Abstract

To enhance the optical pressure on a thin dielectric sample, a resonance structure using graphene layers coated over a metal film on a high index prism sputtered with MgF2 was theoretically analyzed. The number of graphene layers and the thicknesses of metal and MgF2 films were optimized to achieve the highest optical pressure on the sample. Effects of three different types of metals on the optical pressure were investigated numerically. In addition, simulations were carried out for samples with various thicknesses. Our numerical results show that the optical pressure increased by more than five orders of magnitude compared to the conventional metal-film-base resonance structure. The highest optical pressure was obtained for 10 layers of graphene deposited on 29-nm thick Au film and 650 nm thickness of MgF2 at 633nm wavelength, The proposed graphene based resonance structure can open new possibilities for optical tweezers, nanomechnical devices and surface plasmon based sensing and imaging techniques.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Manipulation of single DNA molecules by using optically projected images

Yen-Heng Lin, Chen-Min Chang, and Gwo-Bin Lee
Opt. Express 17(17) 15318-15329 (2009)

Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors

Seung Ho Choi, Young L. Kim, and Kyung Min Byun
Opt. Express 19(2) 458-466 (2011)

Second harmonic generation from metallo-dielectric multilayered structures in the plasmonic regime

Nadia Mattiucci, Giuseppe D’Aguanno, and Mark J. Bloemer
Opt. Express 18(23) 23698-23710 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [Crossref] [PubMed]
  2. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  3. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref] [PubMed]
  4. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
    [Crossref] [PubMed]
  5. T. N. Buican, M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, and J. C. Martin, “Automated single-cell manipulation and sorting by light trapping,” Appl. Opt. 26(24), 5311–5316 (1987).
    [Crossref] [PubMed]
  6. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  7. J. F. Allemand, D. Bensimon, R. Lavery, and V. Croquette, “Stretched and overwound DNA forms a Pauling-like structure with exposed bases,” Proc. Natl. Acad. Sci. U.S.A. 95(24), 14152–14157 (1998).
    [Crossref] [PubMed]
  8. C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustamante, M. D. Wang, and S. M. Block, “Stretching of single collapsed DNA molecules,” Biophys. J. 78(4), 1965–1978 (2000).
    [Crossref] [PubMed]
  9. C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante, “Ionic effects on the elasticity of single DNA molecules,” Proc. Natl. Acad. Sci. U.S.A. 94(12), 6185–6190 (1997).
    [Crossref] [PubMed]
  10. H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H. E. Gaub, “Mechanical stability of single DNA molecules,” Biophys. J. 78(4), 1997–2007 (2000).
    [Crossref] [PubMed]
  11. P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and F. Caron, “DNA: An extensible molecule,” Science 271(5250), 792–794 (1996).
    [Crossref] [PubMed]
  12. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
    [Crossref] [PubMed]
  13. B. Maier, D. Bensimon, and V. Croquette, “Replication by a single DNA polymerase of a stretched single-stranded DNA,” Proc. Natl. Acad. Sci. U.S.A. 97(22), 12002–12007 (2000).
    [Crossref] [PubMed]
  14. G. J. Wuite, S. B. Smith, M. Young, D. Keller, and C. Bustamante, “Single-molecule studies of the effect of template tension on T7 DNA polymerase activity,” Nature 404(6773), 103–106 (2000).
    [Crossref] [PubMed]
  15. R. J. Davenport, G. J. Wuite, R. Landick, and C. Bustamante, “Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase,” Science 287(5462), 2497–2500 (2000).
    [Crossref] [PubMed]
  16. M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
    [Crossref] [PubMed]
  17. H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block, and J. Gelles, “Transcription against an applied force,” Science 270(5242), 1653–1657 (1995).
    [Crossref] [PubMed]
  18. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17(11), 772–774 (1992).
    [Crossref] [PubMed]
  19. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996).
    [Crossref] [PubMed]
  20. S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam,” Opt. Commun. 108(1-3), 133–143 (1994).
    [Crossref]
  21. S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical pressure exerted on a dielectric film in the evanescent field of a Gaussian beam,” Opt. Commun. 129(5-6), 394–404 (1996).
    [Crossref]
  22. S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun. 139(4-6), 252–261 (1997).
    [Crossref]
  23. A. Hassanzadeh and D. Azami, “Waveguide evanescent field fluorescence microscopy: theoretical investigation of optical pressure on a cell,” J. Nanophotonics 8(1), 083076 (2014).
    [Crossref]
  24. B. M. Han, S. Chang, and S. S. Lee, “Enhancement of the evanescent field pressure on a dielectric film by coupling with surface plasmons,” J. Korean Phys. Soc. 35, 180–185 (1999).
  25. T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, and Y. Tsuboi, “Reversible photo induced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(6), 2500–2506 (2013).
    [Crossref]
  26. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
    [Crossref] [PubMed]
  27. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
    [Crossref] [PubMed]
  28. S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
    [Crossref] [PubMed]
  29. A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [Crossref] [PubMed]
  30. C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
    [Crossref] [PubMed]
  31. J. Bergeron, A. Zehtabi-Oskuie, S. Ghaffari, Y. Pang, and R. Gordon, “Optical trapping of nanoparticles,” J. Vis. Exp. 4424(71), e4424 (2013).
    [PubMed]
  32. S. H. Choi, Y. L. Kim, and K. M. Byun, “Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors,” Opt. Express 19(2), 458–466 (2011).
    [Crossref] [PubMed]
  33. K. Chung, A. Rani, J. E. Lee, J. E. Kim, Y. Kim, H. Yang, S. O. Kim, D. Kim, and D. H. Kim, “Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues,” ACS Appl. Mater. Interfaces 7(1), 144–151 (2015).
    [Crossref] [PubMed]
  34. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  35. A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
    [Crossref] [PubMed]
  36. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano 2(3), 463–470 (2008).
    [Crossref] [PubMed]
  37. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano. Lett. 8(3), 902–907 (2008).
    [Crossref]
  38. G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
    [Crossref] [PubMed]
  39. X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, and H. Zhu, “Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers,” Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013).
    [Crossref] [PubMed]
  40. P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. Brink, and P. J. Kelly, “First-principle study of the interaction and charge transfer between graphene and metals,” Phys. Rev. B 79(19), 195425 (2009).
    [Crossref]
  41. M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96(5), 053109 (2010).
    [Crossref]
  42. R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B Chem. 160(1), 623–631 (2011).
    [Crossref]
  43. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
    [Crossref] [PubMed]
  44. Y. Liu, R. F. Willis, K. V. Emtsev, and T. Seyller, “Plasmon dispersion and damping electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78(20), 201403 (2008).
    [Crossref]
  45. Y. Liu and R. F. Willis, “Plasmon-phonon strongly coupled mode in epitaxial graphene,” Phys. Rev. B 81(8), 081406 (2010).
    [Crossref]
  46. R. J. Koch, T. Seyller, and J. A. Schaefer, “Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem,” Phys. Rev. B 82(20), 201413 (2010).
    [Crossref]
  47. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  48. Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
    [Crossref] [PubMed]
  49. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
    [PubMed]
  50. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
    [PubMed]
  51. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
    [Crossref] [PubMed]
  52. H. Yan, F. Xia, Z. Li, and P. Avouris, “Plasmonics of coupled graphene micro-structures,” New J. Phys. 14(12), 125001 (2012).
    [Crossref]
  53. I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
    [Crossref] [PubMed]
  54. H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
    [Crossref] [PubMed]
  55. R. Dangel and W. Lukosz, “Electro-nanomechanically actuated integrated-optical interferometric intensity modulators and 2 × 2 space switches,” Opt. Commun. 156(1-3), 63–76 (1998).
    [Crossref]
  56. J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
    [Crossref] [PubMed]
  57. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
    [Crossref] [PubMed]
  58. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
    [Crossref] [PubMed]
  59. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]
  60. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
    [Crossref] [PubMed]
  61. W. H. P. Pernice, M. Li, K. Y. Fong, and H. X. Tang, “Modeling of the optical force between propagating lightwaves in parallel 3D waveguides,” Opt. Express 17(18), 16032–16037 (2009).
    [Crossref] [PubMed]
  62. X. Wang, Y. P. Chen, and D. D. Nolte, “Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology,” Opt. Express 16(26), 22105–22112 (2008).
    [Crossref] [PubMed]
  63. C. L. Chen, Foundations for Guided-Wave Optics (Wiley-Interscience, 2007).

