Abstract

Generalized Phase Contrast (GPC) is a versatile tool for efficiently rerouting and managing photon energy into speckle-free contiguous spatial light distributions. We have previously shown theoretically and numerically that a GPC Light Shaper shows robustness to shift in wavelength and can maintain both projection length scale and high efficiency over a range [0.75λ0; 1.5λ0] with λ0 as the characteristic design wavelength. With this performance across multiple wavelengths and the recent availability of tabletop supercontinuum lasers, GPC light shaping opens the possibility for creatively incorporating various multi-wavelength approaches into spatially shaped excitations that can enable new broadband light applications. We verify this new approach using a supercontinuum light source, interfaced with a compact GPC light shaper. Our experiments give ~70% efficiency, ~3x intensity gain, and ~85% energy savings, limited, however, by the illumination equipment, but still in very good agreement with theoretical and numerical predictions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
GPC light shaper: static and dynamic experimental demonstrations

Andrew Bañas, Oleksii Kopylov, Mark Villangca, Darwin Palima, and Jesper Glückstad
Opt. Express 22(20) 23759-23769 (2014)

GPC Light Shaper for speckle-free one- and two-photon contiguous pattern excitation

Andrew Bañas, Darwin Palima, Mark Villangca, Thomas Aabo, and Jesper Glückstad
Opt. Express 22(5) 5299-5311 (2014)

Multi-wavelength spatial light shaping using generalized phase contrast

Darwin Palima and Jesper Glückstad
Opt. Express 16(2) 1331-1342 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
    [Crossref] [PubMed]
  2. Y. Y. Cheng and J. C. Wyant, “Multiple-wavelength phase-shifting interferometry,” Appl. Opt. 24(6), 804 (1985).
    [Crossref] [PubMed]
  3. E. L. Heffer and S. Fantini, “Quantitative oximetry of breast tumors: a near-infrared method that identifies two optimal wavelengths for each tumor,” Appl. Opt. 41(19), 3827–3839 (2002).
    [Crossref] [PubMed]
  4. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
    [Crossref]
  5. E. Papagiakoumou, “Optical developments for optogenetics,” Biol. Cell 105(10), 443–464 (2013).
    [PubMed]
  6. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
    [Crossref] [PubMed]
  7. D. Palima, C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Generalized phase contrast matched to Gaussian illumination,” Opt. Express 15(19), 11971–11977 (2007).
    [Crossref] [PubMed]
  8. S. Singh-Gasson, R. D. Green, Y. Yue, C. Nelson, F. Blattner, M. R. Sussman, and F. Cerrina, “Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array,” Nat. Biotechnol. 17(10), 974–978 (1999).
    [Crossref] [PubMed]
  9. S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
    [Crossref]
  10. T. R. M. Sales, R. P. C. Photonics, C. Road, and R. Ny, “Structured Microlens Arrays for Beam Shaping,” Proc. SPIE 5175, 109–120 (2003).
    [Crossref]
  11. C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
    [Crossref]
  12. J. A. Hoffnagle and C. M. Jefferson, “Design and performance of a refractive optical system that converts a Gaussian to a flattop beam,” Appl. Opt. 39(30), 5488–5499 (2000).
    [Crossref] [PubMed]
  13. W. B. Veldkamp, “Laser beam profile shaping with interlaced binary diffraction gratings,” Appl. Opt. 21(17), 3209–3212 (1982).
    [Crossref] [PubMed]
  14. M. R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106 (2003).
    [Crossref]
  15. S. H. Lee and D. Grier, “Robustness of holographic optical traps against phase scaling errors,” Opt. Express 13(19), 7458–7465 (2005).
    [Crossref] [PubMed]
  16. V. Arrizón, “Optimum on-axis computer-generated hologram encoded into low-resolution phase-modulation devices,” Opt. Lett. 28(24), 2521–2523 (2003).
    [Crossref] [PubMed]
  17. J. Glückstad and D. Palima, Generalized Phase Contrast: Applications in Optics and Photonic (Springer, 2009).
  18. J. Glückstad, L. Lading, H. Toyoda, and T. Hara, “Lossless light projection,” Opt. Lett. 22(18), 1373–1375 (1997).
    [Crossref] [PubMed]
  19. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29(19), 2270–2272 (2004).
    [Crossref] [PubMed]
  20. A. Bañas, D. Palima, M. Villangca, T. Aabo, and J. Glückstad, “GPC light shaper for speckle-free one- and two-photon contiguous pattern excitation,” Opt. Express 22(5), 5299–5311 (2014).
    [Crossref] [PubMed]
  21. A. Bañas, O. Kopylov, M. Villangca, D. Palima, and J. Glückstad, “GPC Light Shaper: static and dynamic experimental demonstrations,” Opt. Express 22(20), 23759–23769 (2014).
    [Crossref] [PubMed]
  22. J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40(2), 268–282 (2001).
    [Crossref] [PubMed]
  23. C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Photon-efficient grey-level image projection by the generalized phase contrast method,” New J. Phys. 9(5), 132 (2007).
    [Crossref]
  24. D. Palima and J. Glückstad, “Multi-wavelength spatial light shaping using generalized phase contrast,” Opt. Express 16(2), 1331–1342 (2008).
    [Crossref] [PubMed]
  25. J. Jahns, “All-reflective planar-integrated free-space micro-optical femtosecond pulse shaper,” Opt. Eng. 48(12), 123001 (2009).
    [Crossref]
  26. V. Bagnoud and J. D. Zuegel, “Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator,” Opt. Lett. 29(3), 295–297 (2004).
    [Crossref] [PubMed]
  27. J. Liang, R. N. Kohn, Jr., M. F. Becker, D. J. Heinzen, M. R. Douglass, and P. I. Oden, “High-precision beam shaper for coherent and incoherent light using a DLP spatial light modulator,” in Proceedings of SPIE - the International Society for Optical Engineering, M. R. Douglass and P. I. Oden, eds. (2011), Vol. 7932, pp. 793208.
  28. J. Glückstad, D. Palima, P. J. Rodrigo, and C. A. Alonzo, “Laser projection using generalized phase contrast,” Opt. Lett. 32(22), 3281–3283 (2007).
    [Crossref] [PubMed]
  29. V. Daria, J. Glückstad, P. C. Mogensen, R. L. Eriksen, and S. Sinzinger, “Implementing the generalized phase-contrast method in a planar-integrated micro-optics platform,” Opt. Lett. 27(11), 945–947 (2002).
    [Crossref] [PubMed]

