Abstract

We demonstrate a series of simulation experiments examining the optical trapping behavior of composite micro-particles consisting of a small metallic patch on a spherical dielectric bead. A full parameter space of patch shapes, based on current state of the art manufacturing techniques, and optical properties of the metallic film stack is examined. Stable trapping locations and optical trap stiffness of these particles are determined based on the particle design and potential particle design optimizations are discussed. A final test is performed examining the ability to incorporate these composite particles with standard optical trap metrology technologies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Computational toolbox for optical tweezers in geometrical optics

Agnese Callegari, Mite Mijalkov, A. Burak Gököz, and Giovanni Volpe
J. Opt. Soc. Am. B 32(5) B11-B19 (2015)

FDTD simulations of forces on particles during holographic assembly

David C. Benito, Stephen H. Simpson, and Simon Hanna
Opt. Express 16(5) 2942-2957 (2008)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
    [Crossref] [PubMed]
  2. D. Palima and J. Glückstad, “Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces,” Laser Photon. Rev. 7(4), 478–494 (2013).
    [Crossref]
  3. Y. Tsai, K. Leitz, R. Fardel, A. Otto, M. Schmidt, and C. Arnold, “Parallel optical trap assisted nanopatterning on rough surfaces,” Nanotechnology 23(16), 165304 (2012).
    [Crossref] [PubMed]
  4. A. Ostendorf, R. Ghadiri, and S. Ksouri, “Optical tweezers in microassembly,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVIII, X. Xu, G. Hennig, Y. Nakata, and S. W. Roth, eds., Proc SPIE860786070U1(2013).
  5. K. Neuman, T. Lionnet, and J.-F. Allemand, “Single-molecule micromanipulation techniques,” Annu. Rev. Mater. Res. 37, 33–67 (2007).
    [Crossref]
  6. A. Crut, D. A. Koster, R. Seidel, C. H. Wiggins, and N. H. Dekker, “Fast dynamics of supercoiled dna revealed by single-molecule experiments,” Proc. Nat. Acad. Sci. USA 104(29), 11957–11962 (2007).
    [Crossref] [PubMed]
  7. D. Normanno, F. Vanzi, and F. S. Pavone, “Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated dna looping,” Nucleic Acids Res. 36(8), 2505–2513 (2008).
    [Crossref] [PubMed]
  8. M. T. van Loenhout, I. De Vlaminck, B. Flebus, J. F. den Blanken, L. P. Zweifel, K. M. Hooning, J. W. Kerssemakers, and C. Dekker, “Scanning a dna molecule for bound proteins using hybrid magnetic and optical tweezers,” PLoS ONE 8(6), e65329 (2013).
    [Crossref] [PubMed]
  9. B. Senyuk, M. C. Varney, J. A. Lopez, S. Wang, N. Wu, and I. I. Smalyukh, “Magnetically responsive gourd-shaped colloidal particles in cholesteric liquid crystals,” Soft Matter 10(32), 6014–6023 (2014).
    [Crossref] [PubMed]
  10. M. C. Varney, N. J. Jenness, and I. I. Smalyukh, “Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation,” Phys. Rev. E 89(2), 022505 (2014).
    [Crossref]
  11. L. Sacconi, G. Romano, R. Ballerini, M. Capitanio, M. De Pas, M. Giuntini, D. Dunlap, L. Finzi, and F. Pavone, “Three-dimensional magneto-optic trap for micro-object manipulation,” Opt. Lett. 26(17), 1359–1361 (2001).
    [Crossref]
  12. M. Capitanio, D. Normanno, and F. Saverio Pavone, “High-precision measurements of light-induced torque on absorbing microspheres,” Opt. Lett. 29(19), 2231–2233 (2004).
    [Crossref] [PubMed]
  13. G. Romano, L. Sacconi, M. Capitanio, and F. Pavone, “Force and torque measurements using magnetic micro beads for single molecule biophysics,” Opt. Commun. 215(4), 323–331 (2003).
    [Crossref]
  14. L. Helseth, “Paramagnetic particles in an optical trap,” Opt. Commun. 276(2), 277–282 (2007).
    [Crossref]
  15. J. N. Anker, Y.-E. K. Lee, and R. Kopelman, “Magnetically guiding and orienting integrated chemical sensors,” J. Magn. Magn. Mater. 362, 229–234 (2014).
    [Crossref]
  16. R. Erb, N. Jenness, R. Clark, and B. Yellen, “Towards holonomic control of janus particles in optomagnetic traps,” Adv. Mater. 21(47), 4825–4829 (2009).
    [Crossref]
  17. J. L. Lawson, N. J. Jenness, and R. L. Clark, “Optomagnetically controlled microparticles manufactured with glancing angle deposition,” Part. Part. Syst. Char. 32(7), 734–742 (2015).
    [Crossref]
  18. F. Merkt, A. Erbe, and P. Leiderer, “Capped colloids as light-mills in optical traps,” New J. Phys. 8(9), 216 (2006).
    [Crossref]
  19. M. Siler, P. Jkl, O. Brzobohat, J. Jezek, and P. Zemnek, “Anomalous behavior of a three-dimensional, optically trapped, super-paramagnetic particle,” in SPIE NanoScience+ Engineering, K. Dholakia and G. C. Spalding, eds., Proc. SPIE, 9164, 916436 (2014).
  20. A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  21. A. Callegari, M. Mijalkov, A. B. Gököz, and G. Volpe, “Computational toolbox for optical tweezers in geometrical optics,” J. Opt. Soc. Am. B 32(5), B11–B19 (2015)
    [Crossref]
  22. H. Minkowski, “Die grundgleichungen für die elektromagnetischen vorgänge in bewegten körpern,” Math. Ann. 68(4), 472–525 (1910).
    [Crossref]
  23. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
    [Crossref]

