Abstract

We investigated a novel and ultracompact polymer-capped Fabry-Perot interferometer, which is based on a polymer capped on the endface of a single mode fiber (SMF). The proposed Fabry-Perot interferometer has advantages of easy fabrication, low cost, and high sensitivity. The variation of the Fabry-Perot cavity length can be easily controlled by using the motors of a normal arc fusion splicer. Moreover, the enhanced mechanical strength of the Fabry-Perot interferometer makes it suitable for high sensitivity pressure and temperature sensing in harsh environments. The proposed interferometer exhibits a wavelength shift of the interference fringes that corresponds to a temperature sensitivity of 249 pm/°C and a pressure sensitivity of 1130 pm/MPa, respectively, around the wavelength of 1560 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microbubble-based fiber-optic Fabry–Perot pressure sensor for high-temperature application

Zhe Li, Pinggang Jia, Guocheng Fang, Hao Liang, Ting Liang, Wenyi Liu, and Jijun Xiong
Appl. Opt. 57(8) 1738-1743 (2018)

Antiresonant mechanism based self-temperature-calibrated fiber optic Fabry–Perot gas pressure sensors

Hongchun Gao, Yi Jiang, Liuchao Zhang, Yang Cui, Yuan Jiang, Jingshan Jia, and Lan Jiang
Opt. Express 27(16) 22181-22189 (2019)

Hybrid Fabry-Perot interferometer for simultaneous liquid refractive index and temperature measurement

