Abstract

Aiming at the detection of atmospheric water vapor mixing ratio, depolarization ratio, backscatter coefficient, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WACAL) is developed by the lidar group at Ocean University of China. The lidar consists of transmitter, receiver, data acquisition and auxiliary system. For the measurement of various atmospheric physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in WACAL. The integration and working principle of these channels are introduced in details. The optical setup, the housekeeping of the system and the data retrieval routines are also presented. After the completion of the construction of the lidar, the WACAL system was installed in Ocean University of China (36.165°N, 120.5°E), Qingdao for the measurement of atmosphere during 2013 and 2014. The measurement principles and some case studies corresponding to various atmospheric physical properties are provided. Finally, the result of one continuous measurement example operated on 13 June 2014 is presented. The WACAL can measure the aerosol and cloud optical properties as well as the water vapor mixing ratio. It is useful for studying the direct and indirect effects of the aerosol on the climate change.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements

Jens Reichardt, Ulla Wandinger, Volker Klein, Ina Mattis, Bernhard Hilber, and Robert Begbie
Appl. Opt. 51(34) 8111-8131 (2012)

Six-channel multi-wavelength polarization Raman lidar for aerosol and water vapor profiling

Zhaofei Wang, Jiandong Mao, Juan Li, Hu Zhao, Chunyan Zhou, and Hongjiang Sheng
Appl. Opt. 56(20) 5620-5629 (2017)

Compact airborne Raman lidar for profiling aerosol, water vapor and clouds

Bo Liu, Zhien Wang, Yong Cai, Perry Wechsler, William Kuestner, Matthew Burkhart, and Wayne Welch
Opt. Express 22(17) 20613-20621 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Dinoev, “Automated Raman lidar for day and night operational observation of tropospheric water vapor for meteorological applications,” (École Polytechnique Fédérale De Lausanne, 2009).
  2. D. Althausen, R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, “Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization,” J. Atmos. Ocean. Technol. 26(11), 2366–2378 (2009).
    [Crossref]
  3. P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).
  4. E. V. Browell, “Remote sensing of tropospheric gases and aerosols with an airborne DIAL system,” in Optical and Laser Remote Sensing (Springer, 1983), pp. 138–147.
  5. W. B. Grant, “Differential absorption and Raman lidar for water vapor profile measurements: a review,” Opt. Eng. 30(1), 40–48 (1991).
    [Crossref]
  6. V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37(18), 3825–3844 (1998).
    [Crossref] [PubMed]
  7. D. Bruneau, P. Quaglia, C. Flamant, M. Meissonnier, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40(21), 3450–3461 (2001).
    [Crossref] [PubMed]
  8. S. Melfi, J. Lawrence, and M. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15(9), 295–297 (1969).
    [Crossref]
  9. S. H. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11(7), 1605–1610 (1972).
    [Crossref] [PubMed]
  10. J. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9(1), 182–184 (1970).
    [Crossref]
  11. T. Leblanc, I. S. McDermid, and R. A. Aspey, “First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California,” J. Atmos. Ocean. Technol. 25(8), 1454–1462 (2008).
    [Crossref]
  12. T. Leblanc, I. McDermid, and T. Walsh, “Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring,” Atmos. Meas. Tech. 5(1), 17–36 (2012).
    [Crossref]
  13. J. Reichardt, U. Wandinger, V Klein, I. Mattis, B Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51(34), 8111–8131 (2012).
  14. A. Apituley, K. Wilson, C. Potma, H. Volten, and M. de Graaf, “Performance Assessment and Application of Caeli–A high-performance Raman lidar for diurnal profiling of Water Vapour, Aerosols and Clouds,” in Proceedings of the 8th International Symposium on Tropospheric Profiling (ISTP committee, 2009), pp. 19–23.
  15. T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. Van den Bergh, “Raman Lidar for Meteorological Observations, RALMO-Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
    [Crossref]
  16. B. Liu, Z. Wang, Y. Cai, P. Wechsler, W. Kuestner, M. Burkhart, and W. Welch, “Compact airborne Raman lidar for profiling aerosol, water vapor and clouds,” Opt. Express 22(17), 20613–20621 (2014).
    [Crossref] [PubMed]
  17. R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10(5), 1011–1017 (1971).
    [Crossref]
  18. K. Sassen, “The polarization lidar technique for cloud research: A review and current assessment,” Bull. Am. Meteorol. Soc. 72(12), 1848–1866 (1991).
    [Crossref]
  19. K. Sassen, Polarization in Lidar (Springer, 2005).
  20. A. Ansmann, I. Mattis, D. Müller, U. Wandinger, M. Radlach, D. Althausen, and R. Damoah, “Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar,” J. Geophys. Res. 110, D18S12 (2005).
  21. A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, and P. Knippertz, “Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113, D04210 (2008).
  22. V. Freudenthaler, F. Homburg, and H. Jäger, “Optical parameters of contrails from lidar measurements: Linear depolarization,” Geophys. Res. Lett. 23(25), 3715–3718 (1996).
    [Crossref]
  23. J. Reichardt, A. Tsias, and A. Behrendt, “Optical properties of PSC Ia‐enhanced at UV and visible wavelengths: Model and observations,” Geophys. Res. Lett. 27(2), 201–204 (2000).
    [Crossref]
  24. O. B. Toon, A. Tabazadeh, E. V. Browell, and J. Jordan, “Analysis of lidar observations of Arctic polar stratospheric clouds during January 1989,” J. Geophys. Res. 105(D16), 20589–20615 (2000).
    [Crossref]
  25. S. Hayashida, A. Kobayashi, and Y. Iwasaka, “Lidar measurements of stratospheric aerosol content and depolarization ratios after the eruption of El Chichon volcano: measurements at Nagoya, Japan,” Geofis. Int. 23, 2 (1984).
  26. D. Winker and M. Osborn, “Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization‐sensitive lidar,” Geophys. Res. Lett. 19(2), 171–174 (1992).
    [Crossref]
  27. K. Sassen, J. Zhu, P. Webley, K. Dean, and P. Cobb, “Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska,” Geophys. Res. Lett. 34, L08803 (2007).
  28. W. R. McNeil and A. I. Carswell, “Lidar polarization studies of the troposphere,” Appl. Opt. 14(9), 2158–2168 (1975).
    [Crossref] [PubMed]
  29. T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).
  30. G. P. Gobbi, “Polarization lidar returns from aerosols and thin clouds: a framework for the analysis,” Appl. Opt. 37(24), 5505–5508 (1998).
    [Crossref] [PubMed]
  31. F. Cairo, G. Di Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, “Comparison of various linear depolarization parameters measured by lidar,” Appl. Opt. 38(21), 4425–4432 (1999).
    [Crossref] [PubMed]
  32. G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, “Altitude-resolved properties of a Saharan dust event over the Mediterranean,” Atmos. Environ. 34(29-30), 5119–5127 (2000).
    [Crossref]
  33. A. Di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, and D. Fua, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106(D10), 10335–10347 (2001).
    [Crossref]
  34. T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36(35), 5479–5489 (2002).
    [Crossref]
  35. D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, O. Dubovik, S. Eckhardt, and A. Stohl, “Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer,” J. Geophys. Res. 108, 4345 (2003).
  36. Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, and M. Nagatani, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles,” J. Geophys. Res. 108, D23 (2003).
  37. T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 23, 1–5 (2004).
  38. M. I. Mishchenko and K. Sassen, “Depolarization of lidar returns by small ice crystals: An application to contrails,” Geophys. Res. Lett. 25(3), 309–312 (1998).
    [Crossref]
  39. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, and B. Veihelmann, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).
  40. M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus B Chem. Phys. Meterol. 61(1), 180–194 (2009).
    [Crossref]
  41. N. Sugimoto, I. Matsui, A. Shimizu, I. Uno, K. Asai, T. Endoh, and T. Nakajima, “Observation of dust and anthropogenic aerosol plumes in the northwest Pacific with a two‐wavelength polarization lidar on board the research vessel Mirai,” Geophys. Res. Lett. 29, 7 (2002)
  42. V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
    [Crossref]
  43. M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008,” J. Geophys. Res. 114, D13202 (2009).
  44. G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
    [Crossref]
  45. T. Zhou, J. Huang, Z. Huang, J. Liu, W. Wang, and L. Lin, “The depolarization-attenuated backscatter relationship for dust plumes,” Opt. Express 21(13), 15195–15204 (2013).
    [Crossref] [PubMed]
  46. Y. He and F. Yi, “Dust Aerosols Detected Using a Ground-Based Polarization Lidar and CALIPSO over Wuhan (30.5° N, 114.4° E), China,” Adv. Meteor. 2015, 536762 (2015).
  47. E. Wolf and M. Born, Principles of Optics (Pergamon Press, 1965).
  48. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (CRC Press, 1997).
  49. D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42(15), 2571–2592 (2003).
    [Crossref] [PubMed]
  50. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31(33), 7113–7131 (1992).
    [Crossref] [PubMed]
  51. A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
    [Crossref]
  52. J. Alvarez, M. A. Vaughan, C. A. Hostetler, W. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23(5), 683–699 (2006).
    [Crossref]
  53. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
    [Crossref] [PubMed]
  54. S. R. Pal, W. Steinbrecht, and A. I. Carswell, “Automated method for lidar determination of cloud-base height and vertical extent,” Appl. Opt. 31(10), 1488–1494 (1992).
    [Crossref] [PubMed]
  55. D. Winker and M. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res. 34(1-4), 117–133 (1994).
    [Crossref]
  56. Z. Liu, M. A. Vaughan, D. M. Winker, C. A. Hostetler, L. R. Poole, D. Hlavka, W. Hart, and M. McGill, “Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data,” J. Geophys. Res. 109, D15202 (2004).