2015 (2)

J. L. Lawson, N. J. Jenness, and R. L. Clark, “Optomagnetically controlled microparticles manufactured with glancing angle deposition,” Part. Part. Syst. Char. 32(7), 734–742 (2015).
[Crossref]

A. Callegari, M. Mijalkov, A. B. Gököz, and G. Volpe, “Computational toolbox for optical tweezers in geometrical optics,” J. Opt. Soc. Am. B 32(5), B11–B19 (2015)
[Crossref]

2014 (3)

J. N. Anker, Y.-E. K. Lee, and R. Kopelman, “Magnetically guiding and orienting integrated chemical sensors,” J. Magn. Magn. Mater. 362, 229–234 (2014).
[Crossref]

B. Senyuk, M. C. Varney, J. A. Lopez, S. Wang, N. Wu, and I. I. Smalyukh, “Magnetically responsive gourd-shaped colloidal particles in cholesteric liquid crystals,” Soft Matter 10(32), 6014–6023 (2014).
[Crossref] [PubMed]

M. C. Varney, N. J. Jenness, and I. I. Smalyukh, “Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation,” Phys. Rev. E 89(2), 022505 (2014).
[Crossref]

2013 (2)

D. Palima and J. Glückstad, “Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces,” Laser Photon. Rev. 7(4), 478–494 (2013).
[Crossref]

M. T. van Loenhout, I. De Vlaminck, B. Flebus, J. F. den Blanken, L. P. Zweifel, K. M. Hooning, J. W. Kerssemakers, and C. Dekker, “Scanning a dna molecule for bound proteins using hybrid magnetic and optical tweezers,” PLoS ONE 8(6), e65329 (2013).
[Crossref] [PubMed]

2012 (1)

Y. Tsai, K. Leitz, R. Fardel, A. Otto, M. Schmidt, and C. Arnold, “Parallel optical trap assisted nanopatterning on rough surfaces,” Nanotechnology 23(16), 165304 (2012).
[Crossref] [PubMed]

2009 (1)

R. Erb, N. Jenness, R. Clark, and B. Yellen, “Towards holonomic control of janus particles in optomagnetic traps,” Adv. Mater. 21(47), 4825–4829 (2009).
[Crossref]

2008 (2)

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

D. Normanno, F. Vanzi, and F. S. Pavone, “Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated dna looping,” Nucleic Acids Res. 36(8), 2505–2513 (2008).
[Crossref] [PubMed]

2007 (3)

K. Neuman, T. Lionnet, and J.-F. Allemand, “Single-molecule micromanipulation techniques,” Annu. Rev. Mater. Res. 37, 33–67 (2007).
[Crossref]

A. Crut, D. A. Koster, R. Seidel, C. H. Wiggins, and N. H. Dekker, “Fast dynamics of supercoiled dna revealed by single-molecule experiments,” Proc. Nat. Acad. Sci. USA 104(29), 11957–11962 (2007).
[Crossref] [PubMed]

L. Helseth, “Paramagnetic particles in an optical trap,” Opt. Commun. 276(2), 277–282 (2007).
[Crossref]

2006 (1)

F. Merkt, A. Erbe, and P. Leiderer, “Capped colloids as light-mills in optical traps,” New J. Phys. 8(9), 216 (2006).
[Crossref]

2004 (1)

2003 (1)

G. Romano, L. Sacconi, M. Capitanio, and F. Pavone, “Force and torque measurements using magnetic micro beads for single molecule biophysics,” Opt. Commun. 215(4), 323–331 (2003).
[Crossref]

2001 (1)

1986 (1)

1910 (1)

H. Minkowski, “Die grundgleichungen für die elektromagnetischen vorgänge in bewegten körpern,” Math. Ann. 68(4), 472–525 (1910).
[Crossref]

Allemand, J.-F.

