Abstract

A depth imaging system, based on the time-of-flight approach and the time-correlated single-photon counting (TCSPC) technique, was investigated for use in highly scattering underwater environments. The system comprised a pulsed supercontinuum laser source, a monostatic scanning transceiver, with a silicon single-photon avalanche diode (SPAD) used for detection of the returned optical signal. Depth images were acquired in the laboratory at stand-off distances of up to 8 attenuation lengths, using per-pixel acquisition times in the range 0.5 to 100 ms, at average optical powers in the range 0.8 nW to 950 μW. In parallel, a LiDAR model was developed and validated using experimental data. The model can be used to estimate the performance of the system under a variety of scattering conditions and system parameters.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector

Aongus McCarthy, Ximing Ren, Adriano Della Frera, Nathan R. Gemmell, Nils J. Krichel, Carmelo Scarcella, Alessandro Ruggeri, Alberto Tosi, and Gerald S. Buller
Opt. Express 21(19) 22098-22113 (2013)

Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection

Aongus McCarthy, Nils J. Krichel, Nathan R. Gemmell, Ximing Ren, Michael G. Tanner, Sander N. Dorenbos, Val Zwiller, Robert H. Hadfield, and Gerald S. Buller
Opt. Express 21(7) 8904-8915 (2013)

Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector

Hui Zhou, Yuhao He, Lixing You, Sijin Chen, Weijun Zhang, Junjie Wu, Zhen Wang, and Xiaoming Xie
Opt. Express 23(11) 14603-14611 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Reed, Y. Petillot, and J. Bell, “An automatic approach to the detection and extraction of mine features in sidescan sonar,” IEEE J. Oceanic Eng. 28(1), 90–105 (2003).
    [Crossref]
  2. J. S. Jaffe, M. D. Ohman, and A. De Robertis, “OASIS in the sea: measurements of the acoustic reflectivity of zooplankton with concurrent optical imaging,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(7), 1239–1253 (1998).
    [Crossref]
  3. M. Evangelidis, L. Ma, and M. Soleimani, “High definition electrical capacitance tomography for pipeline inspection,” Prog. Em. Res. 141, 1–15 (2013).
  4. A. Bellettini and M. A. Pinto, “Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna,” IEEE J. Oceanic Eng. 27(4), 780–789 (2002).
    [Crossref]
  5. J. R. V. Zaneveld and W. Pegau, “Robust underwater visibility parameter,” Opt. Express 11(23), 2997–3009 (2003).
    [Crossref] [PubMed]
  6. R. D. Richmond and S. C. Cain, Direct-Detection LADAR Systems (SPIE, 2010).
  7. D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42(1), 52 (2008).
    [Crossref]
  8. J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospeccts,” Oceanography (Wash. D.C.) 14(3), 64–75 (2001).
    [Crossref]
  9. F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
    [Crossref]
  10. W. Hou, Ocean Sensing and Monitoring (SPIE, 2013).
  11. S. G. Narasimhan, S. K. Nayar, B. Sun, and S. Koppal, “Structured light in scattering media,” in Tenth IEEE International Conference on Computer Vision (ICCV’05) (IEEE, 2005), pp. 7.
  12. B. Cochenour, S. O’Connor, and L. Mullen, “Suppression of forward-scattered light using high-frequency intensity modulation,” Opt. Eng. 53, 1–8 (2014).
  13. J. Watson and O. Zielinski, Subsea Optics and Imaging (Woodhead Publishing Limited, 2013).
  14. N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21(4), 5005–5013 (2013).
    [Crossref] [PubMed]
  15. H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
    [Crossref]
  16. P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
    [Crossref] [PubMed]
  17. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
  18. G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
    [Crossref]
  19. G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
    [Crossref]
  20. A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
    [Crossref] [PubMed]
  21. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [Crossref] [PubMed]
  22. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurements using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712 (2000).
    [Crossref]
  23. S. Q. Duntley, “Light in the sea,” J. Opt. Soc. Am. 53(2), 214–234 (1963).
    [Crossref]
  24. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20(2), 177–184 (1981).
    [Crossref] [PubMed]
  25. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  26. E. Y. S. Young and A. M. Bullock, “Underwater-airborne laser communication system: characterization of the channel,” in Free-Space Laser Communication Technologies XV (SPIE, 2003).
  27. W. S. Pegau and J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of spectrum,” Limnol. Oceanogr. 38(1), 188–192 (1993).
    [Crossref]
  28. A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
    [Crossref] [PubMed]
  29. Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform based analysis of depth images constructed using sparse single-photon data,” http://arxiv.org/abs/1507.02511 (2015).
  30. N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
    [Crossref] [PubMed]
  31. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
    [Crossref] [PubMed]
  32. C. Weitkamp, Lidar - Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).
  33. G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
    [Crossref]
  34. N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt. 58(3-4), 244–256 (2011).
    [Crossref]
  35. G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Erratum: Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
    [Crossref] [PubMed]