2015 (1)

Y. He and F. Yi, “Dust Aerosols Detected Using a Ground-Based Polarization Lidar and CALIPSO over Wuhan (30.5° N, 114.4° E), China,” Adv. Meteor. 2015, 536762 (2015).

2014 (1)

2013 (3)

T. Zhou, J. Huang, Z. Huang, J. Liu, W. Wang, and L. Lin, “The depolarization-attenuated backscatter relationship for dust plumes,” Opt. Express 21(13), 15195–15204 (2013).
[Crossref] [PubMed]

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
[Crossref]

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. Van den Bergh, “Raman Lidar for Meteorological Observations, RALMO-Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

2012 (2)

T. Leblanc, I. McDermid, and T. Walsh, “Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring,” Atmos. Meas. Tech. 5(1), 17–36 (2012).
[Crossref]

J. Reichardt, U. Wandinger, V Klein, I. Mattis, B Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51(34), 8111–8131 (2012).

2009 (4)

D. Althausen, R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, “Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization,” J. Atmos. Ocean. Technol. 26(11), 2366–2378 (2009).
[Crossref]

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus B Chem. Phys. Meterol. 61(1), 180–194 (2009).
[Crossref]

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008,” J. Geophys. Res. 114, D13202 (2009).

2008 (2)

T. Leblanc, I. S. McDermid, and R. A. Aspey, “First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California,” J. Atmos. Ocean. Technol. 25(8), 1454–1462 (2008).
[Crossref]

A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, and P. Knippertz, “Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113, D04210 (2008).

2007 (1)

K. Sassen, J. Zhu, P. Webley, K. Dean, and P. Cobb, “Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska,” Geophys. Res. Lett. 34, L08803 (2007).

2006 (2)

J. Alvarez, M. A. Vaughan, C. A. Hostetler, W. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23(5), 683–699 (2006).
[Crossref]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, and B. Veihelmann, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).

2005 (1)

A. Ansmann, I. Mattis, D. Müller, U. Wandinger, M. Radlach, D. Althausen, and R. Damoah, “Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar,” J. Geophys. Res. 110, D18S12 (2005).

2004 (2)

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 23, 1–5 (2004).

Z. Liu, M. A. Vaughan, D. M. Winker, C. A. Hostetler, L. R. Poole, D. Hlavka, W. Hart, and M. McGill, “Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data,” J. Geophys. Res. 109, D15202 (2004).

2003 (3)

D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42(15), 2571–2592 (2003).
[Crossref] [PubMed]

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, O. Dubovik, S. Eckhardt, and A. Stohl, “Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer,” J. Geophys. Res. 108, 4345 (2003).

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, and M. Nagatani, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles,” J. Geophys. Res. 108, D23 (2003).

2002 (2)

N. Sugimoto, I. Matsui, A. Shimizu, I. Uno, K. Asai, T. Endoh, and T. Nakajima, “Observation of dust and anthropogenic aerosol plumes in the northwest Pacific with a two‐wavelength polarization lidar on board the research vessel Mirai,” Geophys. Res. Lett. 29, 7 (2002)

T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36(35), 5479–5489 (2002).
[Crossref]

2001 (2)

A. Di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, and D. Fua, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106(D10), 10335–10347 (2001).
[Crossref]

D. Bruneau, P. Quaglia, C. Flamant, M. Meissonnier, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40(21), 3450–3461 (2001).
[Crossref] [PubMed]

2000 (3)

G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, “Altitude-resolved properties of a Saharan dust event over the Mediterranean,” Atmos. Environ. 34(29-30), 5119–5127 (2000).
[Crossref]

J. Reichardt, A. Tsias, and A. Behrendt, “Optical properties of PSC Ia‐enhanced at UV and visible wavelengths: Model and observations,” Geophys. Res. Lett. 27(2), 201–204 (2000).
[Crossref]

O. B. Toon, A. Tabazadeh, E. V. Browell, and J. Jordan, “Analysis of lidar observations of Arctic polar stratospheric clouds during January 1989,” J. Geophys. Res. 105(D16), 20589–20615 (2000).
[Crossref]

1999 (1)

1998 (3)

1996 (2)

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

V. Freudenthaler, F. Homburg, and H. Jäger, “Optical parameters of contrails from lidar measurements: Linear depolarization,” Geophys. Res. Lett. 23(25), 3715–3718 (1996).
[Crossref]

1994 (1)

D. Winker and M. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res. 34(1-4), 117–133 (1994).
[Crossref]

1992 (3)

1991 (2)

K. Sassen, “The polarization lidar technique for cloud research: A review and current assessment,” Bull. Am. Meteorol. Soc. 72(12), 1848–1866 (1991).
[Crossref]

W. B. Grant, “Differential absorption and Raman lidar for water vapor profile measurements: a review,” Opt. Eng. 30(1), 40–48 (1991).
[Crossref]

1984 (2)

S. Hayashida, A. Kobayashi, and Y. Iwasaka, “Lidar measurements of stratospheric aerosol content and depolarization ratios after the eruption of El Chichon volcano: measurements at Nagoya, Japan,” Geofis. Int. 23, 2 (1984).