2014 (2)

2013 (1)

E. Papagiakoumou, “Optical developments for optogenetics,” Biol. Cell 105(10), 443–464 (2013).
[PubMed]

2010 (1)

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

2009 (1)

J. Jahns, “All-reflective planar-integrated free-space micro-optical femtosecond pulse shaper,” Opt. Eng. 48(12), 123001 (2009).
[Crossref]

2008 (1)

2007 (4)

D. Palima, C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Generalized phase contrast matched to Gaussian illumination,” Opt. Express 15(19), 11971–11977 (2007).
[Crossref] [PubMed]

J. Glückstad, D. Palima, P. J. Rodrigo, and C. A. Alonzo, “Laser projection using generalized phase contrast,” Opt. Lett. 32(22), 3281–3283 (2007).
[Crossref] [PubMed]

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Photon-efficient grey-level image projection by the generalized phase contrast method,” New J. Phys. 9(5), 132 (2007).
[Crossref]

2005 (1)

2004 (2)

2003 (3)

V. Arrizón, “Optimum on-axis computer-generated hologram encoded into low-resolution phase-modulation devices,” Opt. Lett. 28(24), 2521–2523 (2003).
[Crossref] [PubMed]

M. R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106 (2003).
[Crossref]

T. R. M. Sales, R. P. C. Photonics, C. Road, and R. Ny, “Structured Microlens Arrays for Beam Shaping,” Proc. SPIE 5175, 109–120 (2003).
[Crossref]

2002 (4)

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[Crossref]

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

V. Daria, J. Glückstad, P. C. Mogensen, R. L. Eriksen, and S. Sinzinger, “Implementing the generalized phase-contrast method in a planar-integrated micro-optics platform,” Opt. Lett. 27(11), 945–947 (2002).
[Crossref] [PubMed]

E. L. Heffer and S. Fantini, “Quantitative oximetry of breast tumors: a near-infrared method that identifies two optimal wavelengths for each tumor,” Appl. Opt. 41(19), 3827–3839 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (1)

1999 (2)

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

S. Singh-Gasson, R. D. Green, Y. Yue, C. Nelson, F. Blattner, M. R. Sussman, and F. Cerrina, “Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array,” Nat. Biotechnol. 17(10), 974–978 (1999).
[Crossref] [PubMed]

1997 (1)

1985 (1)

1982 (1)

Aabo, T.

