Abstract

In this study, we present a new design for an optical near-field probe with a slot-waveguide structure and evaluate it using a finite-difference time-domain simulation. Our model, with a 50-nm slot core, enables illumination around the tip of the probe using a small optical spot 50–250 nm wide with 20%–30% transmission efficiency. Based on the high-index-contrast structure in a slot waveguide, a nanosized optical spot is easily generated, which is impossible with a normal slab waveguide. Similar properties of optical spot and transmission efficiency are obtained for different geometric configurations of flat-faced and tapered dielectric slot waveguides in illumination mode. The transmission efficiency of our models is the same or higher than that in conventional metallic tapered optical probes. When operating in illumination and collection modes, a near-field light reflected at 50–200-nm-wide measured objects is clearly observed, and a spatial resolution of ~50 nm is obtained. These findings suggest the potential for slot-waveguide structures to expand the versatility of nanosized optical probes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Waveguide analysis of heat-drawn and chemically etched probe tips for scanning near-field optical microscopy

Peter N. Moar, John D. Love, François Ladouceur, and Laurence W. Cahill
Appl. Opt. 45(25) 6442-6456 (2006)

Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips

Wei Bao, Matteo Staffaroni, Jeffrey Bokor, Miquel B. Salmeron, Eli Yablonovitch, Stefano Cabrini, Alexander Weber-Bargioni, and P. James Schuck
Opt. Express 21(7) 8166-8176 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed., Chap. 6.3 (Cambridge Univ. Press 2012).
  2. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
    [Crossref]
  3. E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257(5067), 189–195 (1992).
    [Crossref] [PubMed]
  4. L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20(9), 970–972 (1995).
    [Crossref] [PubMed]
  5. T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
    [Crossref]
  6. T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett. 73(15), 2090–2092 (1998).
    [Crossref]
  7. L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
    [Crossref]
  8. L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
    [Crossref] [PubMed]
  9. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15(3), 1211–1221 (2007).
    [Crossref] [PubMed]
  10. R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17(21), 19033–19040 (2009).
    [Crossref] [PubMed]
  11. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31(22), 3288–3290 (2006).
    [Crossref] [PubMed]
  12. A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
    [Crossref] [PubMed]
  13. W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
    [Crossref] [PubMed]
  14. H. A. Jamid, “Multilayer ARROW channel waveguide for evanescent field enhancement in low-index media,” Appl. Opt. 41(7), 1385–1390 (2002).
    [Crossref] [PubMed]
  15. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  16. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
    [Crossref] [PubMed]
  17. S. T. Lim, C. E. Png, and A. J. Danner, “Embedded air core optical nano-waveguides,” J. Opt. Soc. Am. B 27(10), 1937–1941 (2010).
    [Crossref]
  18. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
    [Crossref] [PubMed]
  19. J. Blasco and C. A. Barrios, “Compact slot-waveguide/channel-waveguide mode converter,” in Proceedings of IEEE Conference on Conference on Lasers and Electro-Optics (IEEE, 2005), 607.
  20. V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide couplare for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
    [Crossref]
  21. F. L. Xiaowen, S. J. Wu, X. Hu, L. Zhou, and Y. Su, “Efficient fiber-to-slot-waveguide grating couplers based ona double-strip waveguide,” IEEE Photon. Technol. Lett. 25(23), 2377–2380 (2013).
    [Crossref]
  22. T. Yatsui, M. Kourogi, K. Tsutsui, M. Ohtsu, and J. Takahashi, “High-density speed optical near-field recording reading with a pyramidal silicon probe on a contact slider,” Opt. Lett. 25(17), 1279–1281 (2000).
    [Crossref] [PubMed]
  23. L. Novotny, D. W. Pohl, and P. Regli, “Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11(6), 1768–1779 (1994).
    [Crossref]
  24. Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photon. J. 3(1), 130–139 (2011).
    [Crossref]
  25. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
    [Crossref] [PubMed]
  26. T. Monro, S. W. Smith, E. P. Schartner, A. Francois, S. Heng, and H. E. Heideprien, “Sensing with microstructured optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
    [Crossref]
  27. K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
    [Crossref]
  28. FullWave, http://optics.synopsys.com/rsoft/

2013 (1)