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
[Crossref] [PubMed]

1981 (1)

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
[Crossref]

1975 (1)

1972 (1)

1971 (1)

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10(5), 1011–1017 (1971).
[Crossref]

1970 (1)

J. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9(1), 182–184 (1970).
[Crossref]

1969 (1)

S. Melfi, J. Lawrence, and M. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15(9), 295–297 (1969).
[Crossref]

Adriani, A.

Althausen, D.

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008,” J. Geophys. Res. 114, D13202 (2009).

D. Althausen, R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, “Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization,” J. Atmos. Ocean. Technol. 26(11), 2366–2378 (2009).
[Crossref]

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus B Chem. Phys. Meterol. 61(1), 180–194 (2009).
[Crossref]

A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, and P. Knippertz, “Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113, D04210 (2008).

A. Ansmann, I. Mattis, D. Müller, U. Wandinger, M. Radlach, D. Althausen, and R. Damoah, “Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar,” J. Geophys. Res. 110, D18S12 (2005).

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, O. Dubovik, S. Eckhardt, and A. Stohl, “Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer,” J. Geophys. Res. 108, 4345 (2003).

Alvarez, J.

J. Alvarez, M. A. Vaughan, C. A. Hostetler, W. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23(5), 683–699 (2006).
[Crossref]

Ansmann, A.

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008,” J. Geophys. Res. 114, D13202 (2009).

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

D. Althausen, R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, “Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization,” J. Atmos. Ocean. Technol. 26(11), 2366–2378 (2009).
[Crossref]

A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, and P. Knippertz, “Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113, D04210 (2008).

A. Ansmann, I. Mattis, D. Müller, U. Wandinger, M. Radlach, D. Althausen, and R. Damoah, “Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar,” J. Geophys. Res. 110, D18S12 (2005).

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, O. Dubovik, S. Eckhardt, and A. Stohl, “Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer,” J. Geophys. Res. 108, 4345 (2003).

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31(33), 7113–7131 (1992).
[Crossref] [PubMed]

Arshinov, Y.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. Van den Bergh, “Raman Lidar for Meteorological Observations, RALMO-Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Artaxo, P.

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

Asai, K.

N. Sugimoto, I. Matsui, A. Shimizu, I. Uno, K. Asai, T. Endoh, and T. Nakajima, “Observation of dust and anthropogenic aerosol plumes in the northwest Pacific with a two‐wavelength polarization lidar on board the research vessel Mirai,” Geophys. Res. Lett. 29, 7 (2002)

Aspey, R. A.

T. Leblanc, I. S. McDermid, and R. A. Aspey, “First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California,” J. Atmos. Ocean. Technol. 25(8), 1454–1462 (2008).
[Crossref]

Baars, H.

D. Althausen, R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, “Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization,” J. Atmos. Ocean. Technol. 26(11), 2366–2378 (2009).
[Crossref]

Barnaba, F.

G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, “Altitude-resolved properties of a Saharan dust event over the Mediterranean,” Atmos. Environ. 34(29-30), 5119–5127 (2000).
[Crossref]

Begbie, R.

Behrendt, A.

J. Reichardt, A. Tsias, and A. Behrendt, “Optical properties of PSC Ia‐enhanced at UV and visible wavelengths: Model and observations,” Geophys. Res. Lett. 27(2), 201–204 (2000).
[Crossref]

Berntsen, T.

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

Betts, R.

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

Bobrovnikov, S.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. Van den Bergh, “Raman Lidar for Meteorological Observations, RALMO-Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Bösenberg, J.

Browell, E. V.

O. B. Toon, A. Tabazadeh, E. V. Browell, and J. Jordan, “Analysis of lidar observations of Arctic polar stratospheric clouds during January 1989,” J. Geophys. Res. 105(D16), 20589–20615 (2000).
[Crossref]

Bruneau, D.

Buck, A. L.

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
[Crossref]

Burkhart, M.

Cacciani, M.

A. Di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, and D. Fua, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106(D10), 10335–10347 (2001).
[Crossref]

Cai, Y.

Cairo, F.

Calpini, B.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. Van den Bergh, “Raman Lidar for Meteorological Observations, RALMO-Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Carswell, A. I.

Cobb, P.

K. Sassen, J. Zhu, P. Webley, K. Dean, and P. Cobb, “Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska,” Geophys. Res. Lett. 34, L08803 (2007).

Cooney, J.

J. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9(1), 182–184 (1970).
[Crossref]

Damoah, R.

A. Ansmann, I. Mattis, D. Müller, U. Wandinger, M. Radlach, D. Althausen, and R. Damoah, “Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar,” J. Geophys. Res. 110, D18S12 (2005).

David, G.

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
[Crossref]

Dean, K.

K. Sassen, J. Zhu, P. Webley, K. Dean, and P. Cobb, “Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska,” Geophys. Res. Lett. 34, L08803 (2007).

Di Donfrancesco, G.

Di Iorio, T.

A. Di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, and D. Fua, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106(D10), 10335–10347 (2001).
[Crossref]

Di Sarra, A.

A. Di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, and D. Fua, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106(D10), 10335–10347 (2001).
[Crossref]

Dinoev, T.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. Van den Bergh, “Raman Lidar for Meteorological Observations, RALMO-Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Dubovik, O.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, and B. Veihelmann, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, O. Dubovik, S. Eckhardt, and A. Stohl, “Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer,” J. Geophys. Res. 108, 4345 (2003).

Eck, T. F.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, and B. Veihelmann, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).

Eckhardt, S.

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, O. Dubovik, S. Eckhardt, and A. Stohl, “Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer,” J. Geophys. Res. 108, 4345 (2003).

Ehret, G.

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

Endoh, T.

N. Sugimoto, I. Matsui, A. Shimizu, I. Uno, K. Asai, T. Endoh, and T. Nakajima, “Observation of dust and anthropogenic aerosol plumes in the northwest Pacific with a two‐wavelength polarization lidar on board the research vessel Mirai,” Geophys. Res. Lett. 29, 7 (2002)

Engelmann, R.

