Abstract

Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by turbulence is coupled to the multimode fiber link. In addition, we report a better and more robust behavior of higher order OAM modes when the intermodal dispersion is dominant in the fiber after exceeding its maximum range of operation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical communications using orbital angular momentum beams

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi
Adv. Opt. Photon. 7(1) 66-106 (2015)

Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link

Yongxiong Ren, Guodong Xie, Hao Huang, Nisar Ahmed, Yan Yan, Long Li, Changjing Bao, Martin P. J. Lavery, Moshe Tur, Mark A. Neifeld, Robert W. Boyd, Jeffrey H. Shapiro, and Alan E. Willner
Optica 1(6) 376-382 (2014)

Orbital-angular-momentum-multiplexed free-space optical communication link using transmitter lenses

Long Li, Guodong Xie, Yongxiong Ren, Nisar Ahmed, Hao Huang, Zhe Zhao, Peicheng Liao, Martin P. J. Lavery, Yan Yan, ChangJing Bao, Zhe Wang, Asher J. Willner, Nima Ashrafi, Solyman Ashrafi, Moshe Tur, and Alan E. Willner
Appl. Opt. 55(8) 2098-2103 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Commun. Mag. 48, 130–137 (2010).
    [Crossref]
  2. J. J. Vegas Olmos, X. Pang, A. Lebedev, M. Sales Llopis, and I. Tafur Monroy, “Wireless and wireline service convergence in next generation optical access networks - the FP7 WISCON project,” IEICE Trans. Commun. E97-B, 1537–1546 (2014).
    [Crossref]
  3. K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
    [Crossref]
  4. G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A. J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16×100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 116102 (2013).
    [Crossref]
  5. E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32×40 Gb/s) WDM transmission over a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
    [Crossref]
  6. G. Nykolak, P.F. Szajowski, D. Romain, G.E. Tourgee, H.M. Presby, and J.J. Auborn, “Update on 4×2.5 Gb/s, 4.4 km free-space optical communications link: availability and scintillation performance,” Proc. SPIE 3850, 11–19 (1999).
    [Crossref]
  7. S. Mi, T. Wang, G. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,” IEEE Photonics J. 7, 1–8 (2015).
    [Crossref]
  8. I. B. Djordjevic and M. Arabaci, “LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication,” Opt. Express 18, 24722–24728 (2010).
    [Crossref]
  9. I. B. Djordjevic, “Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation,” Opt. Express 19, 14277–14289 (2011).
    [Crossref]
  10. A. E. Wilner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photon. 7, 66–106 (2015).
  11. J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
    [Crossref]
  12. A. H. Ibrahim, F.S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
    [Crossref]
  13. C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94, 153901 (2005).
    [Crossref]
  14. M. Mirhosseini, M. Malik, Z. Shi, and R.W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
    [Crossref]
  15. M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” http://arxiv.org/abs/1402.2602 .
  16. H. Refai, J. Sluss, and M. Atiquzzaman, “Comparative study of the performance of analog fiber optic links versus free-space optical links,” Opt. Eng. 45, 025003 (2006).
    [Crossref]
  17. A. Tatarczak, M. A. Usuga, and I. T. Monroy, “OAM-enhanced transmission for multimode short-range links,” Proc. SPIE 9390, 93900E (2015).
    [Crossref]
  18. A. Jurado-Navas, J. M. Garrido-Balsells, J.F. Paris, and A. Puerta-Notario, “A unifying statistical model for atmospheric optical scintillation,” in: Numerical Simulations of Physical and Engineering Processes, Jan Awrejcewicz, ed. (In-Tech, 2011), pp. 181–206.
  19. A. Jurado-Navas, J.M. Garrido-Balsells, J.F. Paris, M. Castillo-Vázquez, and A. Puerta-Notario, “General analytical expressions for the bit error rate of atmospheric optical communication systems: erratum,” Opt. Lett. 39, 5896 (2014).
    [Crossref]
  20. G. Zhao and Y. Zhang, “The effect of tilt aberration and astigmatism of turbulent atmosphere on the intensity distribution of a vortex carrying Gaussian beam,” Optik 122, 29–32 (2011).
    [Crossref]
  21. Draka Industry, http://www.drakausa.com/default.aspx
  22. L. C. Andrews, R. L. Phillips, and C.Y. Hopen, Laser Beam Scintillation with Applications (Bellingham, 2001).
    [Crossref]
  23. M. A. Al-Habash, L. C. Adrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
    [Crossref]
  24. J. M. Garrido-Balsells, A. Jurado-Navas, J. F. Paris, M. Castillo-Vázquez, and A. Puerta-Notario, “Novel formulation of the M model through the Generalized-K distribution for atmospheric optical channels,” Opt. Express 23, 6345–6358 (2015).
    [Crossref] [PubMed]
  25. G. Gibson, J. Courtial, and M. J. Padgett, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [Crossref]
  26. J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link,” App. Opt. 47, 2414–2429 (2008).
    [Crossref]
  27. P. T. Dat, A. Bekkali, K. Kazaura, K. Wakamori, T. Suzuki, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “Studies on characterizing the transmission of RF signals over a turbulent FSO link,” Opt. Express 17, 7731–7743 (2009).
    [Crossref]
  28. G. A. Tyler and R. W. Boyd, “Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum,” Opt. Lett. 34, 142–144 (2009).
    [Crossref]
  29. Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. Padgett, R. W. Boyd, J. Shapiro, and A. E. Wilner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013).
    [Crossref]
  30. Y. Ren, G. Xie, H. Huang, C. Bao, Y. Yan, N. Ahmed, M. P. J. Lavery, B. I. Erkmen, S. Dolinar, M. Tur, M. A. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence,” Opt. Lett. 39, 2845–2848 (2014).
    [Crossref] [PubMed]
  31. M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nat. Commun. 5, 3248 (2014)
    [Crossref] [PubMed]
  32. B. J. Smith and M. G. Raymer, “Two-photon wave mechanics,” Phys. Rev. A 74, 062104 (2006).
    [Crossref]
  33. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966).
    [Crossref]
  34. V. P. Lukin, P. A. Konyaev, and V. A. Sennikov, “Beam spreading of vortex beams propagating in turbulent atmosphere,” Appl. Opt. 51, C84–C87 (2012).
    [Crossref] [PubMed]
  35. A. Jurado-Navas, J.M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, “An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications,” Opt. Express 18, 17346–17363 (2010).
    [Crossref] [PubMed]