Ben Xu, Yi Yang, Zhenbao Jia, and D. N. Wang
Opt. Express 25(13) 14483-14493 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
    [Crossref]
  2. M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
    [Crossref] [PubMed]
  3. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
    [Crossref] [PubMed]
  4. D.-W. Duan, Y.-J. Rao, Y.-S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
    [Crossref] [PubMed]
  5. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
    [Crossref] [PubMed]
  6. X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45(30), 7760–7766 (2006).
    [Crossref] [PubMed]
  7. G. Hill, R. Melamud, F. Declercq, A. Davenport, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
    [Crossref]
  8. J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett. 23(21), 1561–1563 (2011).
    [Crossref]
  9. H. Bae, L. Dunlap, J. Wong, and M. Yu, “Miniature Temperature Compensated Fabry–Perot Pressure Sensors Created With Self-Aligned Polymer Photolithography Process,” IEEE Sens. J. 12(5), 1566–1573 (2012).
  10. H. Bae and M. Yu, “Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Opt. Express 20(13), 14573–14583 (2012).
    [Crossref] [PubMed]
  11. J.-R. Zhao, X.-G. Huang, W.-X. He, and J.-H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor based on fresnel reflection modulated by Fabry–Perot interference,” Lightwave Technology, Journalism 28(19), 2799–2803 (2010).
  12. O. Frazão, P. Caldas, J. L. Santos, P. V. Marques, C. Turck, D. J. Lougnot, and O. Soppera, “Fabry-Perot refractometer based on an end-of-fiber polymer tip,” Opt. Lett. 34(16), 2474–2476 (2009).
    [Crossref] [PubMed]
  13. J. Goicoechea, C. Zamarreño, I. Matias, and F. Arregui, “Utilization of white light interferometry in pH sensing applications by mean of the fabrication of nanostructured cavities,” Sens. Actuators B Chem. 138(2), 613–618 (2009).
    [Crossref]
  14. H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
    [PubMed]
  15. D. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
    [Crossref] [PubMed]
  16. T. Zhu, Y. Rao, and Q. Mo, “Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
    [Crossref]
  17. X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
    [Crossref]
  18. T. Han, Y. G. Liu, Z. Wang, Z. Wu, S. Wang, and S. Li, “Simultaneous temperature and force measurement using Fabry-Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber,” Opt. Express 20(12), 13320–13325 (2012).
    [Crossref] [PubMed]
  19. H. Liang, W. Zhang, P. Geng, Y. Liu, Z. Wang, J. Guo, S. Gao, and S. Yan, “Simultaneous measurement of temperature and force with high sensitivities based on filling different index liquids into photonic crystal fiber,” Opt. Lett. 38(7), 1071–1073 (2013).
    [Crossref] [PubMed]
  20. C. Yang, H. Zhang, H. Liang, Y. Miao, B. Liu, Z. Wang, and Y. Liu, “Selectively liquid-infiltrated microstructured optical fiber for simultaneous temperature and force measurement,” IEEE Photon. J. 6(2), 6800808 (2014).
  21. J. Villatoro, V. P. Minkovich, and J. Zubia, “Locally pressed photonic crystal fiber interferometer for multiparameter sensing,” Opt. Lett. 39(9), 2580–2583 (2014).
    [PubMed]
  22. S. Pevec and D. Donlagic, “Miniature all-fiber Fabry-Perot sensor for simultaneous measurement of pressure and temperature,” Appl. Opt. 51(19), 4536–4541 (2012).
    [Crossref] [PubMed]
  23. C. Pang, H. Bae, A. Gupta, K. Bryden, and M. Yu, “MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing,” Opt. Express 21(19), 21829–21839 (2013).
    [Crossref] [PubMed]
  24. H. Bae, D. Yun, H. Liu, D. A. Olson, and M. Yu, “Hybrid Miniature Fabry–Perot Sensor with Dual Optical Cavities for Simultaneous Pressure and Temperature Measurements,” J. Lightwave Technol. 32(8), 1585–1593 (2014).
    [Crossref]
  25. C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
    [Crossref] [PubMed]
  26. C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012).
    [Crossref]
  27. Norland Products Inc, https://www.norlandprod.com/adhesives/NOA%2065.html
  28. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [Crossref] [PubMed]
  29. Y. Wang, “Review of long period fiber gratings written by CO2 Laser,” J. Appl. Phys. 108(8), 081101 (2010).
    [Crossref]
  30. Y. Wang, Y. J. Rao, and Z. L. Ran, “Unique characteristics of long-period fibre gratings fabricated by high-frequency CO2 laser pulses,” Acta Phys. Sin. 52, 1432–1437 (2003).
  31. K. R. Sohn and G.-D. Peng, “Mechanically formed loss-tunable long-period fiber gratings realized on the periodic arrayed metal wires,” Opt. Commun. 278(1), 77–80 (2007).
    [Crossref]
  32. W. Jin, W. C. Wichie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: Error analysis,” Opt. Eng. 36(2), 598–609 (1997).
    [Crossref]
  33. J. L. Qu, L. X. Liu, Y. H. Shao, H. Niu, and B. Gao, “Recent process in multiofocal multiphoton microscopy,” J. Innov. Opt. Heal. Sci. 5(3), 1250018 (2012).
    [Crossref]
  34. X. Zhang, Y. Xiao, J. Qi, J. Qu, B. Kim, X. Yue, and K. D. Belfield, “Long-wavelength, photostable, two-photon excitable BODIPY fluorophores readily modifiable for molecular probes,” J. Org. Chem. 78(18), 9153–9160 (2013).
    [Crossref] [PubMed]

2014 (5)

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

H. Bae, D. Yun, H. Liu, D. A. Olson, and M. Yu, “Hybrid Miniature Fabry–Perot Sensor with Dual Optical Cavities for Simultaneous Pressure and Temperature Measurements,” J. Lightwave Technol. 32(8), 1585–1593 (2014).
[Crossref]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

C. Yang, H. Zhang, H. Liang, Y. Miao, B. Liu, Z. Wang, and Y. Liu, “Selectively liquid-infiltrated microstructured optical fiber for simultaneous temperature and force measurement,” IEEE Photon. J. 6(2), 6800808 (2014).