K. Neuman, T. Lionnet, and J.-F. Allemand, “Single-molecule micromanipulation techniques,” Annu. Rev. Mater. Res. 37, 33–67 (2007).
[Crossref]

Anker, J. N.

J. N. Anker, Y.-E. K. Lee, and R. Kopelman, “Magnetically guiding and orienting integrated chemical sensors,” J. Magn. Magn. Mater. 362, 229–234 (2014).
[Crossref]

Arnold, C.

Y. Tsai, K. Leitz, R. Fardel, A. Otto, M. Schmidt, and C. Arnold, “Parallel optical trap assisted nanopatterning on rough surfaces,” Nanotechnology 23(16), 165304 (2012).
[Crossref] [PubMed]

Ashkin, A.

Ballerini, R.

Bjorkholm, J.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
[Crossref]

Brzobohat, O.

M. Siler, P. Jkl, O. Brzobohat, J. Jezek, and P. Zemnek, “Anomalous behavior of a three-dimensional, optically trapped, super-paramagnetic particle,” in SPIE NanoScience+ Engineering, K. Dholakia and G. C. Spalding, eds., Proc. SPIE, 9164, 916436 (2014).

Callegari, A.

Capitanio, M.

Chu, S.

Clark, R.

R. Erb, N. Jenness, R. Clark, and B. Yellen, “Towards holonomic control of janus particles in optomagnetic traps,” Adv. Mater. 21(47), 4825–4829 (2009).
[Crossref]

Clark, R. L.

J. L. Lawson, N. J. Jenness, and R. L. Clark, “Optomagnetically controlled microparticles manufactured with glancing angle deposition,” Part. Part. Syst. Char. 32(7), 734–742 (2015).
[Crossref]

Crut, A.

A. Crut, D. A. Koster, R. Seidel, C. H. Wiggins, and N. H. Dekker, “Fast dynamics of supercoiled dna revealed by single-molecule experiments,” Proc. Nat. Acad. Sci. USA 104(29), 11957–11962 (2007).
[Crossref] [PubMed]

De Pas, M.

De Vlaminck, I.

M. T. van Loenhout, I. De Vlaminck, B. Flebus, J. F. den Blanken, L. P. Zweifel, K. M. Hooning, J. W. Kerssemakers, and C. Dekker, “Scanning a dna molecule for bound proteins using hybrid magnetic and optical tweezers,” PLoS ONE 8(6), e65329 (2013).
[Crossref] [PubMed]

Dekker, C.

M. T. van Loenhout, I. De Vlaminck, B. Flebus, J. F. den Blanken, L. P. Zweifel, K. M. Hooning, J. W. Kerssemakers, and C. Dekker, “Scanning a dna molecule for bound proteins using hybrid magnetic and optical tweezers,” PLoS ONE 8(6), e65329 (2013).
[Crossref] [PubMed]

Dekker, N. H.

A. Crut, D. A. Koster, R. Seidel, C. H. Wiggins, and N. H. Dekker, “Fast dynamics of supercoiled dna revealed by single-molecule experiments,” Proc. Nat. Acad. Sci. USA 104(29), 11957–11962 (2007).
[Crossref] [PubMed]

den Blanken, J. F.

M. T. van Loenhout, I. De Vlaminck, B. Flebus, J. F. den Blanken, L. P. Zweifel, K. M. Hooning, J. W. Kerssemakers, and C. Dekker, “Scanning a dna molecule for bound proteins using hybrid magnetic and optical tweezers,” PLoS ONE 8(6), e65329 (2013).
[Crossref] [PubMed]

Dunlap, D.

Dziedzic, J.

Erb, R.

R. Erb, N. Jenness, R. Clark, and B. Yellen, “Towards holonomic control of janus particles in optomagnetic traps,” Adv. Mater. 21(47), 4825–4829 (2009).
[Crossref]

Erbe, A.

F. Merkt, A. Erbe, and P. Leiderer, “Capped colloids as light-mills in optical traps,” New J. Phys. 8(9), 216 (2006).
[Crossref]

Fardel, R.

Y. Tsai, K. Leitz, R. Fardel, A. Otto, M. Schmidt, and C. Arnold, “Parallel optical trap assisted nanopatterning on rough surfaces,” Nanotechnology 23(16), 165304 (2012).
[Crossref] [PubMed]

Finzi, L.

Flebus, B.

M. T. van Loenhout, I. De Vlaminck, B. Flebus, J. F. den Blanken, L. P. Zweifel, K. M. Hooning, J. W. Kerssemakers, and C. Dekker, “Scanning a dna molecule for bound proteins using hybrid magnetic and optical tweezers,” PLoS ONE 8(6), e65329 (2013).
[Crossref] [PubMed]

Ghadiri, R.

