Abstract

An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Real-time adaptive optics testbed to investigate point-ahead angle in pre-compensation of Earth-to-GEO optical communication

Nina Leonhard, René Berlich, Stefano Minardi, Alexander Barth, Steffen Mauch, Jacopo Mocci, Matthias Goy, Michael Appelfelder, Erik Beckert, and Claudia Reinlein
Opt. Express 24(12) 13157-13172 (2016)

Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication

Huang Jian, Deng Ke, Liu Chao, Zhang Peng, Jiang Dagang, and Yao Zhoushi
Opt. Express 22(13) 16000-16007 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Biswas, B. V. Oaida, K. S. Andrews, J. M. Kovalik, M. J. Abrahamson, and M. W. Wright, “Optical PAyload for Lasercomm Science (OPALS) link validation during operations from the ISS,” Proc. SPIE 9354, 93540F (2015).
    [Crossref]
  2. R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, C. T. Lunde, B. K. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps Bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
    [Crossref]
  3. D. V. Murphy, “Atmospheric-turbulence compensation experiments using cooperative beacons,” Linc. Lab. J. 5(1), 25–44 (1992).
  4. R. Q. Fugate, “The Starfire optical range 3.5-m adaptive optical telescope,” Proc. SPIE 4837, 934–943 (2003).
    [Crossref]
  5. D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep. 4(4-5), 225–362 (2007).
    [Crossref]
  6. B. Moision, S. Piazzolla, and J. Hamkins, “Fading losses on the LCRD free-space optical link due to channel turbulence,” Proc. SPIE 8610, 86100Z (2013).
    [Crossref]
  7. M. Abrahamson, O. Sindiy, B. Oaida, S. Fregoso, J. Bowles-Martinez, M. Kokorowski, M. W. Wilkerson, and A. Konyha, “OPALS: Mission system operations architecture for an optical communications demonstration on the ISS,” SpaceOps 2014, Pasadena, CA, May 2014. AIAA-2014–1627.
  8. B. V. Oaida, W. Wu, B. L. Erkmen, A. Biswas, K. S. Andrews, M. Kokorowski, and M. Wilkerson, “Optical link design and validation testing of the Optical PAyload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971, 89710U (2014).
    [Crossref]
  9. J. D. Barchers, D. L. Fried, D. J. Link, G. A. Tyler, W. Moretti, T. J. Brennan, and R. Q. Fugate, “The performance of wave-front sensors in strong scintillation,” Proc. SPIE 4839, 217 (2003).
    [Crossref]

2015 (1)

A. Biswas, B. V. Oaida, K. S. Andrews, J. M. Kovalik, M. J. Abrahamson, and M. W. Wright, “Optical PAyload for Lasercomm Science (OPALS) link validation during operations from the ISS,” Proc. SPIE 9354, 93540F (2015).
[Crossref]

2014 (1)

B. V. Oaida, W. Wu, B. L. Erkmen, A. Biswas, K. S. Andrews, M. Kokorowski, and M. Wilkerson, “Optical link design and validation testing of the Optical PAyload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971, 89710U (2014).
[Crossref]

2013 (1)

B. Moision, S. Piazzolla, and J. Hamkins, “Fading losses on the LCRD free-space optical link due to channel turbulence,” Proc. SPIE 8610, 86100Z (2013).
[Crossref]

2011 (1)

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, C. T. Lunde, B. K. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps Bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

2007 (1)

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep. 4(4-5), 225–362 (2007).
[Crossref]

2003 (2)

R. Q. Fugate, “The Starfire optical range 3.5-m adaptive optical telescope,” Proc. SPIE 4837, 934–943 (2003).
[Crossref]

J. D. Barchers, D. L. Fried, D. J. Link, G. A. Tyler, W. Moretti, T. J. Brennan, and R. Q. Fugate, “The performance of wave-front sensors in strong scintillation,” Proc. SPIE 4839, 217 (2003).
[Crossref]

1992 (1)

D. V. Murphy, “Atmospheric-turbulence compensation experiments using cooperative beacons,” Linc. Lab. J. 5(1), 25–44 (1992).

Abrahamson, M. J.

A. Biswas, B. V. Oaida, K. S. Andrews, J. M. Kovalik, M. J. Abrahamson, and M. W. Wright, “Optical PAyload for Lasercomm Science (OPALS) link validation during operations from the ISS,” Proc. SPIE 9354, 93540F (2015).
[Crossref]

Andrews, K. S.

A. Biswas, B. V. Oaida, K. S. Andrews, J. M. Kovalik, M. J. Abrahamson, and M. W. Wright, “Optical PAyload for Lasercomm Science (OPALS) link validation during operations from the ISS,” Proc. SPIE 9354, 93540F (2015).
[Crossref]

B. V. Oaida, W. Wu, B. L. Erkmen, A. Biswas, K. S. Andrews, M. Kokorowski, and M. Wilkerson, “Optical link design and validation testing of the Optical PAyload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971, 89710U (2014).
[Crossref]

Barchers, J. D.