J. Villatoro, V. P. Minkovich, and J. Zubia, “Locally pressed photonic crystal fiber interferometer for multiparameter sensing,” Opt. Lett. 39(9), 2580–2583 (2014).
[PubMed]

2013 (3)

2012 (11)

T. Han, Y. G. Liu, Z. Wang, Z. Wu, S. Wang, and S. Li, “Simultaneous temperature and force measurement using Fabry-Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber,” Opt. Express 20(12), 13320–13325 (2012).
[Crossref] [PubMed]

D. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
[Crossref] [PubMed]

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
[Crossref] [PubMed]

F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
[Crossref] [PubMed]

D.-W. Duan, Y.-J. Rao, Y.-S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
[Crossref] [PubMed]

H. Bae, L. Dunlap, J. Wong, and M. Yu, “Miniature Temperature Compensated Fabry–Perot Pressure Sensors Created With Self-Aligned Polymer Photolithography Process,” IEEE Sens. J. 12(5), 1566–1573 (2012).

H. Bae and M. Yu, “Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Opt. Express 20(13), 14573–14583 (2012).
[Crossref] [PubMed]

J. L. Qu, L. X. Liu, Y. H. Shao, H. Niu, and B. Gao, “Recent process in multiofocal multiphoton microscopy,” J. Innov. Opt. Heal. Sci. 5(3), 1250018 (2012).
[Crossref]

S. Pevec and D. Donlagic, “Miniature all-fiber Fabry-Perot sensor for simultaneous measurement of pressure and temperature,” Appl. Opt. 51(19), 4536–4541 (2012).
[Crossref] [PubMed]

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

2011 (1)

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

2010 (3)

H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
[PubMed]

J.-R. Zhao, X.-G. Huang, W.-X. He, and J.-H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor based on fresnel reflection modulated by Fabry–Perot interference,” Lightwave Technology, Journalism 28(19), 2799–2803 (2010).

Y. Wang, “Review of long period fiber gratings written by CO2 Laser,” J. Appl. Phys. 108(8), 081101 (2010).
[Crossref]

2009 (3)

2008 (1)

2007 (2)

K. R. Sohn and G.-D. Peng, “Mechanically formed loss-tunable long-period fiber gratings realized on the periodic arrayed metal wires,” Opt. Commun. 278(1), 77–80 (2007).
[Crossref]

G. Hill, R. Melamud, F. Declercq, A. Davenport, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

2006 (1)

2005 (1)

T. Zhu, Y. Rao, and Q. Mo, “Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[Crossref]

2003 (1)

Y. Wang, Y. J. Rao, and Z. L. Ran, “Unique characteristics of long-period fibre gratings fabricated by high-frequency CO2 laser pulses,” Acta Phys. Sin. 52, 1432–1437 (2003).

1997 (1)

W. Jin, W. C. Wichie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: Error analysis,” Opt. Eng. 36(2), 598–609 (1997).
[Crossref]

Araujo, L.

Arregui, F.

J. Goicoechea, C. Zamarreño, I. Matias, and F. Arregui, “Utilization of white light interferometry in pH sensing applications by mean of the fabrication of nanostructured cavities,” Sens. Actuators B Chem. 138(2), 613–618 (2009).
[Crossref]

Bae, H.

Belfield, K. D.

X. Zhang, Y. Xiao, J. Qi, J. Qu, B. Kim, X. Yue, and K. D. Belfield, “Long-wavelength, photostable, two-photon excitable BODIPY fluorophores readily modifiable for molecular probes,” J. Org. Chem. 78(18), 9153–9160 (2013).
[Crossref] [PubMed]

Bierlich, J.

Bouwmans, G.

Bryden, K.

Caldas, P.

Chan, I.

G. Hill, R. Melamud, F. Declercq, A. Davenport, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Chen, C.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Chen, J.-H.

J.-R. Zhao, X.-G. Huang, W.-X. He, and J.-H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor based on fresnel reflection modulated by Fabry–Perot interference,” Lightwave Technology, Journalism 28(19), 2799–2803 (2010).