2015 (4)

2014 (4)

2013 (4)

G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A. J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16×100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 116102 (2013).
[Crossref]

A. H. Ibrahim, F.S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
[Crossref]

M. Mirhosseini, M. Malik, Z. Shi, and R.W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref]

Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. Padgett, R. W. Boyd, J. Shapiro, and A. E. Wilner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013).
[Crossref]

2012 (2)

V. P. Lukin, P. A. Konyaev, and V. A. Sennikov, “Beam spreading of vortex beams propagating in turbulent atmosphere,” Appl. Opt. 51, C84–C87 (2012).
[Crossref] [PubMed]

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

2011 (2)

G. Zhao and Y. Zhang, “The effect of tilt aberration and astigmatism of turbulent atmosphere on the intensity distribution of a vortex carrying Gaussian beam,” Optik 122, 29–32 (2011).
[Crossref]

I. B. Djordjevic, “Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation,” Opt. Express 19, 14277–14289 (2011).
[Crossref]

2010 (3)

2009 (3)

2008 (1)

J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link,” App. Opt. 47, 2414–2429 (2008).
[Crossref]

2007 (1)

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

2006 (2)

H. Refai, J. Sluss, and M. Atiquzzaman, “Comparative study of the performance of analog fiber optic links versus free-space optical links,” Opt. Eng. 45, 025003 (2006).
[Crossref]

B. J. Smith and M. G. Raymer, “Two-photon wave mechanics,” Phys. Rev. A 74, 062104 (2006).
[Crossref]

2005 (1)

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94, 153901 (2005).
[Crossref]

2004 (1)

2001 (1)

M. A. Al-Habash, L. C. Adrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

1999 (1)

G. Nykolak, P.F. Szajowski, D. Romain, G.E. Tourgee, H.M. Presby, and J.J. Auborn, “Update on 4×2.5 Gb/s, 4.4 km free-space optical communications link: availability and scintillation performance,” Proc. SPIE 3850, 11–19 (1999).
[Crossref]

1966 (1)

Adrews, L. C.