2015 (1)

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Erratum: Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

2014 (3)

B. Cochenour, S. O’Connor, and L. Mullen, “Suppression of forward-scattered light using high-frequency intensity modulation,” Opt. Eng. 53, 1–8 (2014).

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (1)

P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
[Crossref] [PubMed]

2011 (1)

N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt. 58(3-4), 244–256 (2011).
[Crossref]

2010 (2)

2009 (2)

2008 (2)

D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42(1), 52 (2008).
[Crossref]

P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
[Crossref] [PubMed]

2007 (1)

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

2005 (1)

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

2003 (2)

S. Reed, Y. Petillot, and J. Bell, “An automatic approach to the detection and extraction of mine features in sidescan sonar,” IEEE J. Oceanic Eng. 28(1), 90–105 (2003).
[Crossref]

J. R. V. Zaneveld and W. Pegau, “Robust underwater visibility parameter,” Opt. Express 11(23), 2997–3009 (2003).
[Crossref] [PubMed]

2002 (1)

A. Bellettini and M. A. Pinto, “Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna,” IEEE J. Oceanic Eng. 27(4), 780–789 (2002).
[Crossref]

2001 (1)

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospeccts,” Oceanography (Wash. D.C.) 14(3), 64–75 (2001).
[Crossref]

2000 (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurements using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712 (2000).
[Crossref]

1998 (1)

J. S. Jaffe, M. D. Ohman, and A. De Robertis, “OASIS in the sea: measurements of the acoustic reflectivity of zooplankton with concurrent optical imaging,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(7), 1239–1253 (1998).
[Crossref]

1993 (1)

W. S. Pegau and J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of spectrum,” Limnol. Oceanogr. 38(1), 188–192 (1993).
[Crossref]

1981 (1)

1973 (1)

1963 (1)

Andersson, E.

P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
[Crossref] [PubMed]

Andren, C. F.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

Baker, K. S.

Bell, J.

S. Reed, Y. Petillot, and J. Bell, “An automatic approach to the detection and extraction of mine features in sidescan sonar,” IEEE J. Oceanic Eng. 28(1), 90–105 (2003).
[Crossref]

Bellettini, A.

A. Bellettini and M. A. Pinto, “Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna,” IEEE J. Oceanic Eng. 27(4), 780–789 (2002).
[Crossref]

Britton, W. B.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

Buller, G. S.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Erratum: Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21(4), 5005–5013 (2013).
[Crossref] [PubMed]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
[Crossref] [PubMed]

N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt. 58(3-4), 244–256 (2011).
[Crossref]

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
[Crossref] [PubMed]

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
[Crossref] [PubMed]

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurements using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712 (2000).
[Crossref]

Caimi, F. M.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42(1), 52 (2008).
[Crossref]

Clarke, P. J.

P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
[Crossref] [PubMed]

Cochenour, B.

B. Cochenour, S. O’Connor, and L. Mullen, “Suppression of forward-scattered light using high-frequency intensity modulation,” Opt. Eng. 53, 1–8 (2014).

Colaço, A.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Collins, R. J.