Chen, Q.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Chen, X.

Chiang, K. S.

Choi, H. Y.

Coviello, G.

Culshaw, B.

W. Jin, W. C. Wichie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: Error analysis,” Opt. Eng. 36(2), 598–609 (1997).
[Crossref]

Davenport, A.

G. Hill, R. Melamud, F. Declercq, A. Davenport, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Declercq, F.

G. Hill, R. Melamud, F. Declercq, A. Davenport, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Donlagic, D.

Duan, D.-W.

Dunlap, L.

H. Bae, L. Dunlap, J. Wong, and M. Yu, “Miniature Temperature Compensated Fabry–Perot Pressure Sensors Created With Self-Aligned Polymer Photolithography Process,” IEEE Sens. J. 12(5), 1566–1573 (2012).

Favero, F. C.

Feng, Z.

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

Ferreira, M. S.

Finazzi, V.

Frazão, O.

Gao, B.

J. L. Qu, L. X. Liu, Y. H. Shao, H. Niu, and B. Gao, “Recent process in multiofocal multiphoton microscopy,” J. Innov. Opt. Heal. Sci. 5(3), 1250018 (2012).
[Crossref]

Gao, S.

Geng, P.

Goicoechea, J.

J. Goicoechea, C. Zamarreño, I. Matias, and F. Arregui, “Utilization of white light interferometry in pH sensing applications by mean of the fabrication of nanostructured cavities,” Sens. Actuators B Chem. 138(2), 613–618 (2009).
[Crossref]

Guo, J.

Gupta, A.

Han, T.

Hartwell, P.

G. Hill, R. Melamud, F. Declercq, A. Davenport, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

He, W.-X.

J.-R. Zhao, X.-G. Huang, W.-X. He, and J.-H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor based on fresnel reflection modulated by Fabry–Perot interference,” Lightwave Technology, Journalism 28(19), 2799–2803 (2010).

Hill, G.

G. Hill, R. Melamud, F. Declercq, A. Davenport, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Hou, Y.-S.

Hsu, J.-M.

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Hu, D. J.

Hu, M.

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

Huang, X.-G.

J.-R. Zhao, X.-G. Huang, W.-X. He, and J.-H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor based on fresnel reflection modulated by Fabry–Perot interference,” Lightwave Technology, Journalism 28(19), 2799–2803 (2010).

Huang, Z.

Hwang, H.-E.

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Jiang, M.

Jin, L.

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Jin, W.

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

W. Jin, W. C. Wichie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: Error analysis,” Opt. Eng. 36(2), 598–609 (1997).
[Crossref]

Ju, J.

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Kim, B.

X. Zhang, Y. Xiao, J. Qi, J. Qu, B. Kim, X. Yue, and K. D. Belfield, “Long-wavelength, photostable, two-photon excitable BODIPY fluorophores readily modifiable for molecular probes,” J. Org. Chem. 78(18), 9153–9160 (2013).
[Crossref] [PubMed]

Kobelke, J.

Konstantaki, M.

W. Jin, W. C. Wichie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: Error analysis,” Opt. Eng. 36(2), 598–609 (1997).
[Crossref]

Lee, B. H.

Lee, C.-L.

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Lee, L.-H.

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Li, S.

Li, Z.

Liang, H.

C. Yang, H. Zhang, H. Liang, Y. Miao, B. Liu, Z. Wang, and Y. Liu, “Selectively liquid-infiltrated microstructured optical fiber for simultaneous temperature and force measurement,” IEEE Photon. J. 6(2), 6800808 (2014).

H. Liang, W. Zhang, P. Geng, Y. Liu, Z. Wang, J. Guo, S. Gao, and S. Yan, “Simultaneous measurement of temperature and force with high sensitivities based on filling different index liquids into photonic crystal fiber,” Opt. Lett. 38(7), 1071–1073 (2013).
[Crossref] [PubMed]

Liao, C.