2015 (2)

K. Chung, A. Rani, J. E. Lee, J. E. Kim, Y. Kim, H. Yang, S. O. Kim, D. Kim, and D. H. Kim, “Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues,” ACS Appl. Mater. Interfaces 7(1), 144–151 (2015).
[Crossref] [PubMed]

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

2014 (2)

A. Hassanzadeh and D. Azami, “Waveguide evanescent field fluorescence microscopy: theoretical investigation of optical pressure on a cell,” J. Nanophotonics 8(1), 083076 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

2013 (3)

J. Bergeron, A. Zehtabi-Oskuie, S. Ghaffari, Y. Pang, and R. Gordon, “Optical trapping of nanoparticles,” J. Vis. Exp. 4424(71), e4424 (2013).
[PubMed]

T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, and Y. Tsuboi, “Reversible photo induced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(6), 2500–2506 (2013).
[Crossref]

X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, and H. Zhu, “Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers,” Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013).
[Crossref] [PubMed]

2012 (7)

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

H. Yan, F. Xia, Z. Li, and P. Avouris, “Plasmonics of coupled graphene micro-structures,” New J. Phys. 14(12), 125001 (2012).
[Crossref]

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

2011 (5)

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

S. H. Choi, Y. L. Kim, and K. M. Byun, “Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors,” Opt. Express 19(2), 458–466 (2011).
[Crossref] [PubMed]

R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B Chem. 160(1), 623–631 (2011).
[Crossref]

2010 (5)

M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96(5), 053109 (2010).
[Crossref]

Y. Liu and R. F. Willis, “Plasmon-phonon strongly coupled mode in epitaxial graphene,” Phys. Rev. B 81(8), 081406 (2010).
[Crossref]

R. J. Koch, T. Seyller, and J. A. Schaefer, “Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem,” Phys. Rev. B 82(20), 201413 (2010).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

2009 (7)

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
[Crossref] [PubMed]

W. H. P. Pernice, M. Li, K. Y. Fong, and H. X. Tang, “Modeling of the optical force between propagating lightwaves in parallel 3D waveguides,” Opt. Express 17(18), 16032–16037 (2009).
[Crossref] [PubMed]

P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. Brink, and P. J. Kelly, “First-principle study of the interaction and charge transfer between graphene and metals,” Phys. Rev. B 79(19), 195425 (2009).
[Crossref]

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[Crossref] [PubMed]

2008 (4)

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref] [PubMed]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano. Lett. 8(3), 902–907 (2008).
[Crossref]

Y. Liu, R. F. Willis, K. V. Emtsev, and T. Seyller, “Plasmon dispersion and damping electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78(20), 201403 (2008).
[Crossref]

X. Wang, Y. P. Chen, and D. D. Nolte, “Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology,” Opt. Express 16(26), 22105–22112 (2008).
[Crossref] [PubMed]

2007 (3)

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2000 (5)

C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustamante, M. D. Wang, and S. M. Block, “Stretching of single collapsed DNA molecules,” Biophys. J. 78(4), 1965–1978 (2000).
[Crossref] [PubMed]

B. Maier, D. Bensimon, and V. Croquette, “Replication by a single DNA polymerase of a stretched single-stranded DNA,” Proc. Natl. Acad. Sci. U.S.A. 97(22), 12002–12007 (2000).
[Crossref] [PubMed]

G. J. Wuite, S. B. Smith, M. Young, D. Keller, and C. Bustamante, “Single-molecule studies of the effect of template tension on T7 DNA polymerase activity,” Nature 404(6773), 103–106 (2000).
[Crossref] [PubMed]

R. J. Davenport, G. J. Wuite, R. Landick, and C. Bustamante, “Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase,” Science 287(5462), 2497–2500 (2000).
[Crossref] [PubMed]

H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H. E. Gaub, “Mechanical stability of single DNA molecules,” Biophys. J. 78(4), 1997–2007 (2000).
[Crossref] [PubMed]

1999 (1)

B. M. Han, S. Chang, and S. S. Lee, “Enhancement of the evanescent field pressure on a dielectric film by coupling with surface plasmons,” J. Korean Phys. Soc. 35, 180–185 (1999).