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008,” J. Geophys. Res. 114, D13202 (2009).

D. Althausen, R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, “Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization,” J. Atmos. Ocean. Technol. 26(11), 2366–2378 (2009).
[Crossref]

Esselborn, M.

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus B Chem. Phys. Meterol. 61(1), 180–194 (2009).
[Crossref]

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

Fahey, D.W.

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

Fernald, F. G.

Fierli, F.

Fiocco, G.

A. Di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, and D. Fua, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106(D10), 10335–10347 (2001).
[Crossref]

Fix, A.

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

Flamant, C.

Forster, P.

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

Freudenthaler, V.

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus B Chem. Phys. Meterol. 61(1), 180–194 (2009).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008,” J. Geophys. Res. 114, D13202 (2009).

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, and P. Knippertz, “Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113, D04210 (2008).

V. Freudenthaler, F. Homburg, and H. Jäger, “Optical parameters of contrails from lidar measurements: Linear depolarization,” Geophys. Res. Lett. 23(25), 3715–3718 (1996).
[Crossref]

Fua, D.

A. Di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, and D. Fua, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106(D10), 10335–10347 (2001).
[Crossref]

Furushima, M.

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Garhammer, M.

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

Gasteiger, J.

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus B Chem. Phys. Meterol. 61(1), 180–194 (2009).
[Crossref]

Giorgi, R.

G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, “Altitude-resolved properties of a Saharan dust event over the Mediterranean,” Atmos. Environ. 34(29-30), 5119–5127 (2000).
[Crossref]

Gobbi, G. P.

G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, “Altitude-resolved properties of a Saharan dust event over the Mediterranean,” Atmos. Environ. 34(29-30), 5119–5127 (2000).
[Crossref]

G. P. Gobbi, “Polarization lidar returns from aerosols and thin clouds: a framework for the analysis,” Appl. Opt. 37(24), 5505–5508 (1998).
[Crossref] [PubMed]

Grant, W. B.

W. B. Grant, “Differential absorption and Raman lidar for water vapor profile measurements: a review,” Opt. Eng. 30(1), 40–48 (1991).
[Crossref]

Groß, S.

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008,” J. Geophys. Res. 114, D13202 (2009).

Hamdi, S.

T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36(35), 5479–5489 (2002).
[Crossref]

Hart, W.

Z. Liu, M. A. Vaughan, D. M. Winker, C. A. Hostetler, L. R. Poole, D. Hlavka, W. Hart, and M. McGill, “Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data,” J. Geophys. Res. 109, D15202 (2004).

Hayashida, S.

S. Hayashida, A. Kobayashi, and Y. Iwasaka, “Lidar measurements of stratospheric aerosol content and depolarization ratios after the eruption of El Chichon volcano: measurements at Nagoya, Japan,” Geofis. Int. 23, 2 (1984).

Haywood, J.

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

He, Y.

Y. He and F. Yi, “Dust Aerosols Detected Using a Ground-Based Polarization Lidar and CALIPSO over Wuhan (30.5° N, 114.4° E), China,” Adv. Meteor. 2015, 536762 (2015).

Heese, B.

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

D. Althausen, R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, “Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization,” J. Atmos. Ocean. Technol. 26(11), 2366–2378 (2009).
[Crossref]

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus B Chem. Phys. Meterol. 61(1), 180–194 (2009).
[Crossref]

A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, and P. Knippertz, “Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113, D04210 (2008).

Hilber, B

Hlavka, D.

Z. Liu, M. A. Vaughan, D. M. Winker, C. A. Hostetler, L. R. Poole, D. Hlavka, W. Hart, and M. McGill, “Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data,” J. Geophys. Res. 109, D15202 (2004).

Holben, B. N.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, and B. Veihelmann, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).

Homburg, F.

V. Freudenthaler, F. Homburg, and H. Jäger, “Optical parameters of contrails from lidar measurements: Linear depolarization,” Geophys. Res. Lett. 23(25), 3715–3718 (1996).
[Crossref]

Hostetler, C. A.

J. Alvarez, M. A. Vaughan, C. A. Hostetler, W. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23(5), 683–699 (2006).
[Crossref]

Z. Liu, M. A. Vaughan, D. M. Winker, C. A. Hostetler, L. R. Poole, D. Hlavka, W. Hart, and M. McGill, “Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data,” J. Geophys. Res. 109, D15202 (2004).

Huang, J.

Huang, Z.

Hunt, W.

J. Alvarez, M. A. Vaughan, C. A. Hostetler, W. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23(5), 683–699 (2006).
[Crossref]

Ichiki, A.

T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36(35), 5479–5489 (2002).
[Crossref]

Iwasaka, N.

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Iwasaka, Y.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, and M. Nagatani, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles,” J. Geophys. Res. 108, D23 (2003).

T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36(35), 5479–5489 (2002).
[Crossref]

S. Hayashida, A. Kobayashi, and Y. Iwasaka, “Lidar measurements of stratospheric aerosol content and depolarization ratios after the eruption of El Chichon volcano: measurements at Nagoya, Japan,” Geofis. Int. 23, 2 (1984).

Jäger, H.

V. Freudenthaler, F. Homburg, and H. Jäger, “Optical parameters of contrails from lidar measurements: Linear depolarization,” Geophys. Res. Lett. 23(25), 3715–3718 (1996).
[Crossref]

Jordan, J.

O. B. Toon, A. Tabazadeh, E. V. Browell, and J. Jordan, “Analysis of lidar observations of Arctic polar stratospheric clouds during January 1989,” J. Geophys. Res. 105(D16), 20589–20615 (2000).
[Crossref]

Kai, K.

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Kandler, K.

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus B Chem. Phys. Meterol. 61(1), 180–194 (2009).
[Crossref]

Kim, Y.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, and M. Nagatani, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles,” J. Geophys. Res. 108, D23 (2003).

Kim, Y.-S.

T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36(35), 5479–5489 (2002).
[Crossref]

Klein, V

Knippertz, P.

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, and P. Knippertz, “Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113, D04210 (2008).

Kobayashi, A.

S. Hayashida, A. Kobayashi, and Y. Iwasaka, “Lidar measurements of stratospheric aerosol content and depolarization ratios after the eruption of El Chichon volcano: measurements at Nagoya, Japan,” Geofis. Int. 23, 2 (1984).

Komppula, M.

D. Althausen, R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, “Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization,” J. Atmos. Ocean. Technol. 26(11), 2366–2378 (2009).
[Crossref]

Kuestner, W.

Lapyonok, T.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, and B. Veihelmann, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).

Lawrence, J.

S. Melfi, J. Lawrence, and M. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15(9), 295–297 (1969).
[Crossref]

Lean, J.

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

Leblanc, T.

T. Leblanc, I. McDermid, and T. Walsh, “Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring,” Atmos. Meas. Tech. 5(1), 17–36 (2012).
[Crossref]

T. Leblanc, I. S. McDermid, and R. A. Aspey, “First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California,” J. Atmos. Ocean. Technol. 25(8), 1454–1462 (2008).
[Crossref]

Lin, L.