A. Ostendorf, R. Ghadiri, and S. Ksouri, “Optical tweezers in microassembly,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVIII, X. Xu, G. Hennig, Y. Nakata, and S. W. Roth, eds., Proc SPIE860786070U1(2013).

Giuntini, M.

Glückstad, J.

D. Palima and J. Glückstad, “Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces,” Laser Photon. Rev. 7(4), 478–494 (2013).
[Crossref]

Gököz, A. B.

Helseth, L.

L. Helseth, “Paramagnetic particles in an optical trap,” Opt. Commun. 276(2), 277–282 (2007).
[Crossref]

Hooning, K. M.

M. T. van Loenhout, I. De Vlaminck, B. Flebus, J. F. den Blanken, L. P. Zweifel, K. M. Hooning, J. W. Kerssemakers, and C. Dekker, “Scanning a dna molecule for bound proteins using hybrid magnetic and optical tweezers,” PLoS ONE 8(6), e65329 (2013).
[Crossref] [PubMed]

Jenness, N.

R. Erb, N. Jenness, R. Clark, and B. Yellen, “Towards holonomic control of janus particles in optomagnetic traps,” Adv. Mater. 21(47), 4825–4829 (2009).
[Crossref]

Jenness, N. J.

J. L. Lawson, N. J. Jenness, and R. L. Clark, “Optomagnetically controlled microparticles manufactured with glancing angle deposition,” Part. Part. Syst. Char. 32(7), 734–742 (2015).
[Crossref]

M. C. Varney, N. J. Jenness, and I. I. Smalyukh, “Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation,” Phys. Rev. E 89(2), 022505 (2014).
[Crossref]

Jezek, J.

M. Siler, P. Jkl, O. Brzobohat, J. Jezek, and P. Zemnek, “Anomalous behavior of a three-dimensional, optically trapped, super-paramagnetic particle,” in SPIE NanoScience+ Engineering, K. Dholakia and G. C. Spalding, eds., Proc. SPIE, 9164, 916436 (2014).

Jkl, P.

M. Siler, P. Jkl, O. Brzobohat, J. Jezek, and P. Zemnek, “Anomalous behavior of a three-dimensional, optically trapped, super-paramagnetic particle,” in SPIE NanoScience+ Engineering, K. Dholakia and G. C. Spalding, eds., Proc. SPIE, 9164, 916436 (2014).

Kerssemakers, J. W.

M. T. van Loenhout, I. De Vlaminck, B. Flebus, J. F. den Blanken, L. P. Zweifel, K. M. Hooning, J. W. Kerssemakers, and C. Dekker, “Scanning a dna molecule for bound proteins using hybrid magnetic and optical tweezers,” PLoS ONE 8(6), e65329 (2013).
[Crossref] [PubMed]

Kopelman, R.

J. N. Anker, Y.-E. K. Lee, and R. Kopelman, “Magnetically guiding and orienting integrated chemical sensors,” J. Magn. Magn. Mater. 362, 229–234 (2014).
[Crossref]

Koster, D. A.

A. Crut, D. A. Koster, R. Seidel, C. H. Wiggins, and N. H. Dekker, “Fast dynamics of supercoiled dna revealed by single-molecule experiments,” Proc. Nat. Acad. Sci. USA 104(29), 11957–11962 (2007).
[Crossref] [PubMed]

Ksouri, S.

A. Ostendorf, R. Ghadiri, and S. Ksouri, “Optical tweezers in microassembly,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVIII, X. Xu, G. Hennig, Y. Nakata, and S. W. Roth, eds., Proc SPIE860786070U1(2013).

Lawson, J. L.

J. L. Lawson, N. J. Jenness, and R. L. Clark, “Optomagnetically controlled microparticles manufactured with glancing angle deposition,” Part. Part. Syst. Char. 32(7), 734–742 (2015).
[Crossref]

Lee, Y.-E. K.

J. N. Anker, Y.-E. K. Lee, and R. Kopelman, “Magnetically guiding and orienting integrated chemical sensors,” J. Magn. Magn. Mater. 362, 229–234 (2014).
[Crossref]

Leiderer, P.

F. Merkt, A. Erbe, and P. Leiderer, “Capped colloids as light-mills in optical traps,” New J. Phys. 8(9), 216 (2006).
[Crossref]

Leitz, K.

Y. Tsai, K. Leitz, R. Fardel, A. Otto, M. Schmidt, and C. Arnold, “Parallel optical trap assisted nanopatterning on rough surfaces,” Nanotechnology 23(16), 165304 (2012).
[Crossref] [PubMed]

Lionnet, T.