1998 (3)

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

J. F. Allemand, D. Bensimon, R. Lavery, and V. Croquette, “Stretched and overwound DNA forms a Pauling-like structure with exposed bases,” Proc. Natl. Acad. Sci. U.S.A. 95(24), 14152–14157 (1998).
[Crossref] [PubMed]

R. Dangel and W. Lukosz, “Electro-nanomechanically actuated integrated-optical interferometric intensity modulators and 2 × 2 space switches,” Opt. Commun. 156(1-3), 63–76 (1998).
[Crossref]

1997 (2)

C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante, “Ionic effects on the elasticity of single DNA molecules,” Proc. Natl. Acad. Sci. U.S.A. 94(12), 6185–6190 (1997).
[Crossref] [PubMed]

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun. 139(4-6), 252–261 (1997).
[Crossref]

1996 (4)

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical pressure exerted on a dielectric film in the evanescent field of a Gaussian beam,” Opt. Commun. 129(5-6), 394–404 (1996).
[Crossref]

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and F. Caron, “DNA: An extensible molecule,” Science 271(5250), 792–794 (1996).
[Crossref] [PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[Crossref] [PubMed]

S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21(21), 1768–1770 (1996).
[Crossref] [PubMed]

1995 (1)

H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block, and J. Gelles, “Transcription against an applied force,” Science 270(5242), 1653–1657 (1995).
[Crossref] [PubMed]

1994 (2)

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam,” Opt. Commun. 108(1-3), 133–143 (1994).
[Crossref]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

1992 (1)

1987 (3)

T. N. Buican, M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, and J. C. Martin, “Automated single-cell manipulation and sorting by light trapping,” Appl. Opt. 26(24), 5311–5316 (1987).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Alegre, T. P. M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Allemand, J. F.

J. F. Allemand, D. Bensimon, R. Lavery, and V. Croquette, “Stretched and overwound DNA forms a Pauling-like structure with exposed bases,” Proc. Natl. Acad. Sci. U.S.A. 95(24), 14152–14157 (1998).
[Crossref] [PubMed]

Alonso-González, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Arnold, S.

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Avouris, P.

H. Yan, F. Xia, Z. Li, and P. Avouris, “Plasmonics of coupled graphene micro-structures,” New J. Phys. 14(12), 125001 (2012).
[Crossref]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Azami, D.

A. Hassanzadeh and D. Azami, “Waveguide evanescent field fluorescence microscopy: theoretical investigation of optical pressure on a cell,” J. Nanophotonics 8(1), 083076 (2014).
[Crossref]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Balandin, A. A.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano. Lett. 8(3), 902–907 (2008).
[Crossref]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano. Lett. 8(3), 902–907 (2008).
[Crossref]

Bao, Z.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref] [PubMed]

Basov, D. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Baumann, C. G.

C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustamante, M. D. Wang, and S. M. Block, “Stretching of single collapsed DNA molecules,” Biophys. J. 78(4), 1965–1978 (2000).
[Crossref] [PubMed]

C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante, “Ionic effects on the elasticity of single DNA molecules,” Proc. Natl. Acad. Sci. U.S.A. 94(12), 6185–6190 (1997).
[Crossref] [PubMed]

Becerril, H. A.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref] [PubMed]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Bensimon, D.

B. Maier, D. Bensimon, and V. Croquette, “Replication by a single DNA polymerase of a stretched single-stranded DNA,” Proc. Natl. Acad. Sci. U.S.A. 97(22), 12002–12007 (2000).
[Crossref] [PubMed]

J. F. Allemand, D. Bensimon, R. Lavery, and V. Croquette, “Stretched and overwound DNA forms a Pauling-like structure with exposed bases,” Proc. Natl. Acad. Sci. U.S.A. 95(24), 14152–14157 (1998).
[Crossref] [PubMed]

Bergeron, J.

J. Bergeron, A. Zehtabi-Oskuie, S. Ghaffari, Y. Pang, and R. Gordon, “Optical trapping of nanoparticles,” J. Vis. Exp. 4424(71), e4424 (2013).
[PubMed]

Block, S. M.

C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustamante, M. D. Wang, and S. M. Block, “Stretching of single collapsed DNA molecules,” Biophys. J. 78(4), 1965–1978 (2000).
[Crossref] [PubMed]

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block, and J. Gelles, “Transcription against an applied force,” Science 270(5242), 1653–1657 (1995).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Bloomfield, V. A.

C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustamante, M. D. Wang, and S. M. Block, “Stretching of single collapsed DNA molecules,” Biophys. J. 78(4), 1965–1978 (2000).
[Crossref] [PubMed]

C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante, “Ionic effects on the elasticity of single DNA molecules,” Proc. Natl. Acad. Sci. U.S.A. 94(12), 6185–6190 (1997).
[Crossref] [PubMed]

Borghs, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Brink, J.

P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. Brink, and P. J. Kelly, “First-principle study of the interaction and charge transfer between graphene and metals,” Phys. Rev. B 79(19), 195425 (2009).
[Crossref]

Brocks, G.

P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. Brink, and P. J. Kelly, “First-principle study of the interaction and charge transfer between graphene and metals,” Phys. Rev. B 79(19), 195425 (2009).
[Crossref]

Buican, T. N.

Bunch, J. S.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Bustamante, C.

C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustamante, M. D. Wang, and S. M. Block, “Stretching of single collapsed DNA molecules,” Biophys. J. 78(4), 1965–1978 (2000).
[Crossref] [PubMed]

G. J. Wuite, S. B. Smith, M. Young, D. Keller, and C. Bustamante, “Single-molecule studies of the effect of template tension on T7 DNA polymerase activity,” Nature 404(6773), 103–106 (2000).
[Crossref] [PubMed]

R. J. Davenport, G. J. Wuite, R. Landick, and C. Bustamante, “Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase,” Science 287(5462), 2497–2500 (2000).
[Crossref] [PubMed]

C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante, “Ionic effects on the elasticity of single DNA molecules,” Proc. Natl. Acad. Sci. U.S.A. 94(12), 6185–6190 (1997).
[Crossref] [PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[Crossref] [PubMed]

Byun, K. M.

Cai, J. M.

M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96(5), 053109 (2010).
[Crossref]

Calizo, I.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano. Lett. 8(3), 902–907 (2008).
[Crossref]

Camara, N.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Caron, F.

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and F. Caron, “DNA: An extensible molecule,” Science 271(5250), 792–794 (1996).
[Crossref] [PubMed]

Castellanos-Beltran, M. A.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Castro Neto, A. H.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Castro-Neto, A. H.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Centeno, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Chan, J.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chandra, B.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chang, S.