J. D. Barchers, D. L. Fried, D. J. Link, G. A. Tyler, W. Moretti, T. J. Brennan, and R. Q. Fugate, “The performance of wave-front sensors in strong scintillation,” Proc. SPIE 4839, 217 (2003).
[Crossref]

Biswas, A.

A. Biswas, B. V. Oaida, K. S. Andrews, J. M. Kovalik, M. J. Abrahamson, and M. W. Wright, “Optical PAyload for Lasercomm Science (OPALS) link validation during operations from the ISS,” Proc. SPIE 9354, 93540F (2015).
[Crossref]

B. V. Oaida, W. Wu, B. L. Erkmen, A. Biswas, K. S. Andrews, M. Kokorowski, and M. Wilkerson, “Optical link design and validation testing of the Optical PAyload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971, 89710U (2014).
[Crossref]

Brennan, T. J.

J. D. Barchers, D. L. Fried, D. J. Link, G. A. Tyler, W. Moretti, T. J. Brennan, and R. Q. Fugate, “The performance of wave-front sensors in strong scintillation,” Proc. SPIE 4839, 217 (2003).
[Crossref]

Caplan, D. O.

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep. 4(4-5), 225–362 (2007).
[Crossref]

Erkmen, B. L.

B. V. Oaida, W. Wu, B. L. Erkmen, A. Biswas, K. S. Andrews, M. Kokorowski, and M. Wilkerson, “Optical link design and validation testing of the Optical PAyload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971, 89710U (2014).
[Crossref]

Fields, R. A.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, C. T. Lunde, B. K. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps Bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Fried, D. L.

J. D. Barchers, D. L. Fried, D. J. Link, G. A. Tyler, W. Moretti, T. J. Brennan, and R. Q. Fugate, “The performance of wave-front sensors in strong scintillation,” Proc. SPIE 4839, 217 (2003).
[Crossref]

Fugate, R. Q.

J. D. Barchers, D. L. Fried, D. J. Link, G. A. Tyler, W. Moretti, T. J. Brennan, and R. Q. Fugate, “The performance of wave-front sensors in strong scintillation,” Proc. SPIE 4839, 217 (2003).
[Crossref]

R. Q. Fugate, “The Starfire optical range 3.5-m adaptive optical telescope,” Proc. SPIE 4837, 934–943 (2003).
[Crossref]

Gregory, B. K.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, C. T. Lunde, B. K. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps Bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Hamkins, J.

B. Moision, S. Piazzolla, and J. Hamkins, “Fading losses on the LCRD free-space optical link due to channel turbulence,” Proc. SPIE 8610, 86100Z (2013).
[Crossref]

Heine, F. F.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, C. T. Lunde, B. K. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps Bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Kokorowski, M.

B. V. Oaida, W. Wu, B. L. Erkmen, A. Biswas, K. S. Andrews, M. Kokorowski, and M. Wilkerson, “Optical link design and validation testing of the Optical PAyload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971, 89710U (2014).
[Crossref]

Kovalik, J. M.

A. Biswas, B. V. Oaida, K. S. Andrews, J. M. Kovalik, M. J. Abrahamson, and M. W. Wright, “Optical PAyload for Lasercomm Science (OPALS) link validation during operations from the ISS,” Proc. SPIE 9354, 93540F (2015).
[Crossref]

Kozlowski, D. A.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, C. T. Lunde, B. K. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps Bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Link, D. J.

J. D. Barchers, D. L. Fried, D. J. Link, G. A. Tyler, W. Moretti, T. J. Brennan, and R. Q. Fugate, “The performance of wave-front sensors in strong scintillation,” Proc. SPIE 4839, 217 (2003).
[Crossref]

Luna, J. J.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, C. T. Lunde, B. K. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps Bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Lunde, C. T.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, C. T. Lunde, B. K. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps Bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Moision, B.

B. Moision, S. Piazzolla, and J. Hamkins, “Fading losses on the LCRD free-space optical link due to channel turbulence,” Proc. SPIE 8610, 86100Z (2013).
[Crossref]

Moretti, W.

J. D. Barchers, D. L. Fried, D. J. Link, G. A. Tyler, W. Moretti, T. J. Brennan, and R. Q. Fugate, “The performance of wave-front sensors in strong scintillation,” Proc. SPIE 4839, 217 (2003).
[Crossref]

Murphy, D. V.

D. V. Murphy, “Atmospheric-turbulence compensation experiments using cooperative beacons,” Linc. Lab. J. 5(1), 25–44 (1992).

Oaida, B. V.

A. Biswas, B. V. Oaida, K. S. Andrews, J. M. Kovalik, M. J. Abrahamson, and M. W. Wright, “Optical PAyload for Lasercomm Science (OPALS) link validation during operations from the ISS,” Proc. SPIE 9354, 93540F (2015).
[Crossref]

B. V. Oaida, W. Wu, B. L. Erkmen, A. Biswas, K. S. Andrews, M. Kokorowski, and M. Wilkerson, “Optical link design and validation testing of the Optical PAyload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971, 89710U (2014).
[Crossref]

Piazzolla, S.

