PubMed]

J. Cardenas, P. A. Morton, J. B. Khurgin, A. Griffith, C. B. Poitras, K. Preston, and M. Lipson, “Linearized silicon modulator based on a ring assisted Mach Zehnder inteferometer,” Opt. Express 21(19), 22549–22557 (2013).
[Crossref] [PubMed]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, R. Cohen, N. Izhaky, J. Basak, and M. J. Paniccia, “Recent advances in high speed silicon optical modulator,” Proc. SPIE 6477, 647710 (2007).

Other (4)

A.-R. H and K. S, Radio over Fiber Technologies for Mobile Comm (Artech House, 2002).

K. Ho and J. Kahn, “Optical frequency comb generator using phase modulation in amplified circulating loop,” Photonics Technol. Lett. IEEE 5, (1993).

A. Yariv and P. Yeh, Optical Waves in Crystals : Propagation and Control of Laser Radiation (1984), Vol. 12, p. xi, 589 p.

A. Gutierrez and J. Galan, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications,” in International Conference on Group IV Photonics (GFP) (2012), Vol. 4, pp. 57–59.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustration of the FLAME modulator (not to scale). The modulator consists of a Y-coupler, racetrack ADF resonator and is driven by a MOS capacitor electrode.
Fig. 2
Fig. 2 (a) Optical transfer function of the FLAME modulator as a function of the phase. (b) Transmission versus phase plot of the optical base term and the interference term which is present due to the Double Injection method.
Fig. 3
Fig. 3 Low frequency transfer function of the FLAME and MZI modulators in normalized units.
Fig. 4
Fig. 4 SFDR performance for FLAME (blue) and MZI (green) modulators under low frequency modulation. Solid lines represent the signal power and the dotted lines the intermodulation (IM3) power.
Fig. 5
Fig. 5 SFDR dependence on the modulation frequency for the FLAME and MZI modulators. Cavity dynamics and phase velocities mismatch effects are included.

Tables (1)

Tables Icon

Table 1 Optical Link Parameters Used to Evaluate SFDR

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

L c(min) = V SFDRMax V π λ 0 2Δ n c ,
E t1 = ( τ 1 τ 2 * α e iθ ) 1 τ 1 * τ 2 * α e iθ | E i1 | e i Φ i1 κ 1 κ 2 * α 1/2 e i θ 1/2 1 τ 1 * τ 2 * α e iθ | E i2 | e i Φ i2 ,
P t1 = | E t1 | 2 = 1 η [ | τ 1 | 2 + | τ 2 α | 2 2| τ 1 τ 2 α |cos( θ φ τ1 φ τ2 ) ] | E i1 | 2 + 1 η | κ 1 κ 2 | 2 α | E i2 | 2 1 η 2| κ 1 κ 2 | α [ | τ 1 |cos( θ 2 φ τ1 + φ Σ )| τ 2 α |cos( θ 2 φ τ2 φ Σ ) ]| E i1 || E i2 |,
η=1+ | τ 1 τ 2 α | 2 2| τ 1 τ 2 α |cos( θ φ τ1 φ τ2 ) φ Σ = φ κ1 φ κ2 Φ i1 + Φ i2 .
P t1 = | E t1 | 2 =( A | E i1 | 2 +B | E i2 | 2 )C| E i1 || E i2 |.
θ=π V V π + θ 0 ,
E t1 ( t )=[ τ 1 κ 1 2 τ 1 * ( n=1 n ( τ 1 * τ 2 * α e i θ n ( t ) ) n1 1 ) ] E i1 ( t )[ e i θ( t ) 2 κ 1 κ 2 * α n=1 n ( τ 1 * τ 2 * α e i θ n ( t ) ) n1 ] E i2 ( t ),
n=1 n ( τ 1 * τ 2 * α e i θ n ( t ) ) n1 = n=1 n ( τ 1 * τ 2 * α ) n1 e i[ ( n1 ) θ 0 +π V V π [ sin( ( n1 ) ψ m1 ) ψ m1 sin( ω m1 t( n1 ) ψ m1 )+ sin( ( n1 ) ψ m2 ) ψ m2 sin( ω m2 t( n1 ) ψ m2 ) ] ]
e i θ( t ) 2 = e i[ θ 0 2 +π V V π [ sin( ψ m1 2 ) ψ m1 sin( ω m1 t ψ m1 2 )+ sin( ψ m2 2 ) ψ m2 sin( ω m2 t ψ m2 2 ) ] ] .
P signal | n=1 n ( E i1 κ 1 2 τ 1 * J 0 ( δ ˜ 1,n ) J 1 ( δ ˜ 2,n )+ E i2 κ 1 κ 2 * α J 0 ( δ ˜ 1,n ) J 0 ( δ ˜ 2,n ) J 0 ( δ ¯ 2,n ) J 2 ( δ ¯ 1,n ) γ n ) | 2
P IM3 | n=1 n ( E i1 κ 1 2 τ 1 * J 1 ( δ ˜ 2,n ) J 2 ( δ ˜ 1,n )+ E i2 κ 1 κ 2 * α J 0 ( δ ˜ 1,n ) J 0 ( δ ˜ 2,n ) J 1 ( δ ¯ 1,n ) J 2 ( δ ¯ 2,n ) γ n ) | 2 ,
los s MOS [ dB cm ]=11.9+0.7V.

Metrics