Ajayan, P. M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[Crossref]

Alonzo, C. A.

Anselmi, F.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Arrizón, V.

Bagnoud, V.

Bañas, A.

Bègue, A.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Berger, A. J.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

Bevilacqua, F.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

Blattner, F.

S. Singh-Gasson, R. D. Green, Y. Yue, C. Nelson, F. Blattner, M. R. Sussman, and F. Cerrina, “Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array,” Nat. Biotechnol. 17(10), 974–978 (1999).
[Crossref] [PubMed]

Butler, J.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

Cerrina, F.

S. Singh-Gasson, R. D. Green, Y. Yue, C. Nelson, F. Blattner, M. R. Sussman, and F. Cerrina, “Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array,” Nat. Biotechnol. 17(10), 974–978 (1999).
[Crossref] [PubMed]

Cerussi, A. E.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

Chen, Y.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[Crossref]

Cheng, Y. Y.

Chung, S. E.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Daria, V.

Daria, V. R.

de Sars, V.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Emiliani, V.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Eriksen, R. L.

Fantini, S.

Glückstad, J.

A. Bañas, O. Kopylov, M. Villangca, D. Palima, and J. Glückstad, “GPC Light Shaper: static and dynamic experimental demonstrations,” Opt. Express 22(20), 23759–23769 (2014).
[Crossref] [PubMed]

A. Bañas, D. Palima, M. Villangca, T. Aabo, and J. Glückstad, “GPC light shaper for speckle-free one- and two-photon contiguous pattern excitation,” Opt. Express 22(5), 5299–5311 (2014).
[Crossref] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

D. Palima and J. Glückstad, “Multi-wavelength spatial light shaping using generalized phase contrast,” Opt. Express 16(2), 1331–1342 (2008).
[Crossref] [PubMed]

D. Palima, C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Generalized phase contrast matched to Gaussian illumination,” Opt. Express 15(19), 11971–11977 (2007).
[Crossref] [PubMed]

J. Glückstad, D. Palima, P. J. Rodrigo, and C. A. Alonzo, “Laser projection using generalized phase contrast,” Opt. Lett. 32(22), 3281–3283 (2007).
[Crossref] [PubMed]

C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Photon-efficient grey-level image projection by the generalized phase contrast method,” New J. Phys. 9(5), 132 (2007).
[Crossref]

P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29(19), 2270–2272 (2004).
[Crossref] [PubMed]

V. Daria, J. Glückstad, P. C. Mogensen, R. L. Eriksen, and S. Sinzinger, “Implementing the generalized phase-contrast method in a planar-integrated micro-optics platform,” Opt. Lett. 27(11), 945–947 (2002).
[Crossref] [PubMed]

J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40(2), 268–282 (2001).
[Crossref] [PubMed]

J. Glückstad, L. Lading, H. Toyoda, and T. Hara, “Lossless light projection,” Opt. Lett. 22(18), 1373–1375 (1997).
[Crossref] [PubMed]

Green, R. D.

S. Singh-Gasson, R. D. Green, Y. Yue, C. Nelson, F. Blattner, M. R. Sussman, and F. Cerrina, “Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array,” Nat. Biotechnol. 17(10), 974–978 (1999).
[Crossref] [PubMed]

Grier, D.

Hara, T.

Heffer, E. L.

Hoffnagle, J. A.

Holcombe, R. F.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

Hsiang, D.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

Isacoff, E. Y.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Jahns, J.

J. Jahns, “All-reflective planar-integrated free-space micro-optical femtosecond pulse shaper,” Opt. Eng. 48(12), 123001 (2009).
[Crossref]

Jakubowski, D.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

Jefferson, C. M.

Kopp, C.

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

Kopylov, O.