Liu, B.

Liu, J.

Liu, Z.

Z. Liu, M. A. Vaughan, D. M. Winker, C. A. Hostetler, L. R. Poole, D. Hlavka, W. Hart, and M. McGill, “Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data,” J. Geophys. Res. 109, D15202 (2004).

Lowe, D.C.

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

Matsui, I.

N. Sugimoto, I. Matsui, A. Shimizu, I. Uno, K. Asai, T. Endoh, and T. Nakajima, “Observation of dust and anthropogenic aerosol plumes in the northwest Pacific with a two‐wavelength polarization lidar on board the research vessel Mirai,” Geophys. Res. Lett. 29, 7 (2002)

Matsuki, A.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, and M. Nagatani, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles,” J. Geophys. Res. 108, D23 (2003).

Matsumura, T.

T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36(35), 5479–5489 (2002).
[Crossref]

Mattis, I.

J. Reichardt, U. Wandinger, V Klein, I. Mattis, B Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51(34), 8111–8131 (2012).

A. Ansmann, I. Mattis, D. Müller, U. Wandinger, M. Radlach, D. Althausen, and R. Damoah, “Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar,” J. Geophys. Res. 110, D18S12 (2005).

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, O. Dubovik, S. Eckhardt, and A. Stohl, “Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer,” J. Geophys. Res. 108, 4345 (2003).

McCormick, M.

S. Melfi, J. Lawrence, and M. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15(9), 295–297 (1969).
[Crossref]

McDermid, I.

T. Leblanc, I. McDermid, and T. Walsh, “Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring,” Atmos. Meas. Tech. 5(1), 17–36 (2012).
[Crossref]

McDermid, I. S.

T. Leblanc, I. S. McDermid, and R. A. Aspey, “First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California,” J. Atmos. Ocean. Technol. 25(8), 1454–1462 (2008).
[Crossref]

McGill, M.

Z. Liu, M. A. Vaughan, D. M. Winker, C. A. Hostetler, L. R. Poole, D. Hlavka, W. Hart, and M. McGill, “Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data,” J. Geophys. Res. 109, D15202 (2004).

McNeil, W. R.

Meissonnier, M.

Melfi, S.

S. Melfi, J. Lawrence, and M. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15(9), 295–297 (1969).
[Crossref]

Melfi, S. H.

Michaelis, W.

Miffre, A.

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
[Crossref]

Mishchenko, M.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, and B. Veihelmann, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).

Mishchenko, M. I.

M. I. Mishchenko and K. Sassen, “Depolarization of lidar returns by small ice crystals: An application to contrails,” Geophys. Res. Lett. 25(3), 309–312 (1998).
[Crossref]

Müller, D.

D. Althausen, R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, “Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization,” J. Atmos. Ocean. Technol. 26(11), 2366–2378 (2009).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008,” J. Geophys. Res. 114, D13202 (2009).

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, and P. Knippertz, “Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113, D04210 (2008).

A. Ansmann, I. Mattis, D. Müller, U. Wandinger, M. Radlach, D. Althausen, and R. Damoah, “Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar,” J. Geophys. Res. 110, D18S12 (2005).

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 23, 1–5 (2004).

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, O. Dubovik, S. Eckhardt, and A. Stohl, “Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer,” J. Geophys. Res. 108, 4345 (2003).

Munoz, O.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, and B. Veihelmann, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).

Murayama, T.

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 23, 1–5 (2004).

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Myhre, G.

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

Nagai, T.

T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36(35), 5479–5489 (2002).
[Crossref]

Nagatani, M.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, and M. Nagatani, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles,” J. Geophys. Res. 108, D23 (2003).

Nagatani, T.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, and M. Nagatani, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles,” J. Geophys. Res. 108, D23 (2003).

Nakajima, T.

N. Sugimoto, I. Matsui, A. Shimizu, I. Uno, K. Asai, T. Endoh, and T. Nakajima, “Observation of dust and anthropogenic aerosol plumes in the northwest Pacific with a two‐wavelength polarization lidar on board the research vessel Mirai,” Geophys. Res. Lett. 29, 7 (2002)

Nakazato, M.

T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36(35), 5479–5489 (2002).
[Crossref]

Nganga, J.

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

Nousiainen, T.

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
[Crossref]

Oda, A.

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Osborn, M.

D. Winker and M. Osborn, “Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization‐sensitive lidar,” Geophys. Res. Lett. 19(2), 171–174 (1992).
[Crossref]

Pal, S. R.

Parlange, M.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. Van den Bergh, “Raman Lidar for Meteorological Observations, RALMO-Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Pelon, J.

Pisani, G.

A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, and P. Knippertz, “Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113, D04210 (2008).

Poole, L. R.

Z. Liu, M. A. Vaughan, D. M. Winker, C. A. Hostetler, L. R. Poole, D. Hlavka, W. Hart, and M. McGill, “Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data,” J. Geophys. Res. 109, D15202 (2004).

Prinn, R.

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

Pulvirenti, L.

Quaglia, P.

Radlach, M.

A. Ansmann, I. Mattis, D. Müller, U. Wandinger, M. Radlach, D. Althausen, and R. Damoah, “Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar,” J. Geophys. Res. 110, D18S12 (2005).

Raga, G.

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

Rairoux, P.

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
[Crossref]

Ramaswamy, V

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

Rasp, K.

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus B Chem. Phys. Meterol. 61(1), 180–194 (2009).
[Crossref]

Reichardt, J.

J. Reichardt, U. Wandinger, V Klein, I. Mattis, B Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51(34), 8111–8131 (2012).

J. Reichardt, A. Tsias, and A. Behrendt, “Optical properties of PSC Ia‐enhanced at UV and visible wavelengths: Model and observations,” Geophys. Res. Lett. 27(2), 201–204 (2000).
[Crossref]

Riebesell, M.

Ristori, P.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. Van den Bergh, “Raman Lidar for Meteorological Observations, RALMO-Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Sakai, T.

T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36(35), 5479–5489 (2002).
[Crossref]

Santacasa, A.

G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, “Altitude-resolved properties of a Saharan dust event over the Mediterranean,” Atmos. Environ. 34(29-30), 5119–5127 (2000).
[Crossref]

Sassen, K.

K. Sassen, J. Zhu, P. Webley, K. Dean, and P. Cobb, “Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska,” Geophys. Res. Lett. 34, L08803 (2007).

M. I. Mishchenko and K. Sassen, “Depolarization of lidar returns by small ice crystals: An application to contrails,” Geophys. Res. Lett. 25(3), 309–312 (1998).
[Crossref]

K. Sassen, “The polarization lidar technique for cloud research: A review and current assessment,” Bull. Am. Meteorol. Soc. 72(12), 1848–1866 (1991).
[Crossref]

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10(5), 1011–1017 (1971).
[Crossref]

Schotland, R. M.

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10(5), 1011–1017 (1971).
[Crossref]

Schulz, M.

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

Seefeldner, M.