F. L. Xiaowen, S. J. Wu, X. Hu, L. Zhou, and Y. Su, “Efficient fiber-to-slot-waveguide grating couplers based ona double-strip waveguide,” IEEE Photon. Technol. Lett. 25(23), 2377–2380 (2013).
[Crossref]

2012 (1)

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

2011 (3)

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photon. J. 3(1), 130–139 (2011).
[Crossref]

2010 (2)

T. Monro, S. W. Smith, E. P. Schartner, A. Francois, S. Heng, and H. E. Heideprien, “Sensing with microstructured optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

S. T. Lim, C. E. Png, and A. J. Danner, “Embedded air core optical nano-waveguides,” J. Opt. Soc. Am. B 27(10), 1937–1941 (2010).
[Crossref]

2009 (1)

2008 (3)

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[Crossref] [PubMed]

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
[Crossref] [PubMed]

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

2007 (2)

2006 (2)

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31(22), 3288–3290 (2006).
[Crossref] [PubMed]

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide couplare for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[Crossref]

2004 (2)

2002 (1)

2000 (1)

1998 (1)

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett. 73(15), 2090–2092 (1998).
[Crossref]

1996 (1)

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
[Crossref]

1995 (1)

1994 (1)

1992 (1)

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257(5067), 189–195 (1992).
[Crossref] [PubMed]

1984 (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Abushagur, M. A.

Afshar, S.

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photon. J. 3(1), 130–139 (2011).
[Crossref]

Agarwal, A.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide couplare for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[Crossref]

Almeida, V. R.

Aloni, S.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

Arbel, D.

Ashby, P.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

Bao, W.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

Barrios, C. A.

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[Crossref] [PubMed]

J. Blasco and C. A. Barrios, “Compact slot-waveguide/channel-waveguide mode converter,” in Proceedings of IEEE Conference on Conference on Lasers and Electro-Optics (IEEE, 2005), 607.

Betzig, E.

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257(5067), 189–195 (1992).
[Crossref] [PubMed]

Blasco, J.

J. Blasco and C. A. Barrios, “Compact slot-waveguide/channel-waveguide mode converter,” in Proceedings of IEEE Conference on Conference on Lasers and Electro-Optics (IEEE, 2005), 607.

Bokor, J.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

Cabrini, S.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

Caselli, N.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

Choo, H.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

Cluzel, B.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Cornaglia, M.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

Danner, A. J.

de Fornel, F.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Delamadeleine, E.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Fan, S.

Foster, M. A.

Foubert, K.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Francois, A.

T. Monro, S. W. Smith, E. P. Schartner, A. Francois, S. Heng, and H. E. Heideprien, “Sensing with microstructured optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Gaeta, A. L.

Ginzburg, P.

Gordon, R.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

Hadji, E.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Hecht, B.

Heideprien, H. E.

T. Monro, S. W. Smith, E. P. Schartner, A. Francois, S. Heng, and H. E. Heideprien, “Sensing with microstructured optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Heng, S.

T. Monro, S. W. Smith, E. P. Schartner, A. Francois, S. Heng, and H. E. Heideprien, “Sensing with microstructured optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Hong, C.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide couplare for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[Crossref]

Houyou, A.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

Hu, X.

F. L. Xiaowen, S. J. Wu, X. Hu, L. Zhou, and Y. Su, “Efficient fiber-to-slot-waveguide grating couplers based ona double-strip waveguide,” IEEE Photon. Technol. Lett. 25(23), 2377–2380 (2013).
[Crossref]

Intonti, F.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

Ismach, A.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

Jamid, H. A.

Juan, M. L.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

Kimerling, L. C.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide couplare for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[Crossref]

Kourogi, M.

T. Yatsui, M. Kourogi, K. Tsutsui, M. Ohtsu, and J. Takahashi, “High-density speed optical near-field recording reading with a pyramidal silicon probe on a contact slider,” Opt. Lett. 25(17), 1279–1281 (2000).
[Crossref] [PubMed]

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett. 73(15), 2090–2092 (1998).
[Crossref]

Kusano, J.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
[Crossref]

Lalouat, L.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Lim, S. T.

Lipson, M.

Lu, Z.

Manolatou, C.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide couplare for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[Crossref]

Melli, M.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

Michel, J.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide couplare for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[Crossref]

Mononobe, S.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
[Crossref]

Monro, T.

