Abstract

Integrated optical devices comprised of multiple material systems are able to achieve unique performance characteristics, enabling applications in sensing and in telecommunications. Due to ease of fabrication, the majority of previous work has focused on polymer-dielectric or polymer-semiconductor systems. However, the environmental stability of polymers is limited. In the present work, a hybrid device comprised of an indium tin oxide (ITO) coating on a silicon dioxide toroidal resonant cavity is fabricated. Finite element method simulations of the optical field in the multi-material device are performed, and the optical mode profile is significantly altered by the high index film. The quality factor is also measured and is material loss limited. Additionally, its performance as a temperature sensor is characterized. Due to the high thermo-optic coefficient of ITO and the localization of the optical field in the ITO layer, the hybrid temperature sensor demonstrates a nearly 3-fold improvement in performance over the conventional silica device.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tailoring the behavior of optical microcavities with high refractive index sol-gel coatings

Ashley J. Maker, Brian A. Rose, and Andrea M. Armani
Opt. Lett. 37(14) 2844-2846 (2012)

Silica microtoroid resonator sensor with monolithically integrated waveguides

Xiaomin Zhang and Andrea M Armani
Opt. Express 21(20) 23592-23603 (2013)

Ultraviolet light detection using an optical microcavity

Audrey Harker, Simin Mehrabani, and Andrea M. Armani
Opt. Lett. 38(17) 3422-3425 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6(1), 11–15 (2006).
    [Crossref] [PubMed]
  2. L. Chen and R. M. Reano, “Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings,” Opt. Express 20(4), 4032–4038 (2012).
    [Crossref] [PubMed]
  3. D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
    [Crossref] [PubMed]
  4. B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37(12), 2253–2255 (2012).
    [Crossref] [PubMed]
  5. C. Y. Jeong and S. Kim, “Dominant mode control of a graphene-embedded hybrid plasmonic resonator for a tunable nanolaser,” Opt. Express 22(12), 14819–14829 (2014).
    [Crossref] [PubMed]
  6. C. Shi, S. Soltani, and A. M. Armani, “Gold nanorod plasmonic upconversion microlaser,” Nano Lett. 13(12), 5827–5831 (2013).
    [Crossref] [PubMed]
  7. S. Mehrabani, P. Kwong, M. Gupta, and A. M. Armani, “Hybrid microcavity humidity sensor,” Appl. Phys. Lett. 102(24), 241101 (2013).
    [Crossref]
  8. S. Mehrabani, A. J. Maker, and A. M. Armani, “Hybrid Integrated Label-Free Chemical and Biological Sensors,” Sensors (Basel) 14(4), 5890–5928 (2014).
    [Crossref] [PubMed]
  9. M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat Commun 3, 1108 (2012).
    [Crossref] [PubMed]
  10. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
    [Crossref]
  11. H. Wang, L. Zhu, and W. Menzel, “Ultra-wideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wirel. Compon. Lett. 15(12), 844–846 (2005).
    [Crossref]
  12. H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
    [Crossref]
  13. C. R. Z. I. Del Villar, P. Sánchez, M. Hernáez, C. F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
    [Crossref]
  14. H. S. Choi, S. Ismail, and A. M. Armani, “Studying polymer thin films with hybrid optical microcavities,” Opt. Lett. 36(11), 2152–2154 (2011).
    [Crossref] [PubMed]
  15. A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-Gallery Modes-Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
    [Crossref]
  16. H.-S. Choi, X. Zhang, and A. M. Armani, “Hybrid Silica-Polymer Ultra-High-Q Microresonators,” Opt. Lett. 35(4), 459–461 (2010).
    [Crossref] [PubMed]
  17. B. A. Rose, A. J. Maker, and A. M. Armani, “Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR,” Opt. Mater. Express 2(5), 671–681 (2012).
    [Crossref]
  18. H. K. Hunt and A. M. Armani, “Label-Free Biological and Chemical Sensors,” Nanoscale 2(9), 1544–1559 (2010).
    [Crossref] [PubMed]
  19. M. S. Luchansky and R. C. Bailey, “High-Q Optical Sensors for Chemical and Biological Analysis,” Anal. Chem. 84(2), 793–821 (2012).
    [Crossref] [PubMed]
  20. M. I. Cheema, S. Mehrabani, A. A. Hayat, Y. A. Peter, A. M. Armani, and A. G. Kirk, “Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy,” Opt. Express 20(8), 9090–9098 (2012).
    [Crossref] [PubMed]
  21. Y. Lin, V. Ilchenko, J. Nadeau, and L. Maleki, “Biochemical detection with optical whispering-gallery resonators,” in Laser Resonators and Beam Control IX, (SPIE, 2007), U4520–U4520.
  22. J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci Rep 3, 2974 (2013).
    [Crossref] [PubMed]
  23. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  24. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
    [Crossref] [PubMed]
  25. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–333 (2000).
    [Crossref]
  26. S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105(5), 051111 (2014).
    [Crossref]
  27. H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
    [Crossref]
  28. S. Wiechmann and J. Müller, “Thermo-optic properties of TiO2, Ta2O5 and Al2O3 thin films for integrated optics on silicon,” Thin Solid Films 517(24), 6847–6849 (2009).
    [Crossref]