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

Seifert, P.

A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, and P. Knippertz, “Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113, D04210 (2008).

Sekiguchi, M.

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 23, 1–5 (2004).

Shi, G. Y.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, and M. Nagatani, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles,” J. Geophys. Res. 108, D23 (2003).

Shibata, T.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, and M. Nagatani, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles,” J. Geophys. Res. 108, D23 (2003).

T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36(35), 5479–5489 (2002).
[Crossref]

Shimizu, A.

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 23, 1–5 (2004).

N. Sugimoto, I. Matsui, A. Shimizu, I. Uno, K. Asai, T. Endoh, and T. Nakajima, “Observation of dust and anthropogenic aerosol plumes in the northwest Pacific with a two‐wavelength polarization lidar on board the research vessel Mirai,” Geophys. Res. Lett. 29, 7 (2002)

Simeonov, V.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. Van den Bergh, “Raman Lidar for Meteorological Observations, RALMO-Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Sinyuk, A.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, and B. Veihelmann, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).

Steinbrecht, W.

Stohl, A.

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, O. Dubovik, S. Eckhardt, and A. Stohl, “Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer,” J. Geophys. Res. 108, 4345 (2003).

Stone, R.

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10(5), 1011–1017 (1971).
[Crossref]

Sugimoto, N.

N. Sugimoto, I. Matsui, A. Shimizu, I. Uno, K. Asai, T. Endoh, and T. Nakajima, “Observation of dust and anthropogenic aerosol plumes in the northwest Pacific with a two‐wavelength polarization lidar on board the research vessel Mirai,” Geophys. Res. Lett. 29, 7 (2002)

Tabazadeh, A.

O. B. Toon, A. Tabazadeh, E. V. Browell, and J. Jordan, “Analysis of lidar observations of Arctic polar stratospheric clouds during January 1989,” J. Geophys. Res. 105(D16), 20589–20615 (2000).
[Crossref]

Tamura, K.

T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36(35), 5479–5489 (2002).
[Crossref]

Tesche, M.

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus B Chem. Phys. Meterol. 61(1), 180–194 (2009).
[Crossref]

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008,” J. Geophys. Res. 114, D13202 (2009).

A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, and P. Knippertz, “Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113, D04210 (2008).

Thomas, B.

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
[Crossref]

Toledano, C.

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus B Chem. Phys. Meterol. 61(1), 180–194 (2009).
[Crossref]

Toon, O. B.

O. B. Toon, A. Tabazadeh, E. V. Browell, and J. Jordan, “Analysis of lidar observations of Arctic polar stratospheric clouds during January 1989,” J. Geophys. Res. 105(D16), 20589–20615 (2000).
[Crossref]

Trochkine, D.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, and M. Nagatani, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles,” J. Geophys. Res. 108, D23 (2003).

Troshkin, D.

T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36(35), 5479–5489 (2002).
[Crossref]

Tsias, A.

J. Reichardt, A. Tsias, and A. Behrendt, “Optical properties of PSC Ia‐enhanced at UV and visible wavelengths: Model and observations,” Geophys. Res. Lett. 27(2), 201–204 (2000).
[Crossref]

Tsukamoto, T.

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 23, 1–5 (2004).

Uno, I.

N. Sugimoto, I. Matsui, A. Shimizu, I. Uno, K. Asai, T. Endoh, and T. Nakajima, “Observation of dust and anthropogenic aerosol plumes in the northwest Pacific with a two‐wavelength polarization lidar on board the research vessel Mirai,” Geophys. Res. Lett. 29, 7 (2002)

Van den Bergh, H.

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. Van den Bergh, “Raman Lidar for Meteorological Observations, RALMO-Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

Van Dorland, R.

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

Vaughan, M.

D. Winker and M. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res. 34(1-4), 117–133 (1994).
[Crossref]

Vaughan, M. A.

J. Alvarez, M. A. Vaughan, C. A. Hostetler, W. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23(5), 683–699 (2006).
[Crossref]

Z. Liu, M. A. Vaughan, D. M. Winker, C. A. Hostetler, L. R. Poole, D. Hlavka, W. Hart, and M. McGill, “Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data,” J. Geophys. Res. 109, D15202 (2004).

Veihelmann, B.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, and B. Veihelmann, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).

Volten, H.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, and B. Veihelmann, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).

Wada, K.

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 23, 1–5 (2004).

Walsh, T.

T. Leblanc, I. McDermid, and T. Walsh, “Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring,” Atmos. Meas. Tech. 5(1), 17–36 (2012).
[Crossref]

Wandinger, U.

J. Reichardt, U. Wandinger, V Klein, I. Mattis, B Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51(34), 8111–8131 (2012).

A. Ansmann, I. Mattis, D. Müller, U. Wandinger, M. Radlach, D. Althausen, and R. Damoah, “Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar,” J. Geophys. Res. 110, D18S12 (2005).

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, O. Dubovik, S. Eckhardt, and A. Stohl, “Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer,” J. Geophys. Res. 108, 4345 (2003).

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31(33), 7113–7131 (1992).
[Crossref] [PubMed]

Wang, W.

Wang, Z.

Webley, P.

K. Sassen, J. Zhu, P. Webley, K. Dean, and P. Cobb, “Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska,” Geophys. Res. Lett. 34, L08803 (2007).

Wechsler, P.

Weinzierl, B.

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus B Chem. Phys. Meterol. 61(1), 180–194 (2009).
[Crossref]

Weitkamp, C.

Welch, W.

Whiteman, D. N.

Wiegner, M.

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus B Chem. Phys. Meterol. 61(1), 180–194 (2009).
[Crossref]

A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, and P. Knippertz, “Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113, D04210 (2008).

Winker, D.

D. Winker and M. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res. 34(1-4), 117–133 (1994).
[Crossref]

D. Winker and M. Osborn, “Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization‐sensitive lidar,” Geophys. Res. Lett. 19(2), 171–174 (1992).
[Crossref]

Winker, D. M.

J. Alvarez, M. A. Vaughan, C. A. Hostetler, W. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23(5), 683–699 (2006).
[Crossref]

Z. Liu, M. A. Vaughan, D. M. Winker, C. A. Hostetler, L. R. Poole, D. Hlavka, W. Hart, and M. McGill, “Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data,” J. Geophys. Res. 109, D15202 (2004).

Wirth, M.

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

Wulfmeyer, V.

Yamada, M.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, and M. Nagatani, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles,” J. Geophys. Res. 108, D23 (2003).

Yang, P.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, and B. Veihelmann, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).

Yi, F.

Y. He and F. Yi, “Dust Aerosols Detected Using a Ground-Based Polarization Lidar and CALIPSO over Wuhan (30.5° N, 114.4° E), China,” Adv. Meteor. 2015, 536762 (2015).

Zhang, D.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, and M. Nagatani, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles,” J. Geophys. Res. 108, D23 (2003).

Zhou, T.

Zhu, J.

K. Sassen, J. Zhu, P. Webley, K. Dean, and P. Cobb, “Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska,” Geophys. Res. Lett. 34, L08803 (2007).

