Abstract

Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery

Juan Mata Pavia, Martin Wolf, and Edoardo Charbon
Opt. Express 22(4) 4202-4213 (2014)

Architecture and applications of a high resolution gated SPAD image sensor

Samuel Burri, Yuki Maruyama, Xavier Michalet, Francesco Regazzoni, Claudio Bruschini, and Edoardo Charbon
Opt. Express 22(14) 17573-17589 (2014)

A new single-photon avalanche diode in 90nm standard CMOS technology

Mohammad Azim Karami, Marek Gersbach, Hyung-June Yoon, and Edoardo Charbon
Opt. Express 18(21) 22158-22166 (2010)

References

  • View by:
  • |
  • |
  • |

  1. G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
    [Crossref] [PubMed]
  2. A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
    [Crossref] [PubMed]
  3. A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Rem. Sens. 52(8), 4942–4954 (2014).
    [Crossref]
  4. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [Crossref] [PubMed]
  5. D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 x 32 0.13micron CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257–10269 (2010).
    [Crossref] [PubMed]
  6. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer Series in Chemical Physics (Springer, 2005), Vol. 81.
  7. G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
    [Crossref]
  8. R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
    [Crossref]
  9. F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuat. Phys. 140(1), 103–112 (2007).
    [Crossref]
  10. C. S. Menoni, “Breakthroughs in Photonics 2010,” IEEE Photonics J. 3, 241–336 (2011).
  11. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
    [Crossref] [PubMed]
  12. C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
    [Crossref] [PubMed]
  13. D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100000 Frames/s 64 x 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
    [Crossref]
  14. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 Single-Photon Image Sensor with Column-Level 10-bit Time-to-Digital Converter Array,” J. Solid-State Circuits 43(12), 2977–2989 (2008).
    [Crossref]
  15. M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
    [Crossref]
  16. F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
    [Crossref]
  17. D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Detectors and Imagers: Figures of merit for Photon-counting and Photon-timing Applications,” IEEE Sens. J.in press.
  18. F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
    [Crossref]
  19. S. Donati, G. Martini, and M. Norgia, “Microconcentrators to recover fill-factor in image photodetectors with pixel on-board processing circuits,” Opt. Express 15(26), 18066–18075 (2007).
    [Crossref] [PubMed]
  20. S. Donati, G. Martini, and E. Randone, “Improving Photodetector Performance by Means of Microoptics Concentrators,” J. Lightwave Technol. 29(5), 661–665 (2011).
    [Crossref]
  21. S. Donati, E. Randone, M. Fathi, J.-H. Lee, and E. Charbon, “Uniformity of concentration factor and back focal length in molded polymer microlens arrays,” in Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), (OSA / CLEO / QELS, 2010).
    [Crossref]
  22. J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
    [Crossref] [PubMed]
  23. F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
    [Crossref]
  24. R. Lussana, F. Villa, A. D. Mora, D. Contini, A. Tosi, and F. Zappa, “Enhanced single-photon time-of-flight 3D ranging,” Opt. Express 23(19), 24962–24973 (2015).
    [Crossref] [PubMed]
  25. B. C. Kress and P. Meyrueis, Applied Digital Optics: From Micro-Optics to Nanophotonics (John Wiley & Sons, 2009).
  26. J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29(7), 931–936 (1990).
    [Crossref] [PubMed]
  27. M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34(3-4), 219–242 (1997).
    [Crossref]
  28. H. P. Herzig, Micro-Optics: Elements, Systems And Applications (CRC Press, 1997).
  29. J. W. Goodman, Introduction to Fourier Optics, 2nd Ed., (McGraw-Hill, 1996).

2015 (2)

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

R. Lussana, F. Villa, A. D. Mora, D. Contini, A. Tosi, and F. Zappa, “Enhanced single-photon time-of-flight 3D ranging,” Opt. Express 23(19), 24962–24973 (2015).
[Crossref] [PubMed]

2014 (5)

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
[Crossref] [PubMed]

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Rem. Sens. 52(8), 4942–4954 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100000 Frames/s 64 x 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

2013 (3)

C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
[Crossref] [PubMed]

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

2012 (2)

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

2011 (2)

2010 (2)

2009 (1)

2008 (1)

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 Single-Photon Image Sensor with Column-Level 10-bit Time-to-Digital Converter Array,” J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

2007 (2)

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuat. Phys. 140(1), 103–112 (2007).
[Crossref]

S. Donati, G. Martini, and M. Norgia, “Microconcentrators to recover fill-factor in image photodetectors with pixel on-board processing circuits,” Opt. Express 15(26), 18066–18075 (2007).
[Crossref] [PubMed]

1997 (1)

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34(3-4), 219–242 (1997).
[Crossref]

1996 (1)

1990 (1)

Allred, P.