P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
[Crossref] [PubMed]

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

Cova, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurements using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712 (2000).
[Crossref]

Curty, M.

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

Dalgleish, F. R.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42(1), 52 (2008).
[Crossref]

De Robertis, A.

J. S. Jaffe, M. D. Ohman, and A. De Robertis, “OASIS in the sea: measurements of the acoustic reflectivity of zooplankton with concurrent optical imaging,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(7), 1239–1253 (1998).
[Crossref]

Della Frera, A.

Dorenbos, S. D.

Dunjko, V.

P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
[Crossref] [PubMed]

Duntley, S. Q.

Evangelidis, M.

M. Evangelidis, L. Ma, and M. Soleimani, “High definition electrical capacitance tomography for pipeline inspection,” Prog. Em. Res. 141, 1–15 (2013).

Faccio, D.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Erratum: Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Fernández, V.

Gariepy, G.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Erratum: Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Gemmell, N. R.

Ghioni, M.

N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt. 58(3-4), 244–256 (2011).
[Crossref]

Goyal, V. K.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Gulinatti, A.

N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt. 58(3-4), 244–256 (2011).
[Crossref]

Hadfield, R. H.

Hale, G. M.

Harkins, R. D.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Henderson, R.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Erratum: Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Heshmat, B.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Erratum: Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Hiskett, P. A.

P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
[Crossref] [PubMed]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Jaffe, J. S.

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospeccts,” Oceanography (Wash. D.C.) 14(3), 64–75 (2001).
[Crossref]

J. S. Jaffe, M. D. Ohman, and A. De Robertis, “OASIS in the sea: measurements of the acoustic reflectivity of zooplankton with concurrent optical imaging,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(7), 1239–1253 (1998).
[Crossref]

Jeffers, J.

P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
[Crossref] [PubMed]

Kirmani, A.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Kocak, D. M.

D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42(1), 52 (2008).
[Crossref]

Koppal, S.

S. G. Narasimhan, S. K. Nayar, B. Sun, and S. Koppal, “Structured light in scattering media,” in Tenth IEEE International Conference on Computer Vision (ICCV’05) (IEEE, 2005), pp. 7.

Krichel, N. J.

Krstajic, N.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Erratum: Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Lamb, R. A.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Leach, J.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Erratum: Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Li, C.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Erratum: Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Liu, B.

Lo, H.-K.

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

Ma, L.

M. Evangelidis, L. Ma, and M. Soleimani, “High definition electrical capacitance tomography for pipeline inspection,” Prog. Em. Res. 141, 1–15 (2013).

MacKinnon, G. R.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

McCarthy, A.

N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21(4), 5005–5013 (2013).
[Crossref] [PubMed]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt. 58(3-4), 244–256 (2011).
[Crossref]

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
[Crossref] [PubMed]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
[Crossref] [PubMed]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

McLean, J.

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospeccts,” Oceanography (Wash. D.C.) 14(3), 64–75 (2001).
[Crossref]

Moore, K. D.

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospeccts,” Oceanography (Wash. D.C.) 14(3), 64–75 (2001).
[Crossref]

Mullen, L.

B. Cochenour, S. O’Connor, and L. Mullen, “Suppression of forward-scattered light using high-frequency intensity modulation,” Opt. Eng. 53, 1–8 (2014).

Narasimhan, S. G.

S. G. Narasimhan, S. K. Nayar, B. Sun, and S. Koppal, “Structured light in scattering media,” in Tenth IEEE International Conference on Computer Vision (ICCV’05) (IEEE, 2005), pp. 7.

Nayar, S. K.

S. G. Narasimhan, S. K. Nayar, B. Sun, and S. Koppal, “Structured light in scattering media,” in Tenth IEEE International Conference on Computer Vision (ICCV’05) (IEEE, 2005), pp. 7.

O’Connor, S.

B. Cochenour, S. O’Connor, and L. Mullen, “Suppression of forward-scattered light using high-frequency intensity modulation,” Opt. Eng. 53, 1–8 (2014).

Ohman, M. D.