Liao, X.

Lim, J. L.

Liu, B.

C. Yang, H. Zhang, H. Liang, Y. Miao, B. Liu, Z. Wang, and Y. Liu, “Selectively liquid-infiltrated microstructured optical fiber for simultaneous temperature and force measurement,” IEEE Photon. J. 6(2), 6800808 (2014).

Liu, H.

Liu, L. X.

J. L. Qu, L. X. Liu, Y. H. Shao, H. Niu, and B. Gao, “Recent process in multiofocal multiphoton microscopy,” J. Innov. Opt. Heal. Sci. 5(3), 1250018 (2012).
[Crossref]

Liu, S.

Liu, W. J.

Liu, Y.

C. Yang, H. Zhang, H. Liang, Y. Miao, B. Liu, Z. Wang, and Y. Liu, “Selectively liquid-infiltrated microstructured optical fiber for simultaneous temperature and force measurement,” IEEE Photon. J. 6(2), 6800808 (2014).

H. Liang, W. Zhang, P. Geng, Y. Liu, Z. Wang, J. Guo, S. Gao, and S. Yan, “Simultaneous measurement of temperature and force with high sensitivities based on filling different index liquids into photonic crystal fiber,” Opt. Lett. 38(7), 1071–1073 (2013).
[Crossref] [PubMed]

Liu, Y. G.

Lougnot, D. J.

Luan, F.

Ma, J.

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Marques, P. V.

Matias, I.

J. Goicoechea, C. Zamarreño, I. Matias, and F. Arregui, “Utilization of white light interferometry in pH sensing applications by mean of the fabrication of nanostructured cavities,” Sens. Actuators B Chem. 138(2), 613–618 (2009).
[Crossref]

Melamud, R.

G. Hill, R. Melamud, F. Declercq, A. Davenport, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Miao, Y.

C. Yang, H. Zhang, H. Liang, Y. Miao, B. Liu, Z. Wang, and Y. Liu, “Selectively liquid-infiltrated microstructured optical fiber for simultaneous temperature and force measurement,” IEEE Photon. J. 6(2), 6800808 (2014).

Minkovich, V. P.

Mo, Q.

T. Zhu, Y. Rao, and Q. Mo, “Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[Crossref]

Mudhana, G.

Niu, H.

J. L. Qu, L. X. Liu, Y. H. Shao, H. Niu, and B. Gao, “Recent process in multiofocal multiphoton microscopy,” J. Innov. Opt. Heal. Sci. 5(3), 1250018 (2012).
[Crossref]

Olson, D. A.

Paek, U.-C.

Pang, C.

Park, K. S.

Peng, G.-D.

K. R. Sohn and G.-D. Peng, “Mechanically formed loss-tunable long-period fiber gratings realized on the periodic arrayed metal wires,” Opt. Commun. 278(1), 77–80 (2007).
[Crossref]

Pevec, S.

Pruitt, B.

G. Hill, R. Melamud, F. Declercq, A. Davenport, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Pruneri, V.

Qi, J.

X. Zhang, Y. Xiao, J. Qi, J. Qu, B. Kim, X. Yue, and K. D. Belfield, “Long-wavelength, photostable, two-photon excitable BODIPY fluorophores readily modifiable for molecular probes,” J. Org. Chem. 78(18), 9153–9160 (2013).
[Crossref] [PubMed]

Qiao, X.

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

Qu, J.

X. Zhang, Y. Xiao, J. Qi, J. Qu, B. Kim, X. Yue, and K. D. Belfield, “Long-wavelength, photostable, two-photon excitable BODIPY fluorophores readily modifiable for molecular probes,” J. Org. Chem. 78(18), 9153–9160 (2013).
[Crossref] [PubMed]

Qu, J. L.