B. Moision, S. Piazzolla, and J. Hamkins, “Fading losses on the LCRD free-space optical link due to channel turbulence,” Proc. SPIE 8610, 86100Z (2013).
[Crossref]

Tyler, G. A.

J. D. Barchers, D. L. Fried, D. J. Link, G. A. Tyler, W. Moretti, T. J. Brennan, and R. Q. Fugate, “The performance of wave-front sensors in strong scintillation,” Proc. SPIE 4839, 217 (2003).
[Crossref]

Wandernoth, B. K.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, C. T. Lunde, B. K. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps Bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Wicker, J. M.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, C. T. Lunde, B. K. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps Bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Wilkerson, M.

B. V. Oaida, W. Wu, B. L. Erkmen, A. Biswas, K. S. Andrews, M. Kokorowski, and M. Wilkerson, “Optical link design and validation testing of the Optical PAyload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971, 89710U (2014).
[Crossref]

Wong, R. L.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, C. T. Lunde, B. K. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps Bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

Wright, M. W.

A. Biswas, B. V. Oaida, K. S. Andrews, J. M. Kovalik, M. J. Abrahamson, and M. W. Wright, “Optical PAyload for Lasercomm Science (OPALS) link validation during operations from the ISS,” Proc. SPIE 9354, 93540F (2015).
[Crossref]

Wu, W.

B. V. Oaida, W. Wu, B. L. Erkmen, A. Biswas, K. S. Andrews, M. Kokorowski, and M. Wilkerson, “Optical link design and validation testing of the Optical PAyload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971, 89710U (2014).
[Crossref]

Yura, H. T.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, C. T. Lunde, B. K. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps Bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

J. Opt. Fiber Commun. Rep. (1)

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep. 4(4-5), 225–362 (2007).
[Crossref]

Linc. Lab. J. (1)

D. V. Murphy, “Atmospheric-turbulence compensation experiments using cooperative beacons,” Linc. Lab. J. 5(1), 25–44 (1992).

Proc. SPIE (6)

R. Q. Fugate, “The Starfire optical range 3.5-m adaptive optical telescope,” Proc. SPIE 4837, 934–943 (2003).
[Crossref]

A. Biswas, B. V. Oaida, K. S. Andrews, J. M. Kovalik, M. J. Abrahamson, and M. W. Wright, “Optical PAyload for Lasercomm Science (OPALS) link validation during operations from the ISS,” Proc. SPIE 9354, 93540F (2015).
[Crossref]

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, C. T. Lunde, B. K. Gregory, B. K. Wandernoth, F. F. Heine, and J. J. Luna, “5.625 Gbps Bidirectional laser communications measurements between the NFIRE satellite and an optical ground station,” Proc. SPIE 8184, 81840D (2011).
[Crossref]

B. Moision, S. Piazzolla, and J. Hamkins, “Fading losses on the LCRD free-space optical link due to channel turbulence,” Proc. SPIE 8610, 86100Z (2013).
[Crossref]

B. V. Oaida, W. Wu, B. L. Erkmen, A. Biswas, K. S. Andrews, M. Kokorowski, and M. Wilkerson, “Optical link design and validation testing of the Optical PAyload for Lasercomm Science (OPALS) system,” Proc. SPIE 8971, 89710U (2014).
[Crossref]

J. D. Barchers, D. L. Fried, D. J. Link, G. A. Tyler, W. Moretti, T. J. Brennan, and R. Q. Fugate, “The performance of wave-front sensors in strong scintillation,” Proc. SPIE 4839, 217 (2003).
[Crossref]

Other (1)

M. Abrahamson, O. Sindiy, B. Oaida, S. Fregoso, J. Bowles-Martinez, M. Kokorowski, M. W. Wilkerson, and A. Konyha, “OPALS: Mission system operations architecture for an optical communications demonstration on the ISS,” SpaceOps 2014, Pasadena, CA, May 2014. AIAA-2014–1627.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of OPALS ground system showing addition of Boeing provided AO system. FSM – fast steering mirror, OAP – off-axis parabola, MM – multimode, BS – beam-splitter, DM – deformable mirror, SRI –self-referencing interferometer, LNA – low noise amplifier, FBG – fiber Bragg grating, PD - photodiode

Fig. 2
Fig. 2

Tracking camera output of AO system showing open and closed loop case.

Fig. 3
Fig. 3

AO system performance showing Strehl and PIF during a single OPALS pass along with elevation angle. The AO loop closed after 12 seconds.

Fig. 4
Fig. 4

Open and closed loop power in fiber probability distribution of the pass shown in Fig. 3.

Fig. 5
Fig. 5

BER as a function of time through the second pass showing intermittent link closure. Upper points reflect times when there was not enough signal on the WFS for the AO system to correct the wave-front.

Tables (1)

Tables Icon

Table 1 Aperture dependent received power

Metrics