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

Arlt, J.

Barton, I. M.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34(3-4), 219–242 (1997).
[Crossref]

Bellisai, S.

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Blair, P.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34(3-4), 219–242 (1997).
[Crossref]

Boso, G.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Brockherde, W.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100000 Frames/s 64 x 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Bronzi, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100000 Frames/s 64 x 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Detectors and Imagers: Figures of merit for Photon-counting and Photon-timing Applications,” IEEE Sens. J.in press.

Buller, G. S.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Rem. Sens. 52(8), 4942–4954 (2014).
[Crossref]

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

Buts, A.

Charbon, E.

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
[Crossref] [PubMed]

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 x 32 0.13micron CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257–10269 (2010).
[Crossref] [PubMed]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 Single-Photon Image Sensor with Column-Level 10-bit Time-to-Digital Converter Array,” J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Collins, R. J.

Contini, D.

R. Lussana, F. Villa, A. D. Mora, D. Contini, A. Tosi, and F. Zappa, “Enhanced single-photon time-of-flight 3D ranging,” Opt. Express 23(19), 24962–24973 (2015).
[Crossref] [PubMed]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Cova, S.

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuat. Phys. 140(1), 103–112 (2007).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

Dalla Mora, A.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Della Frera, A.

Donati, S.

Durini, D.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100000 Frames/s 64 x 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Faccio, D.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Favi, C.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 Single-Photon Image Sensor with Column-Level 10-bit Time-to-Digital Converter Array,” J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Fernández, V.

Fishburn, M. W.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

Gallacher, K.

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

Gariepy, G.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Gemmell, N. R.

Gersbach, M.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 Single-Photon Image Sensor with Column-Level 10-bit Time-to-Digital Converter Array,” J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Ghioni, M.

Henderson, R.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 x 32 0.13micron CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257–10269 (2010).
[Crossref] [PubMed]

Heshmat, B.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Huante-Ceron, E.

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

Ikonic, Z.

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

Intermite, G.

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

Jahns, J.

Kelsall, R. W.

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

Kluter, T.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 Single-Photon Image Sensor with Column-Level 10-bit Time-to-Digital Converter Array,” J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Knights, A. P.

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

Krichel, N. J.

Krstajic, N.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Lacaita, A.

Layet, B.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34(3-4), 219–242 (1997).
[Crossref]

Leach, J.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Leadley, D. R.

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

Lever, L. J. M.

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

Li, C.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Li, D.-U.

Lussana, R.

R. Lussana, F. Villa, A. D. Mora, D. Contini, A. Tosi, and F. Zappa, “Enhanced single-photon time-of-flight 3D ranging,” Opt. Express 23(19), 24962–24973 (2015).
[Crossref] [PubMed]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Markovic, B.

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Martinez-Ramirez, D.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Rem. Sens. 52(8), 4942–4954 (2014).
[Crossref]

Martini, G.

Maruyama, Y.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

McCarthy, A.

Menoni, C. S.

C. S. Menoni, “Breakthroughs in Photonics 2010,” IEEE Photonics J. 3, 241–336 (2011).

Mora, A. D.

Morak, S.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Rem. Sens. 52(8), 4942–4954 (2014).
[Crossref]

Myronov, M.

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

Nichol, C. J.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Rem. Sens. 52(8), 4942–4954 (2014).
[Crossref]

Niclass, C.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 Single-Photon Image Sensor with Column-Level 10-bit Time-to-Digital Converter Array,” J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Norgia, M.

Paschen, U.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Paul, D. J.

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

Pavia, J. M.

Pilgrim, N. J.

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

Randone, E.

Raskar, R.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Ren, X.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Rem. Sens. 52(8), 4942–4954 (2014).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

Richardson, J.

Richardson, J. A.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

Ross, N.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34(3-4), 219–242 (1997).
[Crossref]

Ruggeri, A.

Samori, C.

Scarcella, C.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
[Crossref] [PubMed]

Stoppa, D.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 x 32 0.13micron CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257–10269 (2010).
[Crossref] [PubMed]

Taghizadeh, M. R.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34(3-4), 219–242 (1997).
[Crossref]

Thomson, R. R.