J. S. Jaffe, M. D. Ohman, and A. De Robertis, “OASIS in the sea: measurements of the acoustic reflectivity of zooplankton with concurrent optical imaging,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(7), 1239–1253 (1998).
[Crossref]

Parry, C. S.

Patterson, M. S.

Pegau, W.

Pegau, W. S.

W. S. Pegau and J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of spectrum,” Limnol. Oceanogr. 38(1), 188–192 (1993).
[Crossref]

Pellegrini, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurements using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712 (2000).
[Crossref]

Petillot, Y.

S. Reed, Y. Petillot, and J. Bell, “An automatic approach to the detection and extraction of mine features in sidescan sonar,” IEEE J. Oceanic Eng. 28(1), 90–105 (2003).
[Crossref]

Pinto, M. A.

A. Bellettini and M. A. Pinto, “Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna,” IEEE J. Oceanic Eng. 27(4), 780–789 (2002).
[Crossref]

Querry, M. R.

Rarity, J. G.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Raskar, R.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Erratum: Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Rech, I.

N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt. 58(3-4), 244–256 (2011).
[Crossref]

Reed, S.

S. Reed, Y. Petillot, and J. Bell, “An automatic approach to the detection and extraction of mine features in sidescan sonar,” IEEE J. Oceanic Eng. 28(1), 90–105 (2003).
[Crossref]

Ren, X.

Ridley, K. D.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Ruggeri, A.

Scarcella, C.

Schechner, Y. Y.

D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42(1), 52 (2008).
[Crossref]

Shapiro, J. H.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Shin, D.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Smith, G. R.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Smith, J. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurements using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712 (2000).
[Crossref]

Smith, R. C.

Soleimani, M.

M. Evangelidis, L. Ma, and M. Soleimani, “High definition electrical capacitance tomography for pipeline inspection,” Prog. Em. Res. 141, 1–15 (2013).

Strand, M. P.

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospeccts,” Oceanography (Wash. D.C.) 14(3), 64–75 (2001).
[Crossref]

Sun, B.

S. G. Narasimhan, S. K. Nayar, B. Sun, and S. Koppal, “Structured light in scattering media,” in Tenth IEEE International Conference on Computer Vision (ICCV’05) (IEEE, 2005), pp. 7.

Sung, R.

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Tamaki, K.

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

Tanner, M. G.

Thomson, R. R.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Erratum: Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Tosi, A.

Venkatraman, D.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Wallace, A. M.

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurements using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712 (2000).
[Crossref]

Wilson, B. C.

Wong, F. N. C.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Zaneveld, J. R. V.

J. R. V. Zaneveld and W. Pegau, “Robust underwater visibility parameter,” Opt. Express 11(23), 2997–3009 (2003).
[Crossref] [PubMed]

W. S. Pegau and J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of spectrum,” Limnol. Oceanogr. 38(1), 188–192 (1993).
[Crossref]

Zwiller, V.

Appl. Opt. (3)

Deep Sea Res. Part II Top. Stud. Oceanogr. (1)

J. S. Jaffe, M. D. Ohman, and A. De Robertis, “OASIS in the sea: measurements of the acoustic reflectivity of zooplankton with concurrent optical imaging,” Deep Sea Res. Part II Top. Stud. Oceanogr. 45(7), 1239–1253 (1998).
[Crossref]

IEEE J. Oceanic Eng. (2)

A. Bellettini and M. A. Pinto, “Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna,” IEEE J. Oceanic Eng. 27(4), 780–789 (2002).
[Crossref]

S. Reed, Y. Petillot, and J. Bell, “An automatic approach to the detection and extraction of mine features in sidescan sonar,” IEEE J. Oceanic Eng. 28(1), 90–105 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. S. Buller and A. M. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

J. Mod. Opt. (1)

N. J. Krichel, A. McCarthy, I. Rech, M. Ghioni, A. Gulinatti, and G. S. Buller, “Cumulative data acquisition in comparative photon-counting three-dimensional imaging,” J. Mod. Opt. 58(3-4), 244–256 (2011).
[Crossref]