M. A. Al-Habash, L. C. Adrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

Ahmed, N.

Al-Habash, M. A.

M. A. Al-Habash, L. C. Adrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

Andrews, L. C.

L. C. Andrews, R. L. Phillips, and C.Y. Hopen, Laser Beam Scintillation with Applications (Bellingham, 2001).
[Crossref]

Anguita, J. A.

J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link,” App. Opt. 47, 2414–2429 (2008).
[Crossref]

Arabaci, M.

Arimoto, Y.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32×40 Gb/s) WDM transmission over a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Ashrafi, N.

Ashrafi, S.

Atiquzzaman, M.

H. Refai, J. Sluss, and M. Atiquzzaman, “Comparative study of the performance of analog fiber optic links versus free-space optical links,” Opt. Eng. 45, 025003 (2006).
[Crossref]

Auborn, J.J.

G. Nykolak, P.F. Szajowski, D. Romain, G.E. Tourgee, H.M. Presby, and J.J. Auborn, “Update on 4×2.5 Gb/s, 4.4 km free-space optical communications link: availability and scintillation performance,” Proc. SPIE 3850, 11–19 (1999).
[Crossref]

Bao, C.

Bekkali, A.

Boyd, R. W.

Boyd, R.W.

M. Mirhosseini, M. Malik, Z. Shi, and R.W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref]

Cao, Y.

Carrozzo, V.

G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A. J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16×100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 116102 (2013).
[Crossref]

Castillo-Vázquez, M.

Chandrasekaran, N.

Ciaramella, E.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32×40 Gb/s) WDM transmission over a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

Contestabile, G.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32×40 Gb/s) WDM transmission over a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

Courtial, J.

D’Errico, A.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32×40 Gb/s) WDM transmission over a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

Dat, P. T.

Djordjevic, I. B.

Dolinar, S.

Erkmen, B.

Erkmen, B. I.

Fazal, I. M.

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Forbes, A.

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nat. Commun. 5, 3248 (2014)
[Crossref] [PubMed]

A. H. Ibrahim, F.S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
[Crossref]

Fried, D. L.

Garrido-Balsells, J. M.

J. M. Garrido-Balsells, A. Jurado-Navas, J. F. Paris, M. Castillo-Vázquez, and A. Puerta-Notario, “Novel formulation of the M model through the Generalized-K distribution for atmospheric optical channels,” Opt. Express 23, 6345–6358 (2015).
[Crossref] [PubMed]

A. Jurado-Navas, J. M. Garrido-Balsells, J.F. Paris, and A. Puerta-Notario, “A unifying statistical model for atmospheric optical scintillation,” in: Numerical Simulations of Physical and Engineering Processes, Jan Awrejcewicz, ed. (In-Tech, 2011), pp. 181–206.

Garrido-Balsells, J.M.

Gibson, G.

Guarino, V.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32×40 Gb/s) WDM transmission over a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

Higashino, T.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Commun. Mag. 48, 130–137 (2010).
[Crossref]

P. T. Dat, A. Bekkali, K. Kazaura, K. Wakamori, T. Suzuki, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “Studies on characterizing the transmission of RF signals over a turbulent FSO link,” Opt. Express 17, 7731–7743 (2009).
[Crossref]

Hopen, C.Y.

L. C. Andrews, R. L. Phillips, and C.Y. Hopen, Laser Beam Scintillation with Applications (Bellingham, 2001).
[Crossref]

Huang, H.

Ibrahim, A. H.

A. H. Ibrahim, F.S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
[Crossref]

Jin, G.

S. Mi, T. Wang, G. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,” IEEE Photonics J. 7, 1–8 (2015).
[Crossref]

Jurado-Navas, A.

Kazaura, K.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Commun. Mag. 48, 130–137 (2010).
[Crossref]

P. T. Dat, A. Bekkali, K. Kazaura, K. Wakamori, T. Suzuki, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “Studies on characterizing the transmission of RF signals over a turbulent FSO link,” Opt. Express 17, 7731–7743 (2009).
[Crossref]

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Komaki, S.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Commun. Mag. 48, 130–137 (2010).
[Crossref]

P. T. Dat, A. Bekkali, K. Kazaura, K. Wakamori, T. Suzuki, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “Studies on characterizing the transmission of RF signals over a turbulent FSO link,” Opt. Express 17, 7731–7743 (2009).
[Crossref]

Konrad, T.