K. Neuman, T. Lionnet, and J.-F. Allemand, “Single-molecule micromanipulation techniques,” Annu. Rev. Mater. Res. 37, 33–67 (2007).
[Crossref]

Lopez, J. A.

B. Senyuk, M. C. Varney, J. A. Lopez, S. Wang, N. Wu, and I. I. Smalyukh, “Magnetically responsive gourd-shaped colloidal particles in cholesteric liquid crystals,” Soft Matter 10(32), 6014–6023 (2014).
[Crossref] [PubMed]

Merkt, F.

F. Merkt, A. Erbe, and P. Leiderer, “Capped colloids as light-mills in optical traps,” New J. Phys. 8(9), 216 (2006).
[Crossref]

Mijalkov, M.

Minkowski, H.

H. Minkowski, “Die grundgleichungen für die elektromagnetischen vorgänge in bewegten körpern,” Math. Ann. 68(4), 472–525 (1910).
[Crossref]

Nagy, A.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

Neuman, K.

K. Neuman, T. Lionnet, and J.-F. Allemand, “Single-molecule micromanipulation techniques,” Annu. Rev. Mater. Res. 37, 33–67 (2007).
[Crossref]

Neuman, K. C.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

Normanno, D.

D. Normanno, F. Vanzi, and F. S. Pavone, “Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated dna looping,” Nucleic Acids Res. 36(8), 2505–2513 (2008).
[Crossref] [PubMed]

M. Capitanio, D. Normanno, and F. Saverio Pavone, “High-precision measurements of light-induced torque on absorbing microspheres,” Opt. Lett. 29(19), 2231–2233 (2004).
[Crossref] [PubMed]

Ostendorf, A.

A. Ostendorf, R. Ghadiri, and S. Ksouri, “Optical tweezers in microassembly,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVIII, X. Xu, G. Hennig, Y. Nakata, and S. W. Roth, eds., Proc SPIE860786070U1(2013).

Otto, A.

Y. Tsai, K. Leitz, R. Fardel, A. Otto, M. Schmidt, and C. Arnold, “Parallel optical trap assisted nanopatterning on rough surfaces,” Nanotechnology 23(16), 165304 (2012).
[Crossref] [PubMed]

Palima, D.

D. Palima and J. Glückstad, “Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces,” Laser Photon. Rev. 7(4), 478–494 (2013).
[Crossref]

Pavone, F.

G. Romano, L. Sacconi, M. Capitanio, and F. Pavone, “Force and torque measurements using magnetic micro beads for single molecule biophysics,” Opt. Commun. 215(4), 323–331 (2003).
[Crossref]

L. Sacconi, G. Romano, R. Ballerini, M. Capitanio, M. De Pas, M. Giuntini, D. Dunlap, L. Finzi, and F. Pavone, “Three-dimensional magneto-optic trap for micro-object manipulation,” Opt. Lett. 26(17), 1359–1361 (2001).
[Crossref]

Pavone, F. S.

D. Normanno, F. Vanzi, and F. S. Pavone, “Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated dna looping,” Nucleic Acids Res. 36(8), 2505–2513 (2008).
[Crossref] [PubMed]

Romano, G.

G. Romano, L. Sacconi, M. Capitanio, and F. Pavone, “Force and torque measurements using magnetic micro beads for single molecule biophysics,” Opt. Commun. 215(4), 323–331 (2003).
[Crossref]

L. Sacconi, G. Romano, R. Ballerini, M. Capitanio, M. De Pas, M. Giuntini, D. Dunlap, L. Finzi, and F. Pavone, “Three-dimensional magneto-optic trap for micro-object manipulation,” Opt. Lett. 26(17), 1359–1361 (2001).
[Crossref]

Sacconi, L.

G. Romano, L. Sacconi, M. Capitanio, and F. Pavone, “Force and torque measurements using magnetic micro beads for single molecule biophysics,” Opt. Commun. 215(4), 323–331 (2003).
[Crossref]

L. Sacconi, G. Romano, R. Ballerini, M. Capitanio, M. De Pas, M. Giuntini, D. Dunlap, L. Finzi, and F. Pavone, “Three-dimensional magneto-optic trap for micro-object manipulation,” Opt. Lett. 26(17), 1359–1361 (2001).
[Crossref]

Saverio Pavone, F.

Schmidt, M.

Y. Tsai, K. Leitz, R. Fardel, A. Otto, M. Schmidt, and C. Arnold, “Parallel optical trap assisted nanopatterning on rough surfaces,” Nanotechnology 23(16), 165304 (2012).
[Crossref] [PubMed]

Seidel, R.