T. Monro, S. W. Smith, E. P. Schartner, A. Francois, S. Heng, and H. E. Heideprien, “Sensing with microstructured optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Monro, T. M.

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photon. J. 3(1), 130–139 (2011).
[Crossref]

Montalbo, T.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide couplare for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[Crossref]

Neumann, L.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

Nguyen, V.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide couplare for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[Crossref]

Novotny, L.

Ogletree, D. F.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

Ohtsu, M.

T. Yatsui, M. Kourogi, K. Tsutsui, M. Ohtsu, and J. Takahashi, “High-density speed optical near-field recording reading with a pyramidal silicon probe on a contact slider,” Opt. Lett. 25(17), 1279–1281 (2000).
[Crossref] [PubMed]

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett. 73(15), 2090–2092 (1998).
[Crossref]

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
[Crossref]

Orenstein, M.

Painter, O.

Panepucci, R. R.

Pang, Y.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

Peyrade, D.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Picard, E.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Png, C. E.

Pohl, D. W.

Preston, K.

Regli, P.

Riboli, F.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

Robinson, J. T.

Ruan, Y.

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photon. J. 3(1), 130–139 (2011).
[Crossref]

Saiki, T.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
[Crossref]

Saito, N.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
[Crossref]

Salmeron, M. B.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

Schartner, E. P.

T. Monro, S. W. Smith, E. P. Schartner, A. Francois, S. Heng, and H. E. Heideprien, “Sensing with microstructured optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Schuck, P. J.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

Schwartzberg, A.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

Smith, S. W.

T. Monro, S. W. Smith, E. P. Schartner, A. Francois, S. Heng, and H. E. Heideprien, “Sensing with microstructured optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Staffaroni, M.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

Su, Y.

F. L. Xiaowen, S. J. Wu, X. Hu, L. Zhou, and Y. Su, “Efficient fiber-to-slot-waveguide grating couplers based ona double-strip waveguide,” IEEE Photon. Technol. Lett. 25(23), 2377–2380 (2013).
[Crossref]

Takahashi, J.

Trautman, J. K.

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257(5067), 189–195 (1992).
[Crossref] [PubMed]

Tsutsui, K.

Turner, A. C.

Urban, J. J.

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

van Hulst, N. F.

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

Veronis, G.

Wahsheh, R. A.

Wang, L.

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[Crossref]

Weber-Bargioni, A.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

Wiersma, D. S.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

Wu, S. J.

F. L. Xiaowen, S. J. Wu, X. Hu, L. Zhou, and Y. Su, “Efficient fiber-to-slot-waveguide grating couplers based ona double-strip waveguide,” IEEE Photon. Technol. Lett. 25(23), 2377–2380 (2013).
[Crossref]

Xiaowen, F. L.

F. L. Xiaowen, S. J. Wu, X. Hu, L. Zhou, and Y. Su, “Efficient fiber-to-slot-waveguide grating couplers based ona double-strip waveguide,” IEEE Photon. Technol. Lett. 25(23), 2377–2380 (2013).
[Crossref]

Xu, Q.

Xu, X.

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[Crossref]

Yablonovitch, E.

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

Yasaitis, J.

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide couplare for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[Crossref]

Yatsui, T.

T. Yatsui, M. Kourogi, K. Tsutsui, M. Ohtsu, and J. Takahashi, “High-density speed optical near-field recording reading with a pyramidal silicon probe on a contact slider,” Opt. Lett. 25(17), 1279–1281 (2000).
[Crossref] [PubMed]

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett. 73(15), 2090–2092 (1998).
[Crossref]

Zhou, L.