2014 (3)

S. Mehrabani, A. J. Maker, and A. M. Armani, “Hybrid Integrated Label-Free Chemical and Biological Sensors,” Sensors (Basel) 14(4), 5890–5928 (2014).
[Crossref] [PubMed]

S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105(5), 051111 (2014).
[Crossref]

C. Y. Jeong and S. Kim, “Dominant mode control of a graphene-embedded hybrid plasmonic resonator for a tunable nanolaser,” Opt. Express 22(12), 14819–14829 (2014).
[Crossref] [PubMed]

2013 (3)

C. Shi, S. Soltani, and A. M. Armani, “Gold nanorod plasmonic upconversion microlaser,” Nano Lett. 13(12), 5827–5831 (2013).
[Crossref] [PubMed]

S. Mehrabani, P. Kwong, M. Gupta, and A. M. Armani, “Hybrid microcavity humidity sensor,” Appl. Phys. Lett. 102(24), 241101 (2013).
[Crossref]

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci Rep 3, 2974 (2013).
[Crossref] [PubMed]

2012 (6)

2011 (2)

H. S. Choi, S. Ismail, and A. M. Armani, “Studying polymer thin films with hybrid optical microcavities,” Opt. Lett. 36(11), 2152–2154 (2011).
[Crossref] [PubMed]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
[Crossref]

2010 (5)

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
[Crossref]

C. R. Z. I. Del Villar, P. Sánchez, M. Hernáez, C. F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

H. K. Hunt and A. M. Armani, “Label-Free Biological and Chemical Sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

H.-S. Choi, X. Zhang, and A. M. Armani, “Hybrid Silica-Polymer Ultra-High-Q Microresonators,” Opt. Lett. 35(4), 459–461 (2010).
[Crossref] [PubMed]

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
[Crossref]

2009 (2)

S. Wiechmann and J. Müller, “Thermo-optic properties of TiO2, Ta2O5 and Al2O3 thin films for integrated optics on silicon,” Thin Solid Films 517(24), 6847–6849 (2009).
[Crossref]

D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[Crossref] [PubMed]

2006 (2)

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6(1), 11–15 (2006).
[Crossref] [PubMed]

A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-Gallery Modes-Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

2005 (1)

H. Wang, L. Zhu, and W. Menzel, “Ultra-wideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wirel. Compon. Lett. 15(12), 844–846 (2005).
[Crossref]

2003 (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

2000 (2)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–333 (2000).
[Crossref]

Armani, A. M.