J. L. Qu, L. X. Liu, Y. H. Shao, H. Niu, and B. Gao, “Recent process in multiofocal multiphoton microscopy,” J. Innov. Opt. Heal. Sci. 5(3), 1250018 (2012).
[Crossref]

Ran, Z. L.

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
[Crossref] [PubMed]

Y. Wang, Y. J. Rao, and Z. L. Ran, “Unique characteristics of long-period fibre gratings fabricated by high-frequency CO2 laser pulses,” Acta Phys. Sin. 52, 1432–1437 (2003).

Rao, Y.

T. Zhu, Y. Rao, and Q. Mo, “Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[Crossref]

Rao, Y. J.

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
[Crossref] [PubMed]

Y. Wang, Y. J. Rao, and Z. L. Ran, “Unique characteristics of long-period fibre gratings fabricated by high-frequency CO2 laser pulses,” Acta Phys. Sin. 52, 1432–1437 (2003).

Rao, Y.-J.

Rong, Q.

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

Santos, J. L.

Schuster, K.

Shao, Y. H.

J. L. Qu, L. X. Liu, Y. H. Shao, H. Niu, and B. Gao, “Recent process in multiofocal multiphoton microscopy,” J. Innov. Opt. Heal. Sci. 5(3), 1250018 (2012).
[Crossref]

Shen, F.

Shum, P. P.

Sohn, K. R.

K. R. Sohn and G.-D. Peng, “Mechanically formed loss-tunable long-period fiber gratings realized on the periodic arrayed metal wires,” Opt. Commun. 278(1), 77–80 (2007).
[Crossref]

Soppera, O.

Sun, H.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

Thursby, G.

W. Jin, W. C. Wichie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: Error analysis,” Opt. Eng. 36(2), 598–609 (1997).
[Crossref]

Tong, W.

Turck, C.

Villatoro, J.

Wang, A.

Wang, C.

Wang, D. N.

Wang, Q.

Wang, S.

Wang, Y.

Wang, Z.

Wei, H.

Wichie, W. C.

W. Jin, W. C. Wichie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: Error analysis,” Opt. Eng. 36(2), 598–609 (1997).
[Crossref]

Wong, J.

H. Bae, L. Dunlap, J. Wong, and M. Yu, “Miniature Temperature Compensated Fabry–Perot Pressure Sensors Created With Self-Aligned Polymer Photolithography Process,” IEEE Sens. J. 12(5), 1566–1573 (2012).

Wu, Z.

Xiao, Y.

X. Zhang, Y. Xiao, J. Qi, J. Qu, B. Kim, X. Yue, and K. D. Belfield, “Long-wavelength, photostable, two-photon excitable BODIPY fluorophores readily modifiable for molecular probes,” J. Org. Chem. 78(18), 9153–9160 (2013).
[Crossref] [PubMed]

Xu, L.

Xue, Y.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yan, S.

Yang, C.

C. Yang, H. Zhang, H. Liang, Y. Miao, B. Liu, Z. Wang, and Y. Liu, “Selectively liquid-infiltrated microstructured optical fiber for simultaneous temperature and force measurement,” IEEE Photon. J. 6(2), 6800808 (2014).

Yang, R.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yu, M.

Yu, Y.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Yue, X.

X. Zhang, Y. Xiao, J. Qi, J. Qu, B. Kim, X. Yue, and K. D. Belfield, “Long-wavelength, photostable, two-photon excitable BODIPY fluorophores readily modifiable for molecular probes,” J. Org. Chem. 78(18), 9153–9160 (2013).
[Crossref] [PubMed]

Yun, D.

Zamarreño, C.

J. Goicoechea, C. Zamarreño, I. Matias, and F. Arregui, “Utilization of white light interferometry in pH sensing applications by mean of the fabrication of nanostructured cavities,” Sens. Actuators B Chem. 138(2), 613–618 (2009).
[Crossref]

Zhang, H.