F. L. Xiaowen, S. J. Wu, X. Hu, L. Zhou, and Y. Su, “Efficient fiber-to-slot-waveguide grating couplers based ona double-strip waveguide,” IEEE Photon. Technol. Lett. 25(23), 2377–2380 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett. 68(19), 2612–2614 (1996).
[Crossref]

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett. 73(15), 2090–2092 (1998).
[Crossref]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[Crossref]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide couplare for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006).
[Crossref]

IEEE Photon. J. (1)

Y. Ruan, S. Afshar, and T. M. Monro, “Light enhancement within nanoholes in high index contrast nanowires,” IEEE Photon. J. 3(1), 130–139 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. L. Xiaowen, S. J. Wu, X. Hu, L. Zhou, and Y. Su, “Efficient fiber-to-slot-waveguide grating couplers based ona double-strip waveguide,” IEEE Photon. Technol. Lett. 25(23), 2377–2380 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

L. Neumann, Y. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett. 11(2), 355–360 (2011).
[Crossref] [PubMed]

A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett. 11(3), 1201–1207 (2011).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Fiber Technol. (1)

T. Monro, S. W. Smith, E. P. Schartner, A. Francois, S. Heng, and H. E. Heideprien, “Sensing with microstructured optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Opt. Lett. (5)

Science (2)

W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging,” Science 338(6112), 1317–1321 (2012).
[Crossref] [PubMed]

E. Betzig and J. K. Trautman, “Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257(5067), 189–195 (1992).
[Crossref] [PubMed]

Other (3)

J. Blasco and C. A. Barrios, “Compact slot-waveguide/channel-waveguide mode converter,” in Proceedings of IEEE Conference on Conference on Lasers and Electro-Optics (IEEE, 2005), 607.

FullWave, http://optics.synopsys.com/rsoft/

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed., Chap. 6.3 (Cambridge Univ. Press 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Optical probe models comprising (a) slot waveguide and (b) normal slab waveguide. A tapered shape with taper angle θT in (a) is also analyzed. The x- and y-polarized Gaussian light beams are injected from the light source and propagate along the z axis in (a) and (b), respectively.
Fig. 2
Fig. 2 Contour maps of (a) Ex in the flat-faced slot waveguide with θT = 90°, (b) Ex in the tapered slot waveguide with θT = 45°, and (c) Ey in the normal slab waveguide. Ex,y is the normalized by peak amplitude of the input field. Waveguides are surrounded in free space (nSU = 1), and white lines indicate their shapes and boundaries between the core and the cladding.
Fig. 3
Fig. 3 Normalized light power distribution Sz(x,z)/Sz(0, −L) along the x axis at different locations z in (a)–(d) flat-faced slot waveguides with θT = 90°, (e)–(h) tapered slot waveguides with θT = 45°, and (i)–(l) normal slab waveguides. δxFWHM indicates the full width at half maximum (FWHM) of the power distribution.
Fig. 4
Fig. 4 (a) FWHM of light power distribution, δxFWHM, and (b) light power density confined in the δxFWHM area, Γ(z)/δxFWHM, as a function of z. Symbols indicate the calculated data for the three types of waveguides, and dotted lines are fitting curves.
Fig. 5
Fig. 5 Optical probe system to observe a target object. The light source and photodetector are embedded in the top part of the slot waveguide. The refractive index of the surrounding area nSU is assumed to be 1 or 1.46. Light power is monitored with scanning target.
Fig. 6
Fig. 6 Contour maps of Ex in the slot waveguide and around the target object under the surrounding conditions of (a) free space (nSU = 1) and (b) an index matching fluid (nSU = 1.46). Here, dTG = 10 nm, wTG = 100 nm, and hTG = 50 nm.
Fig. 7
Fig. 7 Contour maps of Ex around the output region of the slot core under the conditions of (a)–(c) nSU = 1.46 and (d)–(f) nSU = 1. Displacement xTG of the target objects are 0 nm in (a) and (d), 50 nm in (b) and (e), and 125 nm in (c) and (f). White lines indicate the boundaries, and wTG, hTG, and dTG are 100, 50, and 10 nm, respectively.
Fig. 8
Fig. 8 Normalized received power at PD as a function of the position of the target object. The optical probe is surrounded in free space (nSU = 1.0) or an index matching fluid (nSU = 1.46). Symbols indicate the calculated data for target objects with three different widths wTG, and dotted lines are fitting curves.
Fig. 9
Fig. 9 Normalized received power at PD as a function of the displacement xTG of the central position between two target objects (Au). The top figure shows the configuration of the slot waveguide and a pair of target objects. Symbols indicate calculated data for different δwGAP and wTG, and solid lines are fitting curves. Here, hTG = 50 nm, dGAP = 10 nm, and nSU = 1.46.

Tables (1)

Tables Icon

Table 1 Parameters used in the simulation.

Metrics