A. Crut, D. A. Koster, R. Seidel, C. H. Wiggins, and N. H. Dekker, “Fast dynamics of supercoiled dna revealed by single-molecule experiments,” Proc. Nat. Acad. Sci. USA 104(29), 11957–11962 (2007).
[Crossref] [PubMed]

Senyuk, B.

B. Senyuk, M. C. Varney, J. A. Lopez, S. Wang, N. Wu, and I. I. Smalyukh, “Magnetically responsive gourd-shaped colloidal particles in cholesteric liquid crystals,” Soft Matter 10(32), 6014–6023 (2014).
[Crossref] [PubMed]

Siler, M.

M. Siler, P. Jkl, O. Brzobohat, J. Jezek, and P. Zemnek, “Anomalous behavior of a three-dimensional, optically trapped, super-paramagnetic particle,” in SPIE NanoScience+ Engineering, K. Dholakia and G. C. Spalding, eds., Proc. SPIE, 9164, 916436 (2014).

Smalyukh, I. I.

M. C. Varney, N. J. Jenness, and I. I. Smalyukh, “Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation,” Phys. Rev. E 89(2), 022505 (2014).
[Crossref]

B. Senyuk, M. C. Varney, J. A. Lopez, S. Wang, N. Wu, and I. I. Smalyukh, “Magnetically responsive gourd-shaped colloidal particles in cholesteric liquid crystals,” Soft Matter 10(32), 6014–6023 (2014).
[Crossref] [PubMed]

Tsai, Y.

Y. Tsai, K. Leitz, R. Fardel, A. Otto, M. Schmidt, and C. Arnold, “Parallel optical trap assisted nanopatterning on rough surfaces,” Nanotechnology 23(16), 165304 (2012).
[Crossref] [PubMed]

van Loenhout, M. T.

M. T. van Loenhout, I. De Vlaminck, B. Flebus, J. F. den Blanken, L. P. Zweifel, K. M. Hooning, J. W. Kerssemakers, and C. Dekker, “Scanning a dna molecule for bound proteins using hybrid magnetic and optical tweezers,” PLoS ONE 8(6), e65329 (2013).
[Crossref] [PubMed]

Vanzi, F.

D. Normanno, F. Vanzi, and F. S. Pavone, “Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated dna looping,” Nucleic Acids Res. 36(8), 2505–2513 (2008).
[Crossref] [PubMed]

Varney, M. C.

M. C. Varney, N. J. Jenness, and I. I. Smalyukh, “Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation,” Phys. Rev. E 89(2), 022505 (2014).
[Crossref]

B. Senyuk, M. C. Varney, J. A. Lopez, S. Wang, N. Wu, and I. I. Smalyukh, “Magnetically responsive gourd-shaped colloidal particles in cholesteric liquid crystals,” Soft Matter 10(32), 6014–6023 (2014).
[Crossref] [PubMed]

Volpe, G.

Wang, S.

B. Senyuk, M. C. Varney, J. A. Lopez, S. Wang, N. Wu, and I. I. Smalyukh, “Magnetically responsive gourd-shaped colloidal particles in cholesteric liquid crystals,” Soft Matter 10(32), 6014–6023 (2014).
[Crossref] [PubMed]

Wiggins, C. H.

A. Crut, D. A. Koster, R. Seidel, C. H. Wiggins, and N. H. Dekker, “Fast dynamics of supercoiled dna revealed by single-molecule experiments,” Proc. Nat. Acad. Sci. USA 104(29), 11957–11962 (2007).
[Crossref] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
[Crossref]

Wu, N.

B. Senyuk, M. C. Varney, J. A. Lopez, S. Wang, N. Wu, and I. I. Smalyukh, “Magnetically responsive gourd-shaped colloidal particles in cholesteric liquid crystals,” Soft Matter 10(32), 6014–6023 (2014).
[Crossref] [PubMed]

Yellen, B.

R. Erb, N. Jenness, R. Clark, and B. Yellen, “Towards holonomic control of janus particles in optomagnetic traps,” Adv. Mater. 21(47), 4825–4829 (2009).
[Crossref]

Zemnek, P.

M. Siler, P. Jkl, O. Brzobohat, J. Jezek, and P. Zemnek, “Anomalous behavior of a three-dimensional, optically trapped, super-paramagnetic particle,” in SPIE NanoScience+ Engineering, K. Dholakia and G. C. Spalding, eds., Proc. SPIE, 9164, 916436 (2014).

Zweifel, L. P.