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Tisa, S.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100000 Frames/s 64 x 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
[Crossref] [PubMed]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuat. Phys. 140(1), 103–112 (2007).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Detectors and Imagers: Figures of merit for Photon-counting and Photon-timing Applications,” IEEE Sens. J.in press.

Tosi, A.

R. Lussana, F. Villa, A. D. Mora, D. Contini, A. Tosi, and F. Zappa, “Enhanced single-photon time-of-flight 3D ranging,” Opt. Express 23(19), 24962–24973 (2015).
[Crossref] [PubMed]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100000 Frames/s 64 x 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
[Crossref] [PubMed]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1,550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22113 (2013).
[Crossref] [PubMed]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuat. Phys. 140(1), 103–112 (2007).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Detectors and Imagers: Figures of merit for Photon-counting and Photon-timing Applications,” IEEE Sens. J.in press.

Trimananda, R.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

Villa, F.

R. Lussana, F. Villa, A. D. Mora, D. Contini, A. Tosi, and F. Zappa, “Enhanced single-photon time-of-flight 3D ranging,” Opt. Express 23(19), 24962–24973 (2015).
[Crossref] [PubMed]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100000 Frames/s 64 x 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
[Crossref] [PubMed]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Detectors and Imagers: Figures of merit for Photon-counting and Photon-timing Applications,” IEEE Sens. J.in press.

Waddie, A. J.

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34(3-4), 219–242 (1997).
[Crossref]

Walker, R.

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 x 32 0.13micron CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257–10269 (2010).
[Crossref] [PubMed]

Walker, S. J.

Wallace, A. M.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Rem. Sens. 52(8), 4942–4954 (2014).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

Warburton, R. E.

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

Weyers, S.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100000 Frames/s 64 x 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Wolf, M.

Woodhouse, I. H.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Rem. Sens. 52(8), 4942–4954 (2014).
[Crossref]

Zappa, F.

R. Lussana, F. Villa, A. D. Mora, D. Contini, A. Tosi, and F. Zappa, “Enhanced single-photon time-of-flight 3D ranging,” Opt. Express 23(19), 24962–24973 (2015).
[Crossref] [PubMed]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100000 Frames/s 64 x 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
[Crossref] [PubMed]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuat. Phys. 140(1), 103–112 (2007).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Detectors and Imagers: Figures of merit for Photon-counting and Photon-timing Applications,” IEEE Sens. J.in press.

Zou, Y.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Appl. Opt. (3)

IEEE J. Sel. Top. Quantum Electron. (2)

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100000 Frames/s 64 x 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS Imager With 1024 SPADs and TDCs for Single-Photon Timing and 3-D Time-of-Flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

IEEE J. Solid-State Circuits (1)

M. Gersbach, Y. Maruyama, R. Trimananda, M. W. Fishburn, D. Stoppa, J. A. Richardson, R. Walker, R. Henderson, and E. Charbon, “A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology,” IEEE J. Solid-State Circuits 47(6), 1394–1407 (2012).
[Crossref]

IEEE Photonics J. (2)

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

C. S. Menoni, “Breakthroughs in Photonics 2010,” IEEE Photonics J. 3, 241–336 (2011).

IEEE Trans. Electron. Dev. (1)

R. E. Warburton, G. Intermite, M. Myronov, P. Allred, D. R. Leadley, K. Gallacher, D. J. Paul, N. J. Pilgrim, L. J. M. Lever, Z. Ikonic, R. W. Kelsall, E. Huante-Ceron, A. P. Knights, and G. S. Buller, “Ge-on-Si Single-Photon Avalanche Diode Detectors: Design, Modeling, Fabrication, and Characterization at Wavelengths 1310 and 1550 nm,” IEEE Trans. Electron. Dev. 60(11), 3807–3813 (2013).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (1)

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Rem. Sens. 52(8), 4942–4954 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

J. Solid-State Circuits (1)

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 Single-Photon Image Sensor with Column-Level 10-bit Time-to-Digital Converter Array,” J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Meas. Sci. Technol. (1)

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

Microelectron. Eng. (1)

M. R. Taghizadeh, P. Blair, B. Layet, I. M. Barton, A. J. Waddie, and N. Ross, “Design and fabrication of diffractive optical elements,” Microelectron. Eng. 34(3-4), 219–242 (1997).
[Crossref]

Nat. Commun. (1)

G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6, 6408 (2015).
[Crossref] [PubMed]

Opt. Express (5)

Rev. Sci. Instrum. (1)

C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
[Crossref] [PubMed]

Sens. Actuat. Phys. (1)

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuat. Phys. 140(1), 103–112 (2007).
[Crossref]

Other (6)

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer Series in Chemical Physics (Springer, 2005), Vol. 81.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD Detectors and Imagers: Figures of merit for Photon-counting and Photon-timing Applications,” IEEE Sens. J.in press.