B. M. Han, S. Chang, and S. S. Lee, “Enhancement of the evanescent field pressure on a dielectric film by coupling with surface plasmons,” J. Korean Phys. Soc. 35, 180–185 (1999).

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun. 139(4-6), 252–261 (1997).
[Crossref]

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical pressure exerted on a dielectric film in the evanescent field of a Gaussian beam,” Opt. Commun. 129(5-6), 394–404 (1996).
[Crossref]

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam,” Opt. Commun. 108(1-3), 133–143 (1994).
[Crossref]

Chatenay, D.

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and F. Caron, “DNA: An extensible molecule,” Science 271(5250), 792–794 (1996).
[Crossref] [PubMed]

Chen, C.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Chen, J.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Chen, Q.

X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, and H. Zhu, “Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers,” Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013).
[Crossref] [PubMed]

Chen, Y.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref] [PubMed]

Chen, Y. P.

Cherukulappurath, S.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[Crossref] [PubMed]

Choi, S. H.

Chung, K.

K. Chung, A. Rani, J. E. Lee, J. E. Kim, Y. Kim, H. Yang, S. O. Kim, D. Kim, and D. H. Kim, “Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues,” ACS Appl. Mater. Interfaces 7(1), 144–151 (2015).
[Crossref] [PubMed]

Clausen-Schaumann, H.

H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H. E. Gaub, “Mechanical stability of single DNA molecules,” Biophys. J. 78(4), 1997–2007 (2000).
[Crossref] [PubMed]

Cluzel, P.

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and F. Caron, “DNA: An extensible molecule,” Science 271(5250), 792–794 (1996).
[Crossref] [PubMed]

Craighead, H. G.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Crassee, I.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Crissman, H. A.

Croquette, V.

B. Maier, D. Bensimon, and V. Croquette, “Replication by a single DNA polymerase of a stretched single-stranded DNA,” Proc. Natl. Acad. Sci. U.S.A. 97(22), 12002–12007 (2000).
[Crossref] [PubMed]

J. F. Allemand, D. Bensimon, R. Lavery, and V. Croquette, “Stretched and overwound DNA forms a Pauling-like structure with exposed bases,” Proc. Natl. Acad. Sci. U.S.A. 95(24), 14152–14157 (1998).
[Crossref] [PubMed]

Crozier, K.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Cui, Y.

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[Crossref] [PubMed]

Dangel, R.

R. Dangel and W. Lukosz, “Electro-nanomechanically actuated integrated-optical interferometric intensity modulators and 2 × 2 space switches,” Opt. Commun. 156(1-3), 63–76 (1998).
[Crossref]

Davenport, R. J.

R. J. Davenport, G. J. Wuite, R. Landick, and C. Bustamante, “Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase,” Science 287(5462), 2497–2500 (2000).
[Crossref] [PubMed]

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Dominguez, G.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Donner, T.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Du, S. X.

M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96(5), 053109 (2010).
[Crossref]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Elorza, A. Z.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Emtsev, K. V.

Y. Liu, R. F. Willis, K. V. Emtsev, and T. Seyller, “Plasmon dispersion and damping electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78(20), 201403 (2008).
[Crossref]

Erickson, D.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Fan, H. M.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Fei, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Feng, Y. P.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Fogler, M. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Fong, K. Y.

Frank, I. W.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Freitag, M.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Gao, H. J.

M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96(5), 053109 (2010).
[Crossref]

Gao, M.

M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96(5), 053109 (2010).
[Crossref]

Gaponenko, I.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

García de Abajo, F. J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[Crossref] [PubMed]

Gaub, H. E.

H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H. E. Gaub, “Mechanical stability of single DNA molecules,” Biophys. J. 78(4), 1997–2007 (2000).
[Crossref] [PubMed]

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Geim, A. K.

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Gelles, J.

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block, and J. Gelles, “Transcription against an applied force,” Science 270(5242), 1653–1657 (1995).
[Crossref] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Ghaffari, S.

J. Bergeron, A. Zehtabi-Oskuie, S. Ghaffari, Y. Pang, and R. Gordon, “Optical trapping of nanoparticles,” J. Vis. Exp. 4424(71), e4424 (2013).
[PubMed]

Ghenuche, P.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[Crossref] [PubMed]

Ghosh, S.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano. Lett. 8(3), 902–907 (2008).
[Crossref]

Giovannetti, G.

P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. Brink, and P. J. Kelly, “First-principle study of the interaction and charge transfer between graphene and metals,” Phys. Rev. B 79(19), 195425 (2009).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Godignon, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Gordon, R.

J. Bergeron, A. Zehtabi-Oskuie, S. Ghaffari, Y. Pang, and R. Gordon, “Optical trapping of nanoparticles,” J. Vis. Exp. 4424(71), e4424 (2013).
[PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Gupta, B. D.

R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B Chem. 160(1), 623–631 (2011).
[Crossref]

Han, B. M.

B. M. Han, S. Chang, and S. S. Lee, “Enhancement of the evanescent field pressure on a dielectric film by coupling with surface plasmons,” J. Korean Phys. Soc. 35, 180–185 (1999).

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Harlow, J. W.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Hassanzadeh, A.

A. Hassanzadeh and D. Azami, “Waveguide evanescent field fluorescence microscopy: theoretical investigation of optical pressure on a cell,” J. Nanophotonics 8(1), 083076 (2014).
[Crossref]

Heller, C.

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and F. Caron, “DNA: An extensible molecule,” Science 271(5250), 792–794 (1996).
[Crossref] [PubMed]

Hill, J. T.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Hillenbrand, R.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Holler, S.

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hu, H.

M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96(5), 053109 (2010).
[Crossref]

Huth, F.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Ishihara, H.

T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, and Y. Tsuboi, “Reversible photo induced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(6), 2500–2506 (2013).
[Crossref]

Jha, R.

R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B Chem. 160(1), 623–631 (2011).
[Crossref]

Jo, J. H.

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun. 139(4-6), 252–261 (1997).
[Crossref]

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical pressure exerted on a dielectric film in the evanescent field of a Gaussian beam,” Opt. Commun. 129(5-6), 394–404 (1996).
[Crossref]

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam,” Opt. Commun. 108(1-3), 133–143 (1994).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Juan, M. L.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Kasim, J.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Kawata, S.

Keilmann, F.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Keller, D.