S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105(5), 051111 (2014).
[Crossref]

S. Mehrabani, A. J. Maker, and A. M. Armani, “Hybrid Integrated Label-Free Chemical and Biological Sensors,” Sensors (Basel) 14(4), 5890–5928 (2014).
[Crossref] [PubMed]

C. Shi, S. Soltani, and A. M. Armani, “Gold nanorod plasmonic upconversion microlaser,” Nano Lett. 13(12), 5827–5831 (2013).
[Crossref] [PubMed]

S. Mehrabani, P. Kwong, M. Gupta, and A. M. Armani, “Hybrid microcavity humidity sensor,” Appl. Phys. Lett. 102(24), 241101 (2013).
[Crossref]

B. A. Rose, A. J. Maker, and A. M. Armani, “Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR,” Opt. Mater. Express 2(5), 671–681 (2012).
[Crossref]

M. I. Cheema, S. Mehrabani, A. A. Hayat, Y. A. Peter, A. M. Armani, and A. G. Kirk, “Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy,” Opt. Express 20(8), 9090–9098 (2012).
[Crossref] [PubMed]

H. S. Choi, S. Ismail, and A. M. Armani, “Studying polymer thin films with hybrid optical microcavities,” Opt. Lett. 36(11), 2152–2154 (2011).
[Crossref] [PubMed]

H. K. Hunt and A. M. Armani, “Label-Free Biological and Chemical Sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

H.-S. Choi, X. Zhang, and A. M. Armani, “Hybrid Silica-Polymer Ultra-High-Q Microresonators,” Opt. Lett. 35(4), 459–461 (2010).
[Crossref] [PubMed]

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
[Crossref]

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Arregui, F. J.

C. R. Z. I. Del Villar, P. Sánchez, M. Hernáez, C. F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

Bailey, R. C.

M. S. Luchansky and R. C. Bailey, “High-Q Optical Sensors for Chemical and Biological Analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

Bao, J. M.

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6(1), 11–15 (2006).
[Crossref] [PubMed]

Barrelet, C. J.

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6(1), 11–15 (2006).
[Crossref] [PubMed]

Boriskina, S. V.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
[Crossref]

Bowen, W. P.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci Rep 3, 2974 (2013).
[Crossref] [PubMed]

Brawley, G. A.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci Rep 3, 2974 (2013).
[Crossref] [PubMed]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Capasso, F.

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6(1), 11–15 (2006).
[Crossref] [PubMed]

Cheema, M. I.

Chen, L.

Choi, H. S.

Choi, H.-S.

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
[Crossref]

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
[Crossref]

H.-S. Choi, X. Zhang, and A. M. Armani, “Hybrid Silica-Polymer Ultra-High-Q Microresonators,” Opt. Lett. 35(4), 459–461 (2010).
[Crossref] [PubMed]

Dai, D. X.

Del Villar, C. R. Z. I.

C. R. Z. I. Del Villar, P. Sánchez, M. Hernáez, C. F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

Demirel, M. C.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
[Crossref]

Guha, B.

Gupta, M.

S. Mehrabani, P. Kwong, M. Gupta, and A. M. Armani, “Hybrid microcavity humidity sensor,” Appl. Phys. Lett. 102(24), 241101 (2013).
[Crossref]

Hayat, A. A.

He, S. L.

Hernáez, M.

C. R. Z. I. Del Villar, P. Sánchez, M. Hernáez, C. F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-Free Biological and Chemical Sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Ilchenko, V. S.

A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-Gallery Modes-Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

Ismail, S.

Jeong, C. Y.

Kim, S.

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Kirk, A. G.

Knittel, J.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci Rep 3, 2974 (2013).
[Crossref] [PubMed]

Kwong, P.

S. Mehrabani, P. Kwong, M. Gupta, and A. M. Armani, “Hybrid microcavity humidity sensor,” Appl. Phys. Lett. 102(24), 241101 (2013).
[Crossref]

Lei, D. Y.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat Commun 3, 1108 (2012).
[Crossref] [PubMed]

Lieber, C. M.

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6(1), 11–15 (2006).
[Crossref] [PubMed]

Lipson, M.