A. H. Ibrahim, F.S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
[Crossref]

Konyaev, P. A.

Lavery, M. P. J.

Lebedev, A.

J. J. Vegas Olmos, X. Pang, A. Lebedev, M. Sales Llopis, and I. Tafur Monroy, “Wireless and wireline service convergence in next generation optical access networks - the FP7 WISCON project,” IEICE Trans. Commun. E97-B, 1537–1546 (2014).
[Crossref]

Li, L.

Lukin, V. P.

Malik, M.

M. Mirhosseini, M. Malik, Z. Shi, and R.W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref]

Matsumoto, H.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Matsumoto, M.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Commun. Mag. 48, 130–137 (2010).
[Crossref]

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32×40 Gb/s) WDM transmission over a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

P. T. Dat, A. Bekkali, K. Kazaura, K. Wakamori, T. Suzuki, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “Studies on characterizing the transmission of RF signals over a turbulent FSO link,” Opt. Express 17, 7731–7743 (2009).
[Crossref]

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

McLaren, M.

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nat. Commun. 5, 3248 (2014)
[Crossref] [PubMed]

A. H. Ibrahim, F.S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
[Crossref]

Mhlanga, T.

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nat. Commun. 5, 3248 (2014)
[Crossref] [PubMed]

Mi, S.

S. Mi, T. Wang, G. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,” IEEE Photonics J. 7, 1–8 (2015).
[Crossref]

Mirhosseini, M.

M. Mirhosseini, M. Malik, Z. Shi, and R.W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref]

Molisch, A. F.

Monroy, I. T.

A. Tatarczak, M. A. Usuga, and I. T. Monroy, “OAM-enhanced transmission for multimode short-range links,” Proc. SPIE 9390, 93900E (2015).
[Crossref]

Murakami, T.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Mutafungwa, E.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Neifeld, M.

Neifeld, M. A.

Nykolak, G.

G. Nykolak, P.F. Szajowski, D. Romain, G.E. Tourgee, H.M. Presby, and J.J. Auborn, “Update on 4×2.5 Gb/s, 4.4 km free-space optical communications link: availability and scintillation performance,” Proc. SPIE 3850, 11–19 (1999).
[Crossref]

Omae, K.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Padgett, M.

Padgett, M. J.

Pang, X.

J. J. Vegas Olmos, X. Pang, A. Lebedev, M. Sales Llopis, and I. Tafur Monroy, “Wireless and wireline service convergence in next generation optical access networks - the FP7 WISCON project,” IEICE Trans. Commun. E97-B, 1537–1546 (2014).
[Crossref]

Parca, G.

G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A. J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16×100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 116102 (2013).
[Crossref]

Paris, J. F.

Paris, J.F.

A. Jurado-Navas, J.M. Garrido-Balsells, J.F. Paris, M. Castillo-Vázquez, and A. Puerta-Notario, “General analytical expressions for the bit error rate of atmospheric optical communication systems: erratum,” Opt. Lett. 39, 5896 (2014).
[Crossref]

A. Jurado-Navas, J. M. Garrido-Balsells, J.F. Paris, and A. Puerta-Notario, “A unifying statistical model for atmospheric optical scintillation,” in: Numerical Simulations of Physical and Engineering Processes, Jan Awrejcewicz, ed. (In-Tech, 2011), pp. 181–206.

Paterson, C.

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94, 153901 (2005).
[Crossref]

Phillips, R. L.

M. A. Al-Habash, L. C. Adrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

L. C. Andrews, R. L. Phillips, and C.Y. Hopen, Laser Beam Scintillation with Applications (Bellingham, 2001).
[Crossref]

Presby, H.M.

G. Nykolak, P.F. Szajowski, D. Romain, G.E. Tourgee, H.M. Presby, and J.J. Auborn, “Update on 4×2.5 Gb/s, 4.4 km free-space optical communications link: availability and scintillation performance,” Proc. SPIE 3850, 11–19 (1999).
[Crossref]

Presi, M.