G. J. Wuite, S. B. Smith, M. Young, D. Keller, and C. Bustamante, “Single-molecule studies of the effect of template tension on T7 DNA polymerase activity,” Nature 404(6773), 103–106 (2000).
[Crossref] [PubMed]

Kelly, P. J.

P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. Brink, and P. J. Kelly, “First-principle study of the interaction and charge transfer between graphene and metals,” Phys. Rev. B 79(19), 195425 (2009).
[Crossref]

Keng, D.

Khomyakov, P. A.

P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. Brink, and P. J. Kelly, “First-principle study of the interaction and charge transfer between graphene and metals,” Phys. Rev. B 79(19), 195425 (2009).
[Crossref]

Kim, D.

K. Chung, A. Rani, J. E. Lee, J. E. Kim, Y. Kim, H. Yang, S. O. Kim, D. Kim, and D. H. Kim, “Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues,” ACS Appl. Mater. Interfaces 7(1), 144–151 (2015).
[Crossref] [PubMed]

Kim, D. H.

K. Chung, A. Rani, J. E. Lee, J. E. Kim, Y. Kim, H. Yang, S. O. Kim, D. Kim, and D. H. Kim, “Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues,” ACS Appl. Mater. Interfaces 7(1), 144–151 (2015).
[Crossref] [PubMed]

Kim, J. E.

K. Chung, A. Rani, J. E. Lee, J. E. Kim, Y. Kim, H. Yang, S. O. Kim, D. Kim, and D. H. Kim, “Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues,” ACS Appl. Mater. Interfaces 7(1), 144–151 (2015).
[Crossref] [PubMed]

Kim, J. T.

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun. 139(4-6), 252–261 (1997).
[Crossref]

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical pressure exerted on a dielectric film in the evanescent field of a Gaussian beam,” Opt. Commun. 129(5-6), 394–404 (1996).
[Crossref]

Kim, S. O.

K. Chung, A. Rani, J. E. Lee, J. E. Kim, Y. Kim, H. Yang, S. O. Kim, D. Kim, and D. H. Kim, “Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues,” ACS Appl. Mater. Interfaces 7(1), 144–151 (2015).
[Crossref] [PubMed]

Kim, Y.

K. Chung, A. Rani, J. E. Lee, J. E. Kim, Y. Kim, H. Yang, S. O. Kim, D. Kim, and D. H. Kim, “Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues,” ACS Appl. Mater. Interfaces 7(1), 144–151 (2015).
[Crossref] [PubMed]

Kim, Y. L.

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Kitamura, N.

T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, and Y. Tsuboi, “Reversible photo induced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(6), 2500–2506 (2013).
[Crossref]

Klug, M.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Koch, R. J.

R. J. Koch, T. Seyller, and J. A. Schaefer, “Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem,” Phys. Rev. B 82(20), 201413 (2010).
[Crossref]

Koppens, F. H.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Kuzmenko, A. B.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Landick, R.

R. J. Davenport, G. J. Wuite, R. Landick, and C. Bustamante, “Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase,” Science 287(5462), 2497–2500 (2000).
[Crossref] [PubMed]

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block, and J. Gelles, “Transcription against an applied force,” Science 270(5242), 1653–1657 (1995).
[Crossref] [PubMed]

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano. Lett. 8(3), 902–907 (2008).
[Crossref]

Lavery, R.

J. F. Allemand, D. Bensimon, R. Lavery, and V. Croquette, “Stretched and overwound DNA forms a Pauling-like structure with exposed bases,” Proc. Natl. Acad. Sci. U.S.A. 95(24), 14152–14157 (1998).
[Crossref] [PubMed]

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and F. Caron, “DNA: An extensible molecule,” Science 271(5250), 792–794 (1996).
[Crossref] [PubMed]

Lebrun, A.

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and F. Caron, “DNA: An extensible molecule,” Science 271(5250), 792–794 (1996).
[Crossref] [PubMed]

Lee, J. E.

K. Chung, A. Rani, J. E. Lee, J. E. Kim, Y. Kim, H. Yang, S. O. Kim, D. Kim, and D. H. Kim, “Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues,” ACS Appl. Mater. Interfaces 7(1), 144–151 (2015).
[Crossref] [PubMed]

Lee, S. S.

B. M. Han, S. Chang, and S. S. Lee, “Enhancement of the evanescent field pressure on a dielectric film by coupling with surface plasmons,” J. Korean Phys. Soc. 35, 180–185 (1999).

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun. 139(4-6), 252–261 (1997).
[Crossref]

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical pressure exerted on a dielectric film in the evanescent field of a Gaussian beam,” Opt. Commun. 129(5-6), 394–404 (1996).
[Crossref]

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam,” Opt. Commun. 108(1-3), 133–143 (1994).
[Crossref]

Lehnert, K. W.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Li, M.

Li, P.

X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, and H. Zhu, “Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers,” Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013).
[Crossref] [PubMed]

Li, X.

X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, and H. Zhu, “Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers,” Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013).
[Crossref] [PubMed]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Li, Y.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Li, Z.

H. Yan, F. Xia, Z. Li, and P. Avouris, “Plasmonics of coupled graphene micro-structures,” New J. Phys. 14(12), 125001 (2012).
[Crossref]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

Lian, J.

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Lin, Q.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Lin, S.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Lipson, M.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Liu, F.

M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96(5), 053109 (2010).
[Crossref]

Liu, Y.

Y. Liu and R. F. Willis, “Plasmon-phonon strongly coupled mode in epitaxial graphene,” Phys. Rev. B 81(8), 081406 (2010).
[Crossref]

Y. Liu, R. F. Willis, K. V. Emtsev, and T. Seyller, “Plasmon dispersion and damping electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78(20), 201403 (2008).
[Crossref]

Liu, Z.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref] [PubMed]

Lu, H. L.

M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96(5), 053109 (2010).
[Crossref]

Lukosz, W.

R. Dangel and W. Lukosz, “Electro-nanomechanically actuated integrated-optical interferometric intensity modulators and 2 × 2 space switches,” Opt. Commun. 156(1-3), 63–76 (1998).
[Crossref]

Maes, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Maier, B.

B. Maier, D. Bensimon, and V. Croquette, “Replication by a single DNA polymerase of a stretched single-stranded DNA,” Proc. Natl. Acad. Sci. U.S.A. 97(22), 12002–12007 (2000).
[Crossref] [PubMed]

Mao, J.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref] [PubMed]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Martin, J. C.