Kwon, S.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Lading, L.

Lanning, R.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

Lee, S. H.

Lu, T.-M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[Crossref]

Meyrueis, P.

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

Mogensen, P. C.

Nelson, C.

S. Singh-Gasson, R. D. Green, Y. Yue, C. Nelson, F. Blattner, M. R. Sussman, and F. Cerrina, “Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array,” Nat. Biotechnol. 17(10), 974–978 (1999).
[Crossref] [PubMed]

Ny, R.

T. R. M. Sales, R. P. C. Photonics, C. Road, and R. Ny, “Structured Microlens Arrays for Beam Shaping,” Proc. SPIE 5175, 109–120 (2003).
[Crossref]

Palima, D.

Papagiakoumou, E.

E. Papagiakoumou, “Optical developments for optogenetics,” Biol. Cell 105(10), 443–464 (2013).
[PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Park, H.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Park, N.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Park, W.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Photonics, R. P. C.

T. R. M. Sales, R. P. C. Photonics, C. Road, and R. Ny, “Structured Microlens Arrays for Beam Shaping,” Proc. SPIE 5175, 109–120 (2003).
[Crossref]

Raravikar, N. R.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[Crossref]

Ravel, L.

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

Road, C.

T. R. M. Sales, R. P. C. Photonics, C. Road, and R. Ny, “Structured Microlens Arrays for Beam Shaping,” Proc. SPIE 5175, 109–120 (2003).
[Crossref]

Rodrigo, P. J.

Sales, T. R. M.

T. R. M. Sales, R. P. C. Photonics, C. Road, and R. Ny, “Structured Microlens Arrays for Beam Shaping,” Proc. SPIE 5175, 109–120 (2003).
[Crossref]

Schadler, L. S.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[Crossref]

Shah, N.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

Singh-Gasson, S.

S. Singh-Gasson, R. D. Green, Y. Yue, C. Nelson, F. Blattner, M. R. Sussman, and F. Cerrina, “Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array,” Nat. Biotechnol. 17(10), 974–978 (1999).
[Crossref] [PubMed]

Sinzinger, S.

Sussman, M. R.

S. Singh-Gasson, R. D. Green, Y. Yue, C. Nelson, F. Blattner, M. R. Sussman, and F. Cerrina, “Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array,” Nat. Biotechnol. 17(10), 974–978 (1999).
[Crossref] [PubMed]

Toyoda, H.

Tromberg, B. J.

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

Veldkamp, W. B.

Villangca, M.

Wang, G.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[Crossref]

Wang, M. R.

M. R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106 (2003).
[Crossref]

Wyant, J. C.

Yu, K.

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Yue, Y.

S. Singh-Gasson, R. D. Green, Y. Yue, C. Nelson, F. Blattner, M. R. Sussman, and F. Cerrina, “Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array,” Nat. Biotechnol. 17(10), 974–978 (1999).
[Crossref] [PubMed]

Zhang, X.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[Crossref]

Zhao, Y.-P.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[Crossref]

Zuegel, J. D.

Appl. Opt. (5)

Appl. Phys. Lett. (2)

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[Crossref]

S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, “Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels,” Appl. Phys. Lett. 91(4), 041106 (2007).
[Crossref]

Biol. Cell (1)

E. Papagiakoumou, “Optical developments for optogenetics,” Biol. Cell 105(10), 443–464 (2013).
[PubMed]

J. Biomed. Opt. (1)

A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt. 7(1), 60–71 (2002).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

Nat. Biotechnol. (1)

S. Singh-Gasson, R. D. Green, Y. Yue, C. Nelson, F. Blattner, M. R. Sussman, and F. Cerrina, “Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array,” Nat. Biotechnol. 17(10), 974–978 (1999).
[Crossref] [PubMed]

Nat. Methods (1)

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

New J. Phys. (1)

C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Photon-efficient grey-level image projection by the generalized phase contrast method,” New J. Phys. 9(5), 132 (2007).
[Crossref]

Opt. Eng. (2)

J. Jahns, “All-reflective planar-integrated free-space micro-optical femtosecond pulse shaper,” Opt. Eng. 48(12), 123001 (2009).
[Crossref]