C. Yang, H. Zhang, H. Liang, Y. Miao, B. Liu, Z. Wang, and Y. Liu, “Selectively liquid-infiltrated microstructured optical fiber for simultaneous temperature and force measurement,” IEEE Photon. J. 6(2), 6800808 (2014).

Zhang, J.

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

Zhang, W.

Zhang, X.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

X. Zhang, Y. Xiao, J. Qi, J. Qu, B. Kim, X. Yue, and K. D. Belfield, “Long-wavelength, photostable, two-photon excitable BODIPY fluorophores readily modifiable for molecular probes,” J. Org. Chem. 78(18), 9153–9160 (2013).
[Crossref] [PubMed]

Zhao, J.-R.

J.-R. Zhao, X.-G. Huang, W.-X. He, and J.-H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor based on fresnel reflection modulated by Fabry–Perot interference,” Lightwave Technology, Journalism 28(19), 2799–2803 (2010).

Zhu, C.

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

Zhu, T.

D.-W. Duan, Y.-J. Rao, Y.-S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Appl. Opt. 51(8), 1033–1036 (2012).
[Crossref] [PubMed]

T. Zhu, Y. Rao, and Q. Mo, “Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[Crossref]

Zubia, J.

Acta Phys. Sin. (1)

Y. Wang, Y. J. Rao, and Z. L. Ran, “Unique characteristics of long-period fibre gratings fabricated by high-frequency CO2 laser pulses,” Acta Phys. Sin. 52, 1432–1437 (2003).

Appl. Opt. (3)

IEEE Photon. J. (1)

C. Yang, H. Zhang, H. Liang, Y. Miao, B. Liu, Z. Wang, and Y. Liu, “Selectively liquid-infiltrated microstructured optical fiber for simultaneous temperature and force measurement,” IEEE Photon. J. 6(2), 6800808 (2014).

IEEE Photon. Technol. Lett. (4)

C.-L. Lee, L.-H. Lee, H.-E. Hwang, and J.-M. Hsu, “Highly sensitive air-gap fiber Fabry-Perot interferometers based on polymer-filled hollow core fibers,” IEEE Photon. Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photon. Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

T. Zhu, Y. Rao, and Q. Mo, “Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating,” IEEE Photon. Technol. Lett. 17(12), 2700–2702 (2005).
[Crossref]

X. Zhang, Y. Yu, C. Zhu, C. Chen, R. Yang, Y. Xue, Q. Chen, and H. Sun, “Miniature End-Capped Fiber Sensor for Refractive Index and Temperature Measurement,” IEEE Photon. Technol. Lett. 26(1), 7–10 (2014).
[Crossref]

IEEE Sens. J. (1)

H. Bae, L. Dunlap, J. Wong, and M. Yu, “Miniature Temperature Compensated Fabry–Perot Pressure Sensors Created With Self-Aligned Polymer Photolithography Process,” IEEE Sens. J. 12(5), 1566–1573 (2012).

J. Appl. Phys. (1)

Y. Wang, “Review of long period fiber gratings written by CO2 Laser,” J. Appl. Phys. 108(8), 081101 (2010).
[Crossref]

J. Innov. Opt. Heal. Sci. (1)

J. L. Qu, L. X. Liu, Y. H. Shao, H. Niu, and B. Gao, “Recent process in multiofocal multiphoton microscopy,” J. Innov. Opt. Heal. Sci. 5(3), 1250018 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

Q. Rong, H. Sun, X. Qiao, J. Zhang, M. Hu, and Z. Feng, “A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer,” J. Opt. 14(4), 045002 (2012).
[Crossref]

J. Org. Chem. (1)

X. Zhang, Y. Xiao, J. Qi, J. Qu, B. Kim, X. Yue, and K. D. Belfield, “Long-wavelength, photostable, two-photon excitable BODIPY fluorophores readily modifiable for molecular probes,” J. Org. Chem. 78(18), 9153–9160 (2013).
[Crossref] [PubMed]

lism (1)

J.-R. Zhao, X.-G. Huang, W.-X. He, and J.-H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor based on fresnel reflection modulated by Fabry–Perot interference,” Lightwave Technology, Journalism 28(19), 2799–2803 (2010).