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32×40 Gb/s) WDM transmission over a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

Puerta-Notario, A.

Ramachandran, S.

Raymer, M. G.

B. J. Smith and M. G. Raymer, “Two-photon wave mechanics,” Phys. Rev. A 74, 062104 (2006).
[Crossref]

Refai, H.

H. Refai, J. Sluss, and M. Atiquzzaman, “Comparative study of the performance of analog fiber optic links versus free-space optical links,” Opt. Eng. 45, 025003 (2006).
[Crossref]

Ren, Y.

Romain, D.

G. Nykolak, P.F. Szajowski, D. Romain, G.E. Tourgee, H.M. Presby, and J.J. Auborn, “Update on 4×2.5 Gb/s, 4.4 km free-space optical communications link: availability and scintillation performance,” Proc. SPIE 3850, 11–19 (1999).
[Crossref]

Roux, F. S.

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nat. Commun. 5, 3248 (2014)
[Crossref] [PubMed]

Roux, F.S.

A. H. Ibrahim, F.S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
[Crossref]

Sales Llopis, M.

J. J. Vegas Olmos, X. Pang, A. Lebedev, M. Sales Llopis, and I. Tafur Monroy, “Wireless and wireline service convergence in next generation optical access networks - the FP7 WISCON project,” IEICE Trans. Commun. E97-B, 1537–1546 (2014).
[Crossref]

Sennikov, V. A.

Shahpari, A.

G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A. J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16×100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 116102 (2013).
[Crossref]

Shapiro, J.

Shapiro, J. H.

Shi, Z.

M. Mirhosseini, M. Malik, Z. Shi, and R.W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref]

Sluss, J.

H. Refai, J. Sluss, and M. Atiquzzaman, “Comparative study of the performance of analog fiber optic links versus free-space optical links,” Opt. Eng. 45, 025003 (2006).
[Crossref]

Smith, B. J.

B. J. Smith and M. G. Raymer, “Two-photon wave mechanics,” Phys. Rev. A 74, 062104 (2006).
[Crossref]

Steinhoff, N.

Suzuki, T.

P. T. Dat, A. Bekkali, K. Kazaura, K. Wakamori, T. Suzuki, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “Studies on characterizing the transmission of RF signals over a turbulent FSO link,” Opt. Express 17, 7731–7743 (2009).
[Crossref]

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Szajowski, P.F.

G. Nykolak, P.F. Szajowski, D. Romain, G.E. Tourgee, H.M. Presby, and J.J. Auborn, “Update on 4×2.5 Gb/s, 4.4 km free-space optical communications link: availability and scintillation performance,” Proc. SPIE 3850, 11–19 (1999).
[Crossref]

Tafur Monroy, I.

J. J. Vegas Olmos, X. Pang, A. Lebedev, M. Sales Llopis, and I. Tafur Monroy, “Wireless and wireline service convergence in next generation optical access networks - the FP7 WISCON project,” IEICE Trans. Commun. E97-B, 1537–1546 (2014).
[Crossref]

Takahashi, K.

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Tatarczak, A.

A. Tatarczak, M. A. Usuga, and I. T. Monroy, “OAM-enhanced transmission for multimode short-range links,” Proc. SPIE 9390, 93900E (2015).
[Crossref]

Teixeira, A. J.

G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A. J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16×100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 116102 (2013).
[Crossref]

Tosi Beleffi, G.

G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A. J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16×100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 116102 (2013).
[Crossref]

Tourgee, G.E.

G. Nykolak, P.F. Szajowski, D. Romain, G.E. Tourgee, H.M. Presby, and J.J. Auborn, “Update on 4×2.5 Gb/s, 4.4 km free-space optical communications link: availability and scintillation performance,” Proc. SPIE 3850, 11–19 (1999).
[Crossref]

Tsukamoto, K.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Commun. Mag. 48, 130–137 (2010).
[Crossref]

P. T. Dat, A. Bekkali, K. Kazaura, K. Wakamori, T. Suzuki, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “Studies on characterizing the transmission of RF signals over a turbulent FSO link,” Opt. Express 17, 7731–7743 (2009).
[Crossref]

Tur, M.

Tyler, G. A.