Loncar, M.

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6(1), 11–15 (2006).
[Crossref] [PubMed]

Luchansky, M. S.

M. S. Luchansky and R. C. Bailey, “High-Q Optical Sensors for Chemical and Biological Analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

Maier, S. A.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat Commun 3, 1108 (2012).
[Crossref] [PubMed]

Maker, A. J.

Matías, I. R.

C. R. Z. I. Del Villar, P. Sánchez, M. Hernáez, C. F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-Gallery Modes-Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

McAuslan, D. L.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci Rep 3, 2974 (2013).
[Crossref] [PubMed]

Mehrabani, S.

S. Mehrabani, A. J. Maker, and A. M. Armani, “Hybrid Integrated Label-Free Chemical and Biological Sensors,” Sensors (Basel) 14(4), 5890–5928 (2014).
[Crossref] [PubMed]

S. Mehrabani, P. Kwong, M. Gupta, and A. M. Armani, “Hybrid microcavity humidity sensor,” Appl. Phys. Lett. 102(24), 241101 (2013).
[Crossref]

M. I. Cheema, S. Mehrabani, A. A. Hayat, Y. A. Peter, A. M. Armani, and A. G. Kirk, “Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy,” Opt. Express 20(8), 9090–9098 (2012).
[Crossref] [PubMed]

Menzel, W.

H. Wang, L. Zhu, and W. Menzel, “Ultra-wideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wirel. Compon. Lett. 15(12), 844–846 (2005).
[Crossref]

Müller, J.

S. Wiechmann and J. Müller, “Thermo-optic properties of TiO2, Ta2O5 and Al2O3 thin films for integrated optics on silicon,” Thin Solid Films 517(24), 6847–6849 (2009).
[Crossref]

Nazabal, V.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat Commun 3, 1108 (2012).
[Crossref] [PubMed]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Park, H. G.

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6(1), 11–15 (2006).
[Crossref] [PubMed]

Peter, Y. A.

Preston, K.

Reano, R. M.

Rose, B. A.

Sánchez, P.

C. R. Z. I. Del Villar, P. Sánchez, M. Hernáez, C. F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

Santiago-Cordoba, M. A.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
[Crossref]

Schmidt, M. A.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat Commun 3, 1108 (2012).
[Crossref] [PubMed]

Shi, C.

C. Shi, S. Soltani, and A. M. Armani, “Gold nanorod plasmonic upconversion microlaser,” Nano Lett. 13(12), 5827–5831 (2013).
[Crossref] [PubMed]

Soltani, S.

S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105(5), 051111 (2014).
[Crossref]

C. Shi, S. Soltani, and A. M. Armani, “Gold nanorod plasmonic upconversion microlaser,” Nano Lett. 13(12), 5827–5831 (2013).
[Crossref] [PubMed]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Swaim, J. D.

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci Rep 3, 2974 (2013).
[Crossref] [PubMed]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Valdivielso, C. F.

C. R. Z. I. Del Villar, P. Sánchez, M. Hernáez, C. F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

Vollmer, F.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
[Crossref]

Wang, H.

H. Wang, L. Zhu, and W. Menzel, “Ultra-wideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wirel. Compon. Lett. 15(12), 844–846 (2005).
[Crossref]

Wiechmann, S.

S. Wiechmann and J. Müller, “Thermo-optic properties of TiO2, Ta2O5 and Al2O3 thin films for integrated optics on silicon,” Thin Solid Films 517(24), 6847–6849 (2009).
[Crossref]

Wondraczek, L.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat Commun 3, 1108 (2012).
[Crossref] [PubMed]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–333 (2000).
[Crossref]

Zhang, X.

Zhu, L.