B. C. Kress and P. Meyrueis, Applied Digital Optics: From Micro-Optics to Nanophotonics (John Wiley & Sons, 2009).

S. Donati, E. Randone, M. Fathi, J.-H. Lee, and E. Charbon, “Uniformity of concentration factor and back focal length in molded polymer microlens arrays,” in Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), (OSA / CLEO / QELS, 2010).
[Crossref]

H. P. Herzig, Micro-Optics: Elements, Systems And Applications (CRC Press, 1997).

J. W. Goodman, Introduction to Fourier Optics, 2nd Ed., (McGraw-Hill, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Image of the “smart” pixel, with overall dimensions of 150 μm × 150 μm, employing a SPAD with active area diameter of 30 μm. This corresponds to a fill-factor of 3.14% when microlenses are not used.

Fig. 2
Fig. 2

Overall coupling efficiency (blue) and theoretical CF (red) versus wavelength for the designed diffractive microlens in infinite conjugate configuration. Microlenses were designed to work at a wavelength of 808 nm, but can produce a focal spot within the SPAD active area over a significant range of wavelength.

Fig. 3
Fig. 3

Schematic representation of the designed microlenses: (above) infinite conjugate microlenses were designed to concentrate light from an object placed at infinity; and (below) finite conjugate microlenses were designed to concentrate light from an image plane at a distance of 2 mm in front of the microlens array onto the detector.

Fig. 4
Fig. 4

(left) An optical microscope image showing part of 32 × 32 infinite conjugate microlens array designed to operate at a wavelength of 808 nm. (right) magnified image of the microlens focal plane recorded on a CCD camera. The microlenses, and focused spots, are on 150 μm square pitch.

Fig. 5
Fig. 5

Experimental setup used to evaluate the concentration factor at varying f-numbers (from f/2 to f/22 in one-stop increments) and different wavelengths between 500 nm and 900 nm. This setup was also used to evaluate the uniformity of SPAD arrays. The focal length of the lenses used in the telecentric imaging system was 75 mm.

Fig. 6
Fig. 6

Linearity test of the total photon counts collected from the SPAD array (without microlenses) as a function of the aperture area (f-number). This test was performed at a constant laser power and three different wavelengths, 600 nm (shown in black), 700 nm (red), and 808 nm (blue). Linear fitting is also shown. The inset in the figure also shows the linearity at the highest f-numbers, f/8, f/16, and f/22 respectively.

Fig. 7
Fig. 7

Measured average concentration factor for the SPAD array integrated with infinite conjugate diffractive microlenses, as a function of the f-number (from f/2 to f/22 with one-stop increment). The measurements were performed at seven discrete wavelengths in the range 500 nm to 900 nm.

Fig. 8
Fig. 8

Measured average concentration factor for the SPAD array integrated with finite conjugate diffractive microlenses, as a function of the f-number (from f/2 to f/22 with one-stop increment). The measurements were performed at seven discrete wavelengths in the range 500 nm to 900 nm.

Fig. 9
Fig. 9

(a) Photon event profile and (b) photon counts (or light intensity) distribution with the Gaussian fit for all three SPAD arrays. The left column shows the SPAD array without microlenses, the middle column shows SPAD array with infinite conjugate microlens, and the right hand column shows the SPAD array with finite conjugate microlenses. All the measurements were acquired using f/16 illumination at the design wavelength (808 nm). The value of mean (μ), standard deviation (σ), and coefficient of variation are reported in the table for each of the three detector arrays.

Fig. 10
Fig. 10

Spatial uniformity of detection measured as the Coefficient of Variation (CV) as a function of the f-number (from f/2 to f/22 with one-stop increment) at the design wavelength (808 nm) for the bare chip (black), the infinite (red) and finite (light blue) conjugate diffractive microlens arrays.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M=(2m+1)dm N=M+dm r i = 2Mλf+ M 2 λ 2 r o = 2Nλf+ N 2 λ 2
CF= E 0 E i

Metrics