Usuga, M. A.

A. Tatarczak, M. A. Usuga, and I. T. Monroy, “OAM-enhanced transmission for multimode short-range links,” Proc. SPIE 9390, 93900E (2015).
[Crossref]

Vasic, B. V.

J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link,” App. Opt. 47, 2414–2429 (2008).
[Crossref]

Vegas Olmos, J. J.

J. J. Vegas Olmos, X. Pang, A. Lebedev, M. Sales Llopis, and I. Tafur Monroy, “Wireless and wireline service convergence in next generation optical access networks - the FP7 WISCON project,” IEICE Trans. Commun. E97-B, 1537–1546 (2014).
[Crossref]

Wakamori, K.

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Commun. Mag. 48, 130–137 (2010).
[Crossref]

P. T. Dat, A. Bekkali, K. Kazaura, K. Wakamori, T. Suzuki, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “Studies on characterizing the transmission of RF signals over a turbulent FSO link,” Opt. Express 17, 7731–7743 (2009).
[Crossref]

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

Wang, C.

S. Mi, T. Wang, G. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,” IEEE Photonics J. 7, 1–8 (2015).
[Crossref]

Wang, J

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Wang, J.

Wang, T.

S. Mi, T. Wang, G. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,” IEEE Photonics J. 7, 1–8 (2015).
[Crossref]

Willner, A. E.

Wilner, A. E.

Xie, G.

Yan, Y.

Yang, J. Y.

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Yue, Y.

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Zhang, Y.

G. Zhao and Y. Zhang, “The effect of tilt aberration and astigmatism of turbulent atmosphere on the intensity distribution of a vortex carrying Gaussian beam,” Optik 122, 29–32 (2011).
[Crossref]

Zhao, G.

G. Zhao and Y. Zhang, “The effect of tilt aberration and astigmatism of turbulent atmosphere on the intensity distribution of a vortex carrying Gaussian beam,” Optik 122, 29–32 (2011).
[Crossref]

Zhao, Z.

Adv. Opt. Photon. (1)

App. Opt. (1)

J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link,” App. Opt. 47, 2414–2429 (2008).
[Crossref]

Appl. Opt. (1)

IEEE Commun. Mag. (1)

K. Kazaura, K. Wakamori, M. Matsumoto, T. Higashino, K. Tsukamoto, and S. Komaki, “RoFSO: a universal platform for convergence of fiber and free-space optical communication networks,” IEEE Commun. Mag. 48, 130–137 (2010).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

E. Ciaramella, Y. Arimoto, G. Contestabile, M. Presi, A. D’Errico, V. Guarino, and M. Matsumoto, “1.28 Terabit/s (32×40 Gb/s) WDM transmission over a double-pass free space optical link,” IEEE J. Sel. Areas Commun. 27, 1639–1645 (2009).
[Crossref]

IEEE Photonics J. (1)

S. Mi, T. Wang, G. Jin, and C. Wang, “High-capacity quantum secure direct communication with orbital angular momentum of photons,” IEEE Photonics J. 7, 1–8 (2015).
[Crossref]

IEICE Trans. Commun. (1)

J. J. Vegas Olmos, X. Pang, A. Lebedev, M. Sales Llopis, and I. Tafur Monroy, “Wireless and wireline service convergence in next generation optical access networks - the FP7 WISCON project,” IEICE Trans. Commun. E97-B, 1537–1546 (2014).
[Crossref]

IEICE Trans. Electron. (1)

K. Kazaura, K. Omae, T. Suzuki, M. Matsumoto, E. Mutafungwa, T. Murakami, K. Takahashi, H. Matsumoto, K. Wakamori, and Y. Arimoto, “Performance evaluation of next generation free-space optical communication system,” IEICE Trans. Electron. E90-C, 381–388 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Commun. (2)

M. McLaren, T. Mhlanga, M. J. Padgett, F. S. Roux, and A. Forbes, “Self-healing of quantum entanglement after an obstruction,” Nat. Commun. 5, 3248 (2014)
[Crossref] [PubMed]

M. Mirhosseini, M. Malik, Z. Shi, and R.W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref]

Nat. Photonics (1)

J Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Opt. Eng. (3)