Adv. Meteor. (1)

Y. He and F. Yi, “Dust Aerosols Detected Using a Ground-Based Polarization Lidar and CALIPSO over Wuhan (30.5° N, 114.4° E), China,” Adv. Meteor. 2015, 536762 (2015).

Appl. Opt. (11)

D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42(15), 2571–2592 (2003).
[Crossref] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31(33), 7113–7131 (1992).
[Crossref] [PubMed]

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
[Crossref] [PubMed]

S. R. Pal, W. Steinbrecht, and A. I. Carswell, “Automated method for lidar determination of cloud-base height and vertical extent,” Appl. Opt. 31(10), 1488–1494 (1992).
[Crossref] [PubMed]

V. Wulfmeyer and J. Bösenberg, “Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications,” Appl. Opt. 37(18), 3825–3844 (1998).
[Crossref] [PubMed]

D. Bruneau, P. Quaglia, C. Flamant, M. Meissonnier, and J. Pelon, “Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I. System description,” Appl. Opt. 40(21), 3450–3461 (2001).
[Crossref] [PubMed]

S. H. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11(7), 1605–1610 (1972).
[Crossref] [PubMed]

J. Reichardt, U. Wandinger, V Klein, I. Mattis, B Hilber, and R. Begbie, “RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51(34), 8111–8131 (2012).

W. R. McNeil and A. I. Carswell, “Lidar polarization studies of the troposphere,” Appl. Opt. 14(9), 2158–2168 (1975).
[Crossref] [PubMed]

G. P. Gobbi, “Polarization lidar returns from aerosols and thin clouds: a framework for the analysis,” Appl. Opt. 37(24), 5505–5508 (1998).
[Crossref] [PubMed]

F. Cairo, G. Di Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, “Comparison of various linear depolarization parameters measured by lidar,” Appl. Opt. 38(21), 4425–4432 (1999).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. Melfi, J. Lawrence, and M. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15(9), 295–297 (1969).
[Crossref]

Atmos. Chem. Phys. (1)

G. David, B. Thomas, T. Nousiainen, A. Miffre, and P. Rairoux, “Retrieving simulated volcanic, desert dust and sea-salt particle properties from two/three-component particle mixtures using UV-VIS polarization lidar and T matrix,” Atmos. Chem. Phys. 13(14), 6757–6776 (2013).
[Crossref]

Atmos. Environ. (2)

T. Sakai, T. Shibata, Y. Iwasaka, T. Nagai, M. Nakazato, T. Matsumura, A. Ichiki, Y.-S. Kim, K. Tamura, D. Troshkin, and S. Hamdi, “Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan,” Atmos. Environ. 36(35), 5479–5489 (2002).
[Crossref]

G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, “Altitude-resolved properties of a Saharan dust event over the Mediterranean,” Atmos. Environ. 34(29-30), 5119–5127 (2000).
[Crossref]

Atmos. Meas. Tech. (2)

T. Dinoev, V. Simeonov, Y. Arshinov, S. Bobrovnikov, P. Ristori, B. Calpini, M. Parlange, and H. Van den Bergh, “Raman Lidar for Meteorological Observations, RALMO-Part 1: Instrument description,” Atmos. Meas. Tech. 6(5), 1329–1346 (2013).
[Crossref]

T. Leblanc, I. McDermid, and T. Walsh, “Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring,” Atmos. Meas. Tech. 5(1), 17–36 (2012).
[Crossref]

Atmos. Res. (1)

D. Winker and M. Vaughan, “Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs,” Atmos. Res. 34(1-4), 117–133 (1994).
[Crossref]

Bull. Am. Meteorol. Soc. (1)

K. Sassen, “The polarization lidar technique for cloud research: A review and current assessment,” Bull. Am. Meteorol. Soc. 72(12), 1848–1866 (1991).
[Crossref]

Geofis. Int. (1)

S. Hayashida, A. Kobayashi, and Y. Iwasaka, “Lidar measurements of stratospheric aerosol content and depolarization ratios after the eruption of El Chichon volcano: measurements at Nagoya, Japan,” Geofis. Int. 23, 2 (1984).

Geophys. Res. Lett. (7)

D. Winker and M. Osborn, “Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization‐sensitive lidar,” Geophys. Res. Lett. 19(2), 171–174 (1992).
[Crossref]

K. Sassen, J. Zhu, P. Webley, K. Dean, and P. Cobb, “Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska,” Geophys. Res. Lett. 34, L08803 (2007).

V. Freudenthaler, F. Homburg, and H. Jäger, “Optical parameters of contrails from lidar measurements: Linear depolarization,” Geophys. Res. Lett. 23(25), 3715–3718 (1996).
[Crossref]

J. Reichardt, A. Tsias, and A. Behrendt, “Optical properties of PSC Ia‐enhanced at UV and visible wavelengths: Model and observations,” Geophys. Res. Lett. 27(2), 201–204 (2000).
[Crossref]

T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 23, 1–5 (2004).

M. I. Mishchenko and K. Sassen, “Depolarization of lidar returns by small ice crystals: An application to contrails,” Geophys. Res. Lett. 25(3), 309–312 (1998).
[Crossref]

N. Sugimoto, I. Matsui, A. Shimizu, I. Uno, K. Asai, T. Endoh, and T. Nakajima, “Observation of dust and anthropogenic aerosol plumes in the northwest Pacific with a two‐wavelength polarization lidar on board the research vessel Mirai,” Geophys. Res. Lett. 29, 7 (2002)

J. Appl. Meteorol. (3)

A. L. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20(12), 1527–1532 (1981).
[Crossref]

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10(5), 1011–1017 (1971).
[Crossref]

J. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9(1), 182–184 (1970).
[Crossref]

J. Atmos. Ocean. Technol. (3)

T. Leblanc, I. S. McDermid, and R. A. Aspey, “First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California,” J. Atmos. Ocean. Technol. 25(8), 1454–1462 (2008).
[Crossref]

D. Althausen, R. Engelmann, H. Baars, B. Heese, A. Ansmann, D. Müller, and M. Komppula, “Portable Raman lidar PollyXT for automated profiling of aerosol backscatter, extinction, and depolarization,” J. Atmos. Ocean. Technol. 26(11), 2366–2378 (2009).
[Crossref]

J. Alvarez, M. A. Vaughan, C. A. Hostetler, W. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23(5), 683–699 (2006).
[Crossref]

J. Geophys. Res. (9)

Z. Liu, M. A. Vaughan, D. M. Winker, C. A. Hostetler, L. R. Poole, D. Hlavka, W. Hart, and M. McGill, “Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data,” J. Geophys. Res. 109, D15202 (2004).

D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, O. Dubovik, S. Eckhardt, and A. Stohl, “Saharan dust over a central European EARLINET‐AERONET site: Combined observations with Raman lidar and Sun photometer,” J. Geophys. Res. 108, 4345 (2003).