Opt. Commun. (1)

K. R. Sohn and G.-D. Peng, “Mechanically formed loss-tunable long-period fiber gratings realized on the periodic arrayed metal wires,” Opt. Commun. 278(1), 77–80 (2007).
[Crossref]

Opt. Eng. (1)

W. Jin, W. C. Wichie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: Error analysis,” Opt. Eng. 36(2), 598–609 (1997).
[Crossref]

Opt. Express (7)

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
[Crossref] [PubMed]

C. Pang, H. Bae, A. Gupta, K. Bryden, and M. Yu, “MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing,” Opt. Express 21(19), 21829–21839 (2013).
[Crossref] [PubMed]

H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
[PubMed]

T. Han, Y. G. Liu, Z. Wang, Z. Wu, S. Wang, and S. Li, “Simultaneous temperature and force measurement using Fabry-Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber,” Opt. Express 20(12), 13320–13325 (2012).
[Crossref] [PubMed]

M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazão, “Towards the control of highly sensitive Fabry-Pérot strain sensor based on hollow-core ring photonic crystal fiber,” Opt. Express 20(20), 21946–21952 (2012).
[Crossref] [PubMed]

F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
[Crossref] [PubMed]

H. Bae and M. Yu, “Miniature Fabry-Perot pressure sensor created by using UV-molding process with an optical fiber based mold,” Opt. Express 20(13), 14573–14583 (2012).
[Crossref] [PubMed]

Opt. Lett. (6)

Sens. Actuators A Phys. (1)

G. Hill, R. Melamud, F. Declercq, A. Davenport, I. Chan, P. Hartwell, and B. Pruitt, “SU-8 MEMS Fabry-Perot pressure sensor,” Sens. Actuators A Phys. 138(1), 52–62 (2007).
[Crossref]

Sens. Actuators B Chem. (1)

J. Goicoechea, C. Zamarreño, I. Matias, and F. Arregui, “Utilization of white light interferometry in pH sensing applications by mean of the fabrication of nanostructured cavities,” Sens. Actuators B Chem. 138(2), 613–618 (2009).
[Crossref]

Other (1)

Norland Products Inc, https://www.norlandprod.com/adhesives/NOA%2065.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the fabrication process of the FPI sensor.
Fig. 2
Fig. 2 Schematic diagram of the fiber-tip FPI sensor.
Fig. 3
Fig. 3 (a) Reflection spectra and optical microscope images of the five polymer-capped FPIs with different cavity lengths in air at room temperature. (b) Measured and calculated FSR of the FPIs as a function of cavity length around the wavelengths of 1310 and 1560 nm, respectively.
Fig. 4
Fig. 4 Experimental setup for measuring the response of the polymer-capped FPI to the gas pressure.
Fig. 5
Fig. 5 Resonant wavelengths of the interference fringe at (a) a shorter wavelength of about 1310 nm, i.e. DipA, and (b) a longer wavelength of about 1560 nm, i.e. DipB, versus different gas pressures. The insets show the interference fringes at gas pressure of 0.1 and 2.5 MPa.
Fig. 6
Fig. 6 Temperature response of the dip wavelengths (a) DipA and (b) DipB. The insets in Fig. 6 (a) and Fig. 6 (b) represent the variation of the DipA and the DipB with T ranging from 40 to 90 °C.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ dip m = 4× n cavity ×L 2m+1 , m=0, 1, 2, ...
Δ λ dip m = 4×(α+dn/dT) 2m+1 ×ΔT
[ ΔT ΔP ]= [ S temp, A S pres, A S temp, B S pres, B ] 1 = 1 0.025 [ 1.13 0.978 0.249 0.198 ][ Δ λ A Δ λ B ]

Metrics