M. T. van Loenhout, I. De Vlaminck, B. Flebus, J. F. den Blanken, L. P. Zweifel, K. M. Hooning, J. W. Kerssemakers, and C. Dekker, “Scanning a dna molecule for bound proteins using hybrid magnetic and optical tweezers,” PLoS ONE 8(6), e65329 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

R. Erb, N. Jenness, R. Clark, and B. Yellen, “Towards holonomic control of janus particles in optomagnetic traps,” Adv. Mater. 21(47), 4825–4829 (2009).
[Crossref]

Annu. Rev. Mater. Res. (1)

K. Neuman, T. Lionnet, and J.-F. Allemand, “Single-molecule micromanipulation techniques,” Annu. Rev. Mater. Res. 37, 33–67 (2007).
[Crossref]

J. Magn. Magn. Mater. (1)

J. N. Anker, Y.-E. K. Lee, and R. Kopelman, “Magnetically guiding and orienting integrated chemical sensors,” J. Magn. Magn. Mater. 362, 229–234 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

D. Palima and J. Glückstad, “Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces,” Laser Photon. Rev. 7(4), 478–494 (2013).
[Crossref]

Math. Ann. (1)

H. Minkowski, “Die grundgleichungen für die elektromagnetischen vorgänge in bewegten körpern,” Math. Ann. 68(4), 472–525 (1910).
[Crossref]

Nanotechnology (1)

Y. Tsai, K. Leitz, R. Fardel, A. Otto, M. Schmidt, and C. Arnold, “Parallel optical trap assisted nanopatterning on rough surfaces,” Nanotechnology 23(16), 165304 (2012).
[Crossref] [PubMed]

Nat. Methods (1)

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

New J. Phys. (1)

F. Merkt, A. Erbe, and P. Leiderer, “Capped colloids as light-mills in optical traps,” New J. Phys. 8(9), 216 (2006).
[Crossref]

Nucleic Acids Res. (1)

D. Normanno, F. Vanzi, and F. S. Pavone, “Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated dna looping,” Nucleic Acids Res. 36(8), 2505–2513 (2008).
[Crossref] [PubMed]

Opt. Commun. (2)

G. Romano, L. Sacconi, M. Capitanio, and F. Pavone, “Force and torque measurements using magnetic micro beads for single molecule biophysics,” Opt. Commun. 215(4), 323–331 (2003).
[Crossref]

L. Helseth, “Paramagnetic particles in an optical trap,” Opt. Commun. 276(2), 277–282 (2007).
[Crossref]

Opt. Lett. (3)

Part. Part. Syst. Char. (1)

J. L. Lawson, N. J. Jenness, and R. L. Clark, “Optomagnetically controlled microparticles manufactured with glancing angle deposition,” Part. Part. Syst. Char. 32(7), 734–742 (2015).
[Crossref]

Phys. Rev. E (1)

M. C. Varney, N. J. Jenness, and I. I. Smalyukh, “Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation,” Phys. Rev. E 89(2), 022505 (2014).
[Crossref]

PLoS ONE (1)

M. T. van Loenhout, I. De Vlaminck, B. Flebus, J. F. den Blanken, L. P. Zweifel, K. M. Hooning, J. W. Kerssemakers, and C. Dekker, “Scanning a dna molecule for bound proteins using hybrid magnetic and optical tweezers,” PLoS ONE 8(6), e65329 (2013).
[Crossref] [PubMed]

Proc. Nat. Acad. Sci. USA (1)

A. Crut, D. A. Koster, R. Seidel, C. H. Wiggins, and N. H. Dekker, “Fast dynamics of supercoiled dna revealed by single-molecule experiments,” Proc. Nat. Acad. Sci. USA 104(29), 11957–11962 (2007).
[Crossref] [PubMed]

Soft Matter (1)

B. Senyuk, M. C. Varney, J. A. Lopez, S. Wang, N. Wu, and I. I. Smalyukh, “Magnetically responsive gourd-shaped colloidal particles in cholesteric liquid crystals,” Soft Matter 10(32), 6014–6023 (2014).
[Crossref] [PubMed]

Other (3)

A. Ostendorf, R. Ghadiri, and S. Ksouri, “Optical tweezers in microassembly,” in Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVIII, X. Xu, G. Hennig, Y. Nakata, and S. W. Roth, eds., Proc SPIE860786070U1(2013).