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, and M. Nagatani, “Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: Possible diffusion and transport of dust particles,” J. Geophys. Res. 108, D23 (2003).

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008,” J. Geophys. Res. 114, D13202 (2009).

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, and B. Veihelmann, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).

A. Di Sarra, T. Di Iorio, M. Cacciani, G. Fiocco, and D. Fua, “Saharan dust profiles measured by lidar at Lampedusa,” J. Geophys. Res. 106(D10), 10335–10347 (2001).
[Crossref]

O. B. Toon, A. Tabazadeh, E. V. Browell, and J. Jordan, “Analysis of lidar observations of Arctic polar stratospheric clouds during January 1989,” J. Geophys. Res. 105(D16), 20589–20615 (2000).
[Crossref]

A. Ansmann, I. Mattis, D. Müller, U. Wandinger, M. Radlach, D. Althausen, and R. Damoah, “Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar,” J. Geophys. Res. 110, D18S12 (2005).

A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, and P. Knippertz, “Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113, D04210 (2008).

J. Meteorol. Soc. Jpn. (1)

T. Murayama, M. Furushima, A. Oda, N. Iwasaka, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Opt. Eng. (1)

W. B. Grant, “Differential absorption and Raman lidar for water vapor profile measurements: a review,” Opt. Eng. 30(1), 40–48 (1991).
[Crossref]

Opt. Express (2)

Tellus B Chem. Phys. Meterol. (2)

V. Freudenthaler, M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, J. Gasteiger, M. Garhammer, and M. Seefeldner, “Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006,” Tellus B Chem. Phys. Meterol. 61(1), 165–179 (2009).
[Crossref]

M. Wiegner, J. Gasteiger, K. Kandler, B. Weinzierl, K. Rasp, M. Esselborn, V. Freudenthaler, B. Heese, C. Toledano, M. Tesche, and D. Althausen, “Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications,” Tellus B Chem. Phys. Meterol. 61(1), 180–194 (2009).
[Crossref]

Other (7)

A. Apituley, K. Wilson, C. Potma, H. Volten, and M. de Graaf, “Performance Assessment and Application of Caeli–A high-performance Raman lidar for diurnal profiling of Water Vapour, Aerosols and Clouds,” in Proceedings of the 8th International Symposium on Tropospheric Profiling (ISTP committee, 2009), pp. 19–23.

K. Sassen, Polarization in Lidar (Springer, 2005).

T. Dinoev, “Automated Raman lidar for day and night operational observation of tropospheric water vapor for meteorological applications,” (École Polytechnique Fédérale De Lausanne, 2009).

P. Forster, V Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in Atmospheric Constituents and in Radiative Forcing,” in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller, eds. (Cambridge University Press, 2007).

E. V. Browell, “Remote sensing of tropospheric gases and aerosols with an airborne DIAL system,” in Optical and Laser Remote Sensing (Springer, 1983), pp. 138–147.

E. Wolf and M. Born, Principles of Optics (Pergamon Press, 1965).

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (CRC Press, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 The photo of the whole system.
Fig. 2
Fig. 2 Schematic diagram of WACAL system
Fig. 3
Fig. 3 Schematic of the telescope array and fibers.
Fig. 4
Fig. 4 Overlap of the WACAL. (a) Overlap function of the Raman channel simulated by ZEMAX; (b) Overlap function of the Raman channel measured by experiment ;(c) Overlap function of the polarization and infrared channel simulated by ZEMAX and (d) Overlap function of the polarization and infrared channel measured by experiment.
Fig. 5
Fig. 5 The photos of the three cabins: (a). Lidar cabin; (b). Electricity and water chiller cabin; (c). Operating cabin.
Fig. 6
Fig. 6 (a). Distance between sites of WACAL and radiosonde; (b). Regression of WACAL mixing ratio profile to radiosonde measurement.
Fig. 7
Fig. 7 Validation of the calibrated water vapor mixing ratio (red dashed line is 1:1 curve and black line is fitting curve).
Fig. 8
Fig. 8 Water vapor mixing ratio study cases in Qingdao on 26 and 31 May, 6 and 7 June 2014.
Fig. 9
Fig. 9 Depolarization ratio and backscatter coefficient measured by WACAL on 31 May 2014: (a) Temporal development of δ cal v , (b) Vertical profile of δ cal v at 20:25 LST, (c) Temporal development of β a , (d) Vertical profile of β a at 20:25 LST.
Fig. 10
Fig. 10 The color ratio of cloud and aerosol on 28 November 2015.
Fig. 11
Fig. 11 Comparison of cloud base height measured by WACAL and ceilometer. (a) is the temporal development of the cloud base height and (b) is the scatter diagram based on the measurement of WACAL and ceilometer.
Fig. 12
Fig. 12 Contrast of cloud base height by WACAL and ceilometers.
Fig. 13
Fig. 13 Temporal development of the (a) depolarization ratio, (b) backscatter coefficient and (d) cloud base height between 19:00 and 21:00 LST, 31 May, 2014. And (c) the vertical profile of water vapor mixing ratio.

Tables (3)

Tables Icon

Table 1 Component parameters of the WACAL system

Tables Icon

Table 2 Specifications of the optical elements in Receiver

Tables Icon

Table 3 Test routines of the validation observations

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

P(z, λ R )+ P BR = P 0 ( λ L )Δz A 0 O(z) z 2 ξ( λ R ) β R π (z, λ R ) T up (z, λ L ) T down (z, λ R )
T up (z, λ L )=exp[ z 0 z α(z', λ L ) dz'] T down (z, λ R )=exp[ z 0 z α(z', λ R ) dz']
w(z)=C P(z, λ H 2 O ) P(z, λ N 2 ) ΔT( λ N 2 , λ H 2 O ,z)
ΔT( λ N 2 , λ H 2 O ,z)=exp( z 0 z [α(z', λ N 2 )α(z', λ H 2 O ) ]dz' )
WR=φ·S=φ· 0.622· P s (T) P0.378· P s (T)
P s (T)=6.1121·exp((18.678 T 234.5 )·( T 257.14+T ))
W Sonde =C* W Lidar +D
W Lidar Cal =219* W Lidar 0.34
SNR= P m (z) P noise P bg P m (z)
δ v = β β =k P P
P = C Δr r 2 ( β a + β m )exp{2 0 r [ α m (z)+ α a (z)] dz}
P = C Δr r 2 ( β a + β m )exp{2 0 r [ α m (z)+ α a (z)] dz}
δ cal v =0.68× δ v 0.0167
α a (z)+ S a (z) S m α m (z)= S a (z)P(z) z 2 exp{2 z 0 z [ S a (ζ) S m 1] α m (ζ)dζ} S a ( z 0 )P( z 0 ) z 0 2 α a ( z 0 )+ S a ( z 0 ) S m α m ( z 0 ) 2 z 0 z S a (ζ)P(ζ) ζ 2 exp{2 z 0 ζ [ S a (ξ) S m 1] α m (ξ)dξ}dζ β a (z)= α a (z) S a (z) }

Metrics