M. R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper,” Opt. Eng. 42(11), 3106 (2003).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Proc. SPIE (1)

T. R. M. Sales, R. P. C. Photonics, C. Road, and R. Ny, “Structured Microlens Arrays for Beam Shaping,” Proc. SPIE 5175, 109–120 (2003).
[Crossref]

Other (2)

J. Glückstad and D. Palima, Generalized Phase Contrast: Applications in Optics and Photonic (Springer, 2009).

J. Liang, R. N. Kohn, Jr., M. F. Becker, D. J. Heinzen, M. R. Douglass, and P. I. Oden, “High-precision beam shaper for coherent and incoherent light using a DLP spatial light modulator,” in Proceedings of SPIE - the International Society for Optical Engineering, M. R. Douglass and P. I. Oden, eds. (2011), Vol. 7932, pp. 793208.

Supplementary Material (1)

» Media 1: MOV (814 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Supercontinuum light shaping with the GPC Light Shaper. In addition to a standard imaging or telescopic setup formed by the two Fourier lenses, GPC uses a simple binary phase mask at the input and a phase contrast filter at the Fourier plane. In this illustration a Gaussian beam is efficiently transformed into a tophat without speckles.

Fig. 2
Fig. 2

Wavelength dependence using GPC parameters optimized for Gaussian-to-tophat shaping at λ0 = 532nm. (a) On-axis intensity vs wavelength shows that the efficiency optimized tophat size (ζ = 0.3979) exhibits a flatter wavelength response than a smaller tophat (ζ = 0.3). (b) Complex plane visualization illustrating how the phasors drift from as the wavelength changes. Phasor diagrams illustrate the on-axis output superposition [cf Eq. (6)] of the modulated Gaussian, exp(iϕ), with the corresponding SRW phasors for the two tophats, marked ζ = 0.3 and ζ = 0.3979, at selected wavelengths marked A–C (D–F) in (a). (c) Zoom-in of how the SRW phasors drift as the wavelength changes from A–C (D to F) for ζ = 0.3 (ζ = 0.3979).

Fig. 3
Fig. 3

Pen-sized GPC Light Shaper using two f = 50mm Fourier lenses and half inch optics assembly.

Fig. 4
Fig. 4

GPC Light Shaper setup using a multi-wavelength illumination. The GPC Light Shaper (GPC LS) is illuminated with 2w0 = 1mm. The light is passed through a GPC system and then imaged onto a color CCD camera or a beam profiler (BP).

Fig. 5
Fig. 5

CCD images of the green laser light intensity without a phase mask (a), and with the circle (b), square (c), globe (d), and DTU logo (e) phase masks, respectively.The input laser power is kept the same for all cases.

Fig. 6
Fig. 6

Color CCD images of GPC projections from the same setup, as the wavelength selector is varied from 500nm to 650nm (a)-(f) (see Media 1).The power at different wavelengths is adjusted individually for visibility.

Fig. 7
Fig. 7

Wavelength dependence of the efficiency, energy savings and gain of a GPC Light Shaper illuminated with a Gaussian beam. The GPC LS is designed for 532 nm and used a circular phase mask.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

α ¯ = 1 π w 0 2 exp[ ( x 2 + y 2 ) / w 0 2 ]exp[ iϕ( x,y ) ]dxdy .
w f = λ 0 f / ( π w 0 ) .
η= Δ r f / w f
η= ln( 1 1/2 ) =1.1081,
α ¯ = 1/2 =0.7071.
o( x,y )=a ( x,y )+( exp(iθ)1 ) 1 { circ( f x 2 + f y 2 η w f )A ( f x , f y ) }
ϕ( λ )=θ( λ )= 2π λ ( n air n λ,glass ) d 0 =π λ 0 λ Δ n λ Δ n λ0
η= Δ r f π w 0 λf = λ 0 λ η 0
o( 0,0 )=exp( iϕ )+[ exp( iθ )1 ]{ 1exp( η 2 )+ η 2 [ 1+exp( iϕ ) ][ 1exp( ζ 2 ) ] }
Δ r f =η λ 0 f π w 0 = 1.1081×0.532μm×50mm π×0.5mm =18.77µm 
etch depth= ( λ 0 /2) / (n1) ,

Metrics