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

McEuen, P. L.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

McLeod, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Miao, F.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano. Lett. 8(3), 902–907 (2008).
[Crossref]

Mizumoto, Y.

T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, and Y. Tsuboi, “Reversible photo induced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(6), 2500–2506 (2013).
[Crossref]

Moore, S. D.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Murakoshi, K.

T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, and Y. Tsuboi, “Reversible photo induced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(6), 2500–2506 (2013).
[Crossref]

Myroshnychenko, V.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[Crossref] [PubMed]

Nagasawa, F.

T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, and Y. Tsuboi, “Reversible photo induced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(6), 2500–2506 (2013).
[Crossref]

Ni, Z. H.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Nobuhiro, A.

T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, and Y. Tsuboi, “Reversible photo induced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(6), 2500–2506 (2013).
[Crossref]

Nolte, D. D.

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Orlita, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Osmond, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Ostler, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Painter, O.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Pan, Y.

M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96(5), 053109 (2010).
[Crossref]

Pang, Y.

J. Bergeron, A. Zehtabi-Oskuie, S. Ghaffari, Y. Pang, and R. Gordon, “Optical trapping of nanoparticles,” J. Vis. Exp. 4424(71), e4424 (2013).
[PubMed]

Parpia, J. M.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Pernice, W. H. P.

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Potemski, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Quidant, R.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[Crossref] [PubMed]

Rani, A.

K. Chung, A. Rani, J. E. Lee, J. E. Kim, Y. Kim, H. Yang, S. O. Kim, D. Kim, and D. H. Kim, “Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues,” ACS Appl. Mater. Interfaces 7(1), 144–151 (2015).
[Crossref] [PubMed]

Rief, M.

H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H. E. Gaub, “Mechanical stability of single DNA molecules,” Biophys. J. 78(4), 1997–2007 (2000).
[Crossref] [PubMed]

Righini, M.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[Crossref] [PubMed]

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Rodin, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Rusu, P. C.

P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. Brink, and P. J. Kelly, “First-principle study of the interaction and charge transfer between graphene and metals,” Phys. Rev. B 79(19), 195425 (2009).
[Crossref]

S McLeod, A.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Salzman, G. C.

Schaefer, J. A.

R. J. Koch, T. Seyller, and J. A. Schaefer, “Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem,” Phys. Rev. B 82(20), 201413 (2010).
[Crossref]

Schliesser, A.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Schmidt, B. S.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Schnitzer, M. J.

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

Schonbrun, E.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Scott, S. M.

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Seyller, T.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

R. J. Koch, T. Seyller, and J. A. Schaefer, “Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem,” Phys. Rev. B 82(20), 201413 (2010).
[Crossref]

Y. Liu, R. F. Willis, K. V. Emtsev, and T. Seyller, “Plasmon dispersion and damping electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78(20), 201403 (2008).
[Crossref]

Shao, D.

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shen, Z. X.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Shibata, M.

T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, and Y. Tsuboi, “Reversible photo induced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(6), 2500–2506 (2013).
[Crossref]

Shoji, T.

T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, and Y. Tsuboi, “Reversible photo induced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(6), 2500–2506 (2013).
[Crossref]

Shopova, S. I.

Smith, S. B.

G. J. Wuite, S. B. Smith, M. Young, D. Keller, and C. Bustamante, “Single-molecule studies of the effect of template tension on T7 DNA polymerase activity,” Nature 404(6773), 103–106 (2000).
[Crossref] [PubMed]

C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustamante, M. D. Wang, and S. M. Block, “Stretching of single collapsed DNA molecules,” Biophys. J. 78(4), 1965–1978 (2000).
[Crossref] [PubMed]

C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante, “Ionic effects on the elasticity of single DNA molecules,” Proc. Natl. Acad. Sci. U.S.A. 94(12), 6185–6190 (1997).
[Crossref] [PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[Crossref] [PubMed]

Smyth, M. J.

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Stewart, C. C.

Stewart, M. K.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Stoltenberg, R. M.

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref] [PubMed]

Sugiura, T.

Sun, H.

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Svoboda, K.

H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block, and J. Gelles, “Transcription against an applied force,” Science 270(5242), 1653–1657 (1995).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Takase, M.

T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, and Y. Tsuboi, “Reversible photo induced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(6), 2500–2506 (2013).
[Crossref]

Tanenbaum, D. M.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Tang, H. X.

Tani, T.

Tauber, M. J.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Teufel, J. D.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Teweldebrhan, D.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano. Lett. 8(3), 902–907 (2008).
[Crossref]

Thiemens, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Thongrattanasiri, S.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Tolksdorf, C.

H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H. E. Gaub, “Mechanical stability of single DNA molecules,” Biophys. J. 78(4), 1997–2007 (2000).
[Crossref] [PubMed]

Tsuboi, Y.

T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, and Y. Tsuboi, “Reversible photo induced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(6), 2500–2506 (2013).
[Crossref]

Tulevski, G.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

van der Zande, A. M.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Van Dorpe, P.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Verbridge, S. S.

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

Verma, R.

R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B Chem. 160(1), 623–631 (2011).
[Crossref]

Viovy, J. L.

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and F. Caron, “DNA: An extensible molecule,” Science 271(5250), 792–794 (1996).
[Crossref] [PubMed]

Vollmer, F.

Wagner, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Walter, A. L.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Wang, C.

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, G.

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Wang, H. M.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Wang, K.

X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, and H. Zhu, “Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers,” Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013).
[Crossref] [PubMed]

Wang, M. D.

C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustamante, M. D. Wang, and S. M. Block, “Stretching of single collapsed DNA molecules,” Biophys. J. 78(4), 1965–1978 (2000).
[Crossref] [PubMed]

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block, and J. Gelles, “Transcription against an applied force,” Science 270(5242), 1653–1657 (1995).
[Crossref] [PubMed]

Wang, X.

Wei, B.

X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, and H. Zhu, “Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers,” Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013).
[Crossref] [PubMed]

Wei, J.

X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, and H. Zhu, “Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers,” Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013).
[Crossref] [PubMed]

Weis, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Willis, R. F.

Y. Liu and R. F. Willis, “Plasmon-phonon strongly coupled mode in epitaxial graphene,” Phys. Rev. B 81(8), 081406 (2010).
[Crossref]

Y. Liu, R. F. Willis, K. V. Emtsev, and T. Seyller, “Plasmon dispersion and damping electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78(20), 201403 (2008).
[Crossref]

Winger, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Wu, D.