H. Refai, J. Sluss, and M. Atiquzzaman, “Comparative study of the performance of analog fiber optic links versus free-space optical links,” Opt. Eng. 45, 025003 (2006).
[Crossref]

G. Parca, A. Shahpari, V. Carrozzo, G. Tosi Beleffi, and A. J. Teixeira, “Optical wireless transmission at 1.6-tbit/s (16×100 Gbit/s) for next-generation convergent urban infrastructures,” Opt. Eng. 52, 116102 (2013).
[Crossref]

M. A. Al-Habash, L. C. Adrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 1554–1562 (2001).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Optik (1)

G. Zhao and Y. Zhang, “The effect of tilt aberration and astigmatism of turbulent atmosphere on the intensity distribution of a vortex carrying Gaussian beam,” Optik 122, 29–32 (2011).
[Crossref]

Phys. Rev. A (2)

B. J. Smith and M. G. Raymer, “Two-photon wave mechanics,” Phys. Rev. A 74, 062104 (2006).
[Crossref]

A. H. Ibrahim, F.S. Roux, M. McLaren, T. Konrad, and A. Forbes, “Orbital-angular-momentum entanglement in turbulence,” Phys. Rev. A 88, 012312 (2013).
[Crossref]

Phys. Rev. Lett. (1)

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94, 153901 (2005).
[Crossref]

Proc. SPIE (2)

A. Tatarczak, M. A. Usuga, and I. T. Monroy, “OAM-enhanced transmission for multimode short-range links,” Proc. SPIE 9390, 93900E (2015).
[Crossref]

G. Nykolak, P.F. Szajowski, D. Romain, G.E. Tourgee, H.M. Presby, and J.J. Auborn, “Update on 4×2.5 Gb/s, 4.4 km free-space optical communications link: availability and scintillation performance,” Proc. SPIE 3850, 11–19 (1999).
[Crossref]

Other (4)

A. Jurado-Navas, J. M. Garrido-Balsells, J.F. Paris, and A. Puerta-Notario, “A unifying statistical model for atmospheric optical scintillation,” in: Numerical Simulations of Physical and Engineering Processes, Jan Awrejcewicz, ed. (In-Tech, 2011), pp. 181–206.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” http://arxiv.org/abs/1402.2602 .

Draka Industry, http://www.drakausa.com/default.aspx

L. C. Andrews, R. L. Phillips, and C.Y. Hopen, Laser Beam Scintillation with Applications (Bellingham, 2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Principle of a hybrid fiber-FSO system. Beams emitted by the vertical cavity surface-emitting laser (VCSEL) are directly coupled into a multimode fiber (MMF) and transmitted through the atmospheric channel. The distorted beam is then focused directly on the core of a new optical fiber, and the optical signal propagates to the proper detector (a photodiode, PD, in this case). Finally, the data is stored at digital storage oscilloscope (DSO).
Fig. 2
Fig. 2 Experimental setup for the transmission of beams carrying OAM modes over MMF. The signal coupled into the fiber will be affected by turbulence generated by computer in order to emulate the effect of the turbulence atmosphere.
Fig. 3
Fig. 3 Different orbital angular momentum modes captured with the camera after the beam light was affected by the SLM and distorted by a very weak turbulence: (a) mode M0, (b) M1, (c) M2, (d) M3.
Fig. 4
Fig. 4 Distance between Building 358 and Building 403 at Lyngby Campus, Denmark Technical University.
Fig. 5
Fig. 5 Bit error rate (BER) versus received optical power measured for back to back and two OAM modes: M1 and M2. Conventional multimode M0 is provided as a reference.
Fig. 6
Fig. 6 Bit error rate (BER) versus received optical power measured for 100m OM3 MMF and two OAM modes: M1 and M2. Conventional multimode M0 is provided as a reference.
Fig. 7
Fig. 7 Bit error rate versus received optical power measured for 400m OM4 Draka MMF and three OAM modes: M1, M2 and M3. Conventional multimode M0 is given as a reference.

Tables (1)

Tables Icon

Table 1 Generation of different turbulence regimes from the distribution model.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A ( r ) = A 0 W ( r R ) exp ( j m θ ) ,
r 0 = ( 0.16 C n 2 k 2 L ) 3 / 5 ,

Metrics