J. Opt. Soc. Am. (1)

Limnol. Oceanogr. (1)

W. S. Pegau and J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of spectrum,” Limnol. Oceanogr. 38(1), 188–192 (1993).
[Crossref]

Mar. Technol. Soc. J. (1)

D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42(1), 52 (2008).
[Crossref]

Meas. Sci. Technol. (2)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurements using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712 (2000).
[Crossref]

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

Nat. Commun. (2)

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Erratum: Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8(8), 595–604 (2014).
[Crossref]

Oceanography (Wash. D.C.) (1)

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospeccts,” Oceanography (Wash. D.C.) 14(3), 64–75 (2001).
[Crossref]

Opt. Eng. (1)

B. Cochenour, S. O’Connor, and L. Mullen, “Suppression of forward-scattered light using high-frequency intensity modulation,” Opt. Eng. 53, 1–8 (2014).

Opt. Express (5)

Proc. SPIE (1)

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

Prog. Em. Res. (1)

M. Evangelidis, L. Ma, and M. Soleimani, “High definition electrical capacitance tomography for pipeline inspection,” Prog. Em. Res. 141, 1–15 (2013).

Rev. Sci. Instrum. (1)

G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76(8), 083112 (2005).
[Crossref]

Science (1)

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref] [PubMed]

Other (8)

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform based analysis of depth images constructed using sparse single-photon data,” http://arxiv.org/abs/1507.02511 (2015).

C. Weitkamp, Lidar - Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).

E. Y. S. Young and A. M. Bullock, “Underwater-airborne laser communication system: characterization of the channel,” in Free-Space Laser Communication Technologies XV (SPIE, 2003).

W. Hou, Ocean Sensing and Monitoring (SPIE, 2013).

S. G. Narasimhan, S. K. Nayar, B. Sun, and S. Koppal, “Structured light in scattering media,” in Tenth IEEE International Conference on Computer Vision (ICCV’05) (IEEE, 2005), pp. 7.

J. Watson and O. Zielinski, Subsea Optics and Imaging (Woodhead Publishing Limited, 2013).

R. D. Richmond and S. C. Cain, Direct-Detection LADAR Systems (SPIE, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the experimental setup used for the water transmittance measurements. The setup comprises a supercontinuum laser source, an acousto-optic tunable filter (AOTF), an optical fiber collimation package (FCP), a tank, a mirror, two irises and an optical power meter.

Fig. 2
Fig. 2

Plots of attenuation length versus wavelength for water and different concentrations of Maalox (a), and coastal sea water (b). Since the sea water was collected close to the coast and contained a range of different sized scattering particles, the attenuation spectra were measured at different settling times.

Fig. 3
Fig. 3

Schematic of the single-photon depth imaging system, which comprises a pulsed supercontinuum laser source and a monostatic scanning transceiver unit fiber-coupled to an individual Si-SPAD detector. A time-gated configuration was used, with the single-photon detector being gated on for a 6 ns temporal window in correspondence with the return signal from the target. The optical components shown in the transceiver unit include a fiber collimation package for the transmitting channel (FCT) and the receiving channel (FCR). A polarizing beam splitter (PBS) was used to separate the transmit and receive channel. Three relay lenses (RL1, RL2, RL3) were used in conjunction with the two galvanometer mirrors (SM1, SM2) to perform the scanning in the vertical and horizontal directions. A camera objective lens (OBJ) was used to focus the transmitted laser light onto the target surface and collect the scattered return signal.

Fig. 4
Fig. 4

Instrumental timing response of the depth imaging system. The timing jitter of the system (99 ps FWHM in this case) and the gating window are shown in the figure. Due to latency and delays from electronic components, an arbitrary zero was chosen for the displayed time-scale.