X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, and H. Zhu, “Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers,” Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013).
[Crossref] [PubMed]

Wu, Y.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Wu, Y. H.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Wuite, G. J.

R. J. Davenport, G. J. Wuite, R. Landick, and C. Bustamante, “Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase,” Science 287(5462), 2497–2500 (2000).
[Crossref] [PubMed]

G. J. Wuite, S. B. Smith, M. Young, D. Keller, and C. Bustamante, “Single-molecule studies of the effect of template tension on T7 DNA polymerase activity,” Nature 404(6773), 103–106 (2000).
[Crossref] [PubMed]

Xia, F.

H. Yan, F. Xia, Z. Li, and P. Avouris, “Plasmonics of coupled graphene micro-structures,” New J. Phys. 14(12), 125001 (2012).
[Crossref]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

Xin, G.

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Yan, H.

H. Yan, F. Xia, Z. Li, and P. Avouris, “Plasmonics of coupled graphene micro-structures,” New J. Phys. 14(12), 125001 (2012).
[Crossref]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

Yang, A. H.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Yang, H.

K. Chung, A. Rani, J. E. Lee, J. E. Kim, Y. Kim, H. Yang, S. O. Kim, D. Kim, and D. H. Kim, “Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues,” ACS Appl. Mater. Interfaces 7(1), 144–151 (2015).
[Crossref] [PubMed]

Yang, R.

M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96(5), 053109 (2010).
[Crossref]

Yao, T.

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Yin, H.

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block, and J. Gelles, “Transcription against an applied force,” Science 270(5242), 1653–1657 (1995).
[Crossref] [PubMed]

Young, M.

G. J. Wuite, S. B. Smith, M. Young, D. Keller, and C. Bustamante, “Single-molecule studies of the effect of template tension on T7 DNA polymerase activity,” Nature 404(6773), 103–106 (2000).
[Crossref] [PubMed]

Yu, T.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Zehtabi-Oskuie, A.

J. Bergeron, A. Zehtabi-Oskuie, S. Ghaffari, Y. Pang, and R. Gordon, “Optical trapping of nanoparticles,” J. Vis. Exp. 4424(71), e4424 (2013).
[PubMed]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhang, C. D.

M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96(5), 053109 (2010).
[Crossref]

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Zhao, T.

X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, and H. Zhu, “Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers,” Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013).
[Crossref] [PubMed]

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

Zhong, M.

X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, and H. Zhu, “Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers,” Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013).
[Crossref] [PubMed]

Zhu, H.

X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, and H. Zhu, “Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers,” Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013).
[Crossref] [PubMed]

Zhu, W.

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

Zurawsky, W.

ACS Appl. Mater. Interfaces (1)

K. Chung, A. Rani, J. E. Lee, J. E. Kim, Y. Kim, H. Yang, S. O. Kim, D. Kim, and D. H. Kim, “Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues,” ACS Appl. Mater. Interfaces 7(1), 144–151 (2015).
[Crossref] [PubMed]

ACS Nano (1)

H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano 2(3), 463–470 (2008).
[Crossref] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96(5), 053109 (2010).
[Crossref]

Biophys. J. (2)

C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Bustamante, M. D. Wang, and S. M. Block, “Stretching of single collapsed DNA molecules,” Biophys. J. 78(4), 1965–1978 (2000).
[Crossref] [PubMed]

H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H. E. Gaub, “Mechanical stability of single DNA molecules,” Biophys. J. 78(4), 1997–2007 (2000).
[Crossref] [PubMed]

J. Korean Phys. Soc. (1)

B. M. Han, S. Chang, and S. S. Lee, “Enhancement of the evanescent field pressure on a dielectric film by coupling with surface plasmons,” J. Korean Phys. Soc. 35, 180–185 (1999).

J. Nanophotonics (1)

A. Hassanzadeh and D. Azami, “Waveguide evanescent field fluorescence microscopy: theoretical investigation of optical pressure on a cell,” J. Nanophotonics 8(1), 083076 (2014).
[Crossref]

J. Phys. Chem. C (1)

T. Shoji, M. Shibata, N. Kitamura, F. Nagasawa, M. Takase, K. Murakoshi, A. Nobuhiro, Y. Mizumoto, H. Ishihara, and Y. Tsuboi, “Reversible photo induced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure,” J. Phys. Chem. C 117(6), 2500–2506 (2013).
[Crossref]

J. Vis. Exp. (1)

J. Bergeron, A. Zehtabi-Oskuie, S. Ghaffari, Y. Pang, and R. Gordon, “Optical trapping of nanoparticles,” J. Vis. Exp. 4424(71), e4424 (2013).
[PubMed]

Nano Lett. (7)

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[Crossref] [PubMed]

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of Dirac plasmons at the graphene-SiO₂ interface,” Nano Lett. 11(11), 4701–4705 (2011).
[Crossref] [PubMed]

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Nano. Lett. (1)

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano. Lett. 8(3), 902–907 (2008).
[Crossref]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol. 7(5), 330–334 (2012).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nature (7)

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487(7405), 82–85 (2012).
[PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

G. J. Wuite, S. B. Smith, M. Young, D. Keller, and C. Bustamante, “Single-molecule studies of the effect of template tension on T7 DNA polymerase activity,” Nature 404(6773), 103–106 (2000).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

New J. Phys. (1)

H. Yan, F. Xia, Z. Li, and P. Avouris, “Plasmonics of coupled graphene micro-structures,” New J. Phys. 14(12), 125001 (2012).
[Crossref]

Opt. Commun. (4)

R. Dangel and W. Lukosz, “Electro-nanomechanically actuated integrated-optical interferometric intensity modulators and 2 × 2 space switches,” Opt. Commun. 156(1-3), 63–76 (1998).
[Crossref]

S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam,” Opt. Commun. 108(1-3), 133–143 (1994).
[Crossref]

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical pressure exerted on a dielectric film in the evanescent field of a Gaussian beam,” Opt. Commun. 129(5-6), 394–404 (1996).
[Crossref]

S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun. 139(4-6), 252–261 (1997).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

X. Li, T. Zhao, Q. Chen, P. Li, K. Wang, M. Zhong, J. Wei, D. Wu, B. Wei, and H. Zhu, “Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers,” Phys. Chem. Chem. Phys. 15(41), 17752–17757 (2013).
[Crossref] [PubMed]