M. Siler, P. Jkl, O. Brzobohat, J. Jezek, and P. Zemnek, “Anomalous behavior of a three-dimensional, optically trapped, super-paramagnetic particle,” in SPIE NanoScience+ Engineering, K. Dholakia and G. C. Spalding, eds., Proc. SPIE, 9164, 916436 (2014).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 A simplified ray-optics model showing the marginal rays incident upon two patchy dielectric-metallic particles with an optical trap. a) When the patch surface area is large, some of the rays will strike the surface of the patch, leading to scattering, absorption and non-ideal trapping behavior and eventual particle rejection. b) Smaller patches allow optical momentum to pass through the particle unimpeded, enabling stable OT.
Fig. 2
Fig. 2 a) Optical trapping paths for a dielectric and dot-Janus particle from twelve unique starting locations. The dot-Janus particle modeled has a 0.15a cap-height, where a is the radius of the trapped particle. The particle is initially located in the xz-plane at the locations marked with black circles. In each test, the patch’s normal was initially oriented parallel with the positive x-axis. b) Shows this orientation with the particle centered at the origin of the coordinate system for reference. Two tests in which the dot-Janus particle failed to converge are omitted for clarity.
Fig. 3
Fig. 3 a) Typical GLAD patch geometries generated from four unique monolayer grain orientations with an 82° deposition angle. b) Schematic of the dot-Jauns cap height parameter with particle radius, a, and cap-height, h.
Fig. 4
Fig. 4 a) Fresnel power reflection coefficients for all tested film designs as a function of the incident angle. Films were designed to achieve normal incident reflection coefficients of 0.86, 0.69, and 0.52 for rays propagating from the fluid medium and 0.87, 0.74, and 0.61 for rays propagating from the internal particle. b) Histogram of optical power with respect to the incident angle for a dielectric particle located in the trap center versus one at an extreme location for OT modeling. The concentration of optical power at lower incidence, where polarization is less influential to reflectivity constants, enables a parameterized study of film properties to be explored.
Fig. 5
Fig. 5 a) Locations of stable optical traps, reduced to their x and y coordinates for dot-Janus particles. In each test, the particle was initially located on the positive half of the xz-plane but was rotated around the z-axis (γ) by one of five discrete angles. The optical forces did not produce a relative rotation of the particles, but the particle instead translated into a plane rotated an equal distance from the xz-plane. b) Relative Coordinate system of discussed results. All rotations can be defined by subsequent rotations α, β, and γ
Fig. 6
Fig. 6 Radial and axial components of each stable trapping position in the dynamic tracking study for both dot-Janus (top row) and GLAD (bottom row) particles due to the optical power and particle shape parameters. Figures (b) and (e) show subsets of Figs. (a) and (d) to highlight the effect of the optical power at the higher power settings.
Fig. 7
Fig. 7 Converged test locations for all tests separated by the inner film reflectivity parameter. Each inner film variety was capable of trapping particles equally at locations with smaller radial displacements. However, when the reflectivity of the inner film was increased, which simultaneously decreases the optical absorption, stable trapping locations were generated a larger radial and axial coordinates along the stable trapping surface.
Fig. 8
Fig. 8 (a) Absorbed optical power for dot-Janus particles based on the particle’s location along the truncated cone surface. When particles absorbed additional power, they were pushed up and away from the optical axis causing the particle to trap at a different position. (b) Polar angle rotation at stable trapping locations for one of the dot-Janus test particles. As the particles were pushed further out along the stable trapping surface, the particle’s rotated down to balance the increase in absorbed optical power with the restoring gradient force.
Fig. 9
Fig. 9 Calculated optical trap stiffness for tested dielectric-metallic patchy particles. a–b) Dot Janus particles behaved similarly to pure dielectric particles as the size of the metallic patch decreased towards zero. These particles showed a decrease in axial stiffness as the size of the metallic patch increased while the radial stiffness showed a similar increase. The stiffness in the transverse direction remained nearly constant across the range of cap sizes. c–d) GLAD particles exhibited similar decreases and increases to their axial and radial stiffness respectively. These variations are due to the shape of the patch induced by the GLAD manufacturing process.
Fig. 10
Fig. 10 Predicted responses of a QPD signal for displacements in the radial and transverse directions, centered at the stable trapping position. The y-axis shows the measured power difference between the halves of the QPD in units of mW. A uniform DC bias was added to all signals in order to center the response of a dielectric particle at zero. All signals behave linearly near the center of the trapping region but begin to deviate after some displacement due to the interaction of the optical beam and the metallic patch. The magnitude of this displacement and the linear range are proportional to the size of the patch. Additionally, a DC shift is observed in the linear response region, also proportional to the size of the metallic patch.
Fig. 11
Fig. 11 Mean squared error of the measured position of a dot-Janus particle measured using a QPD technique. All four plots show the error as a function of displacement for the same particle at four different power setting. Increasing the optical power, leads to a larger error in the signal away from the trapping center.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F ray , surface = n i P i c u ^ i n t P t c u ^ t n r P r c u ^ r
F ray = n i P i c u ^ i n r , 1 P r , 1 c u ^ r , 1 m = 2 n t , m P t , m c u ^ t , m
T ray = P 1 × n i P i c u ^ i P 1 × n r , 1 P r , 1 c u ^ r , 1 m = 2 P m × n t , m P t , m c u ^ t , m
T particle = T + P 4 π a κ
x 2 = k B T k
δ x = k B T k

Metrics