Fig. 5
Fig. 5

The photograph shows the target used for the depth profile measurements, a plastic pipe (approximately 8 cm wide, 5 cm high, and 3.5 cm deep) placed on a red Lego block in the water tank. Depth profile images from measurements performed in clear water at λ = 525 nm (column (a)) and water with 0.003% of Maalox at λ = 585 nm (column (b)) using 60 × 60 pixels in all cases. Clear water (column (a)) corresponded to 0.2 attenuation lengths from transceiver to target, whilst column (b) corresponded to 1.2 attenuation lengths. An average power of just 8 nW was used in all measurements, and different per-pixel acquisition times are shown (of 0.5 ms, 1 ms, 10 ms and 100 ms) in order to investigate how the depth profile changes using different acquisition times.

Fig. 6
Fig. 6

(a) Representation of a 256 × 256 pixel depth scan of the plastic pipe acquired in clear water at λ = 525 nm, and a stand-off distance of 1.7 meters, corresponding to 0.2 attenuation lengths between transceiver and target. Each pixel had an acquisition time of 30 ms and an average optical power 8.7 nW was used. (b) The same target displayed with the number of photons returned per pixel, i.e. the intensity map. (c) A 256 × 256 pixel depth scan made in water with 0.01% of Maalox at λ = 690 nm, and a stand-off distance of 1.7 meters, corresponding to 1.2 attenuation lengths between transceiver and target. A per-pixel acquisition time of 50 ms and an average optical power 121 μW was used. (d) The same target displayed with the number of photons returned per pixel. The depth and the number of photons are displayed in the color scales shown in the insets.

Fig. 7
Fig. 7

(a) Representation of a 256 × 256 pixel depth scan of the plastic pipe target at a 0.012% Maalox concentration, and a stand-off distance of 1.7 meters, corresponding to 8 attenuation lengths between transceiver and target. In the measurements shown in this figure, a 2 ps bin width was selected and the overall timing jitter of the system was approximately 60 ps. The average optical power used was 0.63 mW. Each pixel had an acquisition time of 30 ms and the analysis used was a pixelwise cross-correlation approach. (b) Data from the same measurement shown with the number of photons returned per pixel. The depth and the number of photons are displayed in the color scales shown in the insets.

Fig. 8
Fig. 8

The images show 150 × 150 pixel intensity maps of the 10 mm diameter sector star at the four attenuation lengths of 0.2, 1.2, 5.7 and 8. Below each of these intensity maps is a plot of the number of counts per pixel for the indicated vertical line on the corresponding intensity map. The position of the line was chosen such that the number of counts for the peak corresponding to the narrowest bar width was at least twice that of the adjacent trough i.e. the change between the peak and the trough was still clearly discernible (see main text).

Fig. 9
Fig. 9

Simulations of the maximum achievable range as a function of the average optical power emitted by the transceiver. In terms of SNRmin = 1.4, the maximum achievable range is evaluated for different average optical powers in clear water (a) at 0.5 ms, 1 ms, 10 ms, and 100 ms acquisition times. The graph in (b) shows the maximum achievable range versus the average optical power for water with 0.003% and 0.01% Maalox (corresponding to attenuation lengths of 0.7 m and 0.3 m respectively) at two different acquisition times, 1 ms and 100 ms acquisition time.

Fig. 10
Fig. 10

(a) Simulations of the maximum achievable range versus the average power when different targets are considered. In particular, the graph shows the results for a brushed transparent plastic board, an example of a rock, and a matt black aluminum board. The case of the Spectralon target is shown for comparison. All simulations were performed using clear water conditions, SNRmin = 1.4, and 10 ms acquisition time. (b) Comparison between the maximum achievable range versus average power for two different values of SNRmin, SNRmin = 1.4 and SNRmin = 2 for the Spectralon target in clear water conditions. For these simulations an acquisition time of 10 ms was chosen.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P( r )= P 0 e αr
C i = j=1 r H i+j × R j
n p = P Out λ hc t Dwell A Lens ρ 2π R 2 e 2αr C Int C Det η
I C I S = A Lens 4π R 2
I C I S = A Lens 2π ( d+nr ) 2
n b = t Dwell B f Rep t Bin
SNR= n p n p + n b

Metrics