Phys. Rev. B (4)

P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. Brink, and P. J. Kelly, “First-principle study of the interaction and charge transfer between graphene and metals,” Phys. Rev. B 79(19), 195425 (2009).
[Crossref]

Y. Liu, R. F. Willis, K. V. Emtsev, and T. Seyller, “Plasmon dispersion and damping electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78(20), 201403 (2008).
[Crossref]

Y. Liu and R. F. Willis, “Plasmon-phonon strongly coupled mode in epitaxial graphene,” Phys. Rev. B 81(8), 081406 (2010).
[Crossref]

R. J. Koch, T. Seyller, and J. A. Schaefer, “Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem,” Phys. Rev. B 82(20), 201413 (2010).
[Crossref]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (3)

J. F. Allemand, D. Bensimon, R. Lavery, and V. Croquette, “Stretched and overwound DNA forms a Pauling-like structure with exposed bases,” Proc. Natl. Acad. Sci. U.S.A. 95(24), 14152–14157 (1998).
[Crossref] [PubMed]

C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante, “Ionic effects on the elasticity of single DNA molecules,” Proc. Natl. Acad. Sci. U.S.A. 94(12), 6185–6190 (1997).
[Crossref] [PubMed]

B. Maier, D. Bensimon, and V. Croquette, “Replication by a single DNA polymerase of a stretched single-stranded DNA,” Proc. Natl. Acad. Sci. U.S.A. 97(22), 12002–12007 (2000).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Science (10)

J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science 315(5811), 490–493 (2007).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

R. J. Davenport, G. J. Wuite, R. Landick, and C. Bustamante, “Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase,” Science 287(5462), 2497–2500 (2000).
[Crossref] [PubMed]

M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Force and velocity measured for single molecules of RNA polymerase,” Science 282(5390), 902–907 (1998).
[Crossref] [PubMed]

H. Yin, M. D. Wang, K. Svoboda, R. Landick, S. M. Block, and J. Gelles, “Transcription against an applied force,” Science 270(5242), 1653–1657 (1995).
[Crossref] [PubMed]

P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and F. Caron, “DNA: An extensible molecule,” Science 271(5250), 792–794 (1996).
[Crossref] [PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

A. K. Geim, “Graphene: status and prospects,” Science 324(5934), 1530–1534 (2009).
[Crossref] [PubMed]

G. Xin, T. Yao, H. Sun, S. M. Scott, D. Shao, G. Wang, and J. Lian, “Highly thermally conductive and mechanically strong graphene fibers,” Science 349(6252), 1083–1087 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

R. Verma, B. D. Gupta, and R. Jha, “Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers,” Sens. Actuators B Chem. 160(1), 623–631 (2011).
[Crossref]

Other (1)

C. L. Chen, Foundations for Guided-Wave Optics (Wiley-Interscience, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of a resonance structure, based on a graphene-on-metal substrate to enhance the optical pressure on a dielectric sample. An MgF2 film (t2) is deposited on a prism substrate. Graphene layers (t4) are coated on the metal film (t3). Sample (t6) are modeled as a homogeneous layer with an initial refractive index of 1.515 in an aqueous medium (ethanol) of refractive index 1.36. A gap of aqueous medium (t5) separates the sample from the graphene. The center of the coordinate (x; y; z) is located at n1-n2 interface. η1, η5 and η7 are the incident angles of the wave in prism and media five and seven, respectively.
Fig. 2
Fig. 2 .Curves of the optical pressure, P, acting on a sample with thickness t6 = 0.5λ, at wavelength λ = 633nm for different metals Ag, Au, Cu as a function of the incident angle η1. The refractive index of metals are n3 = 0.066 + i4.045 (Ag), n3 = 0.1726 + i3.42 (Au), n3 = 0.14 + i3.15 (Cu). The figure subset shows the negative optical pressure (attractive force). The optimized thicknesses of MgF2 (t2) and metals along with the optimum number of graphene layers and to achieve the maximum optical pressure (P>0, repulsive force) have been listed inside the figure. We let n1 = 1.515, n2 = 1.38, n5 = n7 = 1.36, t5 = 0.5λ.
Fig. 3
Fig. 3 .Curves of the optical pressure, P, acting on a sample with thickness t5 = 0.5λ, at wavelength λ = 633nm for different metals Ag, Au, Cu as a function of the incident angle η1. The optimized thicknesses of MgF2 (t2) and metals along with the optimum number of graphene layers to achieve the maximum optical pressure (P<0, attractive force) have been listed inside the figure.
Fig. 4
Fig. 4 Plot of the optical pressure as a function of the incident angle η1, for different metal, Ag, Au and Cu. The optimum thicknesses of metal and thicknesses of MgF2 were calculated. We have also chosen the parameters n1 = n6 = 1.515, n2 = 1.38, n5 = n7 = 1.36, t4 = 0 and t5 = t6 = 0.5λ (λ = 633nm).
Fig. 5
Fig. 5 Plot of the optical pressure as a function of the incident angle η1, for different the refractive indices of the sample film, n6 = 1.45, 1.515 and 1.65. The optimum thicknesses of silver and the number of layers of graphene were calculated.
Fig. 6
Fig. 6 Plot of the reflectance as a function of the incident angle η1, for different the refractive indices of the sample film, n6 = 1.45, 1.515 and 1.65. The optimum thicknesses of metal and thicknesses of MgF2 were calculated. The refractive indices and thicknesses of the layers are the same as those in Fig. 4.

Tables (2)

Tables Icon

Table 1 Optimized values of thicknesses of MgF2, metal and the number of graphene layers for silver, gold and copper to achieve the highest positive optical pressure with corresponding positive and negative optical pressures for 633 nm wavelength.

Tables Icon

Table 2 Optimized values of thicknesses of MgF2, metal and the number of graphene layers for silver, gold and cooper to achieve the highest negative optical pressure with corresponding positive and negative optical pressures for 633nm wavelength.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ e 1 h 1 ]=M[ e N1 h N1 ],N=7
M= k=2 N1 M k ,
M k =( cos β k isin β k / p k i p k sin β k cos β k ),
p k = n k ( ε 0 / µ 0 ) 1/2 /cos η k , β k = t k (2π/λ)cos η k ,
F= c Re { ε 0 ( e . n ^ ) e * ε 0 2 ( e . e * ) n ^ + μ 0 ( h . n ^ ) h * ε 0 2 ( h . h * ) n ^ }dl,

Metrics