H. Wang, L. Zhu, and W. Menzel, “Ultra-wideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wirel. Compon. Lett. 15(12), 844–846 (2005).
[Crossref]

Anal. Chem. (1)

M. S. Luchansky and R. C. Bailey, “High-Q Optical Sensors for Chemical and Biological Analysis,” Anal. Chem. 84(2), 793–821 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

S. Mehrabani, P. Kwong, M. Gupta, and A. M. Armani, “Hybrid microcavity humidity sensor,” Appl. Phys. Lett. 102(24), 241101 (2013).
[Crossref]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99(7), 073701 (2011).
[Crossref]

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
[Crossref]

S. Soltani and A. M. Armani, “Optothermal transport behavior in whispering gallery mode optical cavities,” Appl. Phys. Lett. 105(5), 051111 (2014).
[Crossref]

H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett. 97(22), 223306 (2010).
[Crossref]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–333 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. B. Matsko and V. S. Ilchenko, “Optical Resonators with Whispering-Gallery Modes-Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

H. Wang, L. Zhu, and W. Menzel, “Ultra-wideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wirel. Compon. Lett. 15(12), 844–846 (2005).
[Crossref]

J. Opt. (1)

C. R. Z. I. Del Villar, P. Sánchez, M. Hernáez, C. F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

Nano Lett. (2)

C. J. Barrelet, J. M. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6(1), 11–15 (2006).
[Crossref] [PubMed]

C. Shi, S. Soltani, and A. M. Armani, “Gold nanorod plasmonic upconversion microlaser,” Nano Lett. 13(12), 5827–5831 (2013).
[Crossref] [PubMed]

Nanoscale (1)

H. K. Hunt and A. M. Armani, “Label-Free Biological and Chemical Sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Nat Commun (1)

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat Commun 3, 1108 (2012).
[Crossref] [PubMed]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Sci Rep (1)

J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, and W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci Rep 3, 2974 (2013).
[Crossref] [PubMed]

Sensors (Basel) (1)

S. Mehrabani, A. J. Maker, and A. M. Armani, “Hybrid Integrated Label-Free Chemical and Biological Sensors,” Sensors (Basel) 14(4), 5890–5928 (2014).
[Crossref] [PubMed]

Thin Solid Films (1)

S. Wiechmann and J. Müller, “Thermo-optic properties of TiO2, Ta2O5 and Al2O3 thin films for integrated optics on silicon,” Thin Solid Films 517(24), 6847–6849 (2009).
[Crossref]

Other (1)

Y. Lin, V. Ilchenko, J. Nadeau, and L. Maleki, “Biochemical detection with optical whispering-gallery resonators,” in Laser Resonators and Beam Control IX, (SPIE, 2007), U4520–U4520.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

FEM modeling results. In both models, the films are 260nm thick. Optical field distribution with a) an SiO2 film and b) an ITO film. c) Modal energy density distribution cross section in the device with both films. The periphery of the device or silica-film interface occurs at 30μm. The optical field clearly changes both shape and distribution with the high index film.

Fig. 2
Fig. 2

a) An optical micrograph of an ITO-coated silica toroidal cavity. b) A schematic of the testing set-up, with the key components of the temperature control stage and the relative positions of the taper and the resonant cavity indicated.

Fig. 3
Fig. 3

A representative transmission spectra fit to a Lorentzian (dashed red line). The linewidth is 0.00298nm, yielding a loaded Q of 2.61x105.

Fig. 4
Fig. 4

a) Temperature sensing in real-time with noise. Inset: Histograms of the noise distributions with (gray) and without (black) the taper jitter filter. The results are fit to a Gaussian. b) The loaded cavity Q evolution throughout the measurement. c) The results from both measurement approaches are plotted for direct comparison. Additionally, the shift from a bare silica toroid and the baseline noise level are included.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q m a t = 2 π n e f f λ α e f f
n e f f = β n c a v i t y + γ n f i l m + δ n a i r
α e f f = β α c a v i t y + γ α f i l m + δ α a i r
d n e f f d T = β d n c a v i t y d T + γ d n f i l m d T + δ d n a i r d T
Δ λ Δ T = d n e f f d T λ n e f f

Metrics