Abstract

The optimal geometry of silicon-organic hybrid slot waveguides is investigated in the context of the efficiency of four-wave mixing (FWM), a χ(3) nonlinear optical process. We study the effect of slot and waveguide widths, as well as waveguide asymmetry on the two-photon absorption (TPA) figure of merit and the roughness scattering loss. The optimal waveguide core width is shown to be 220nm (symmetric) with a slot width of 120nm, at a fixed waveguide height of 220nm. We also show that state-of-the-art slot waveguides can outperform rib waveguides, especially at high powers, due to the high TPA figure-of-merit.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient phase-matched third harmonic generation in an asymmetric plasmonic slot waveguide

Tingting Wu, Yunxu Sun, Xuguang Shao, Perry Ping Shum, and Tianye Huang
Opt. Express 22(15) 18612-18624 (2014)

Wavelength conversion in highly nonlinear silicon–organic hybrid slot waveguides

Linliang An, Hongjun Liu, Qibing Sun, Nan Huang, and Zhaolu Wang
Appl. Opt. 53(22) 4886-4893 (2014)

Design of triply-resonant microphotonic parametric oscillators based on Kerr nonlinearity

Xiaoge Zeng and Miloš A. Popović
Opt. Express 22(13) 15837-15867 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Hendrickson, A. C. Foster, R. M. Camacho, and B. D. Clader, “Integrated nonlinear photonics: emerging applications and ongoing challenges [invited],” J. Opt. Soc. Am. B 31, 3193–3203 (2014).
    [Crossref]
  2. F. Li, M. Pelusi, D. Xu, A. Densmore, R. Ma, S. Janz, and D. Moss, “Error-free all-optical demultiplexing at 160gb/s via fwm in a silicon nanowire,” Opt. Express 18, 3905–3910 (2010).
    [Crossref] [PubMed]
  3. M. Pu, H. Hu, C. Peucheret, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide,” Opt. Express 20, 16374–16380 (2012).
    [Crossref]
  4. Y. Zhang, C. Husko, J. Schröder, S. Lefrancois, I. H. Rey, T. F. Krauss, and B. J. Eggleton, “Phase-sensitive amplification in silicon photonic crystal waveguides,” Opt. Lett. 39, 363–366 (2014).
    [Crossref] [PubMed]
  5. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
    [Crossref]
  6. S. Lefrancois, A. S. Clark, and B. J. Eggleton, “Optimizing optical bragg scattering for single-photon frequency conversion,” Phys. Rev. A 91, 013837 (2015).
    [Crossref]
  7. C. Xiong, M. J. Collins, M. J. Steel, T. F. Krauss, B. J. Eggleton, and A. S. Clark, “Photonic crystal waveguide sources of photons for quantum communication applications,” IEEE J. Sel. Topics Quantum Electron. 21, 1–10 (2015).
  8. X. Liu, B. Kuyken, W. M. Green, R. M. Osgood, R. Baets, and G. Roelkens, “Mid-infrared nonlinear silicon photonics,” Proc. SPIE8990, 89900O–89900O-10 (2014).
  9. J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Technol. Lett. 25, 1699–1702 (2013).
    [Crossref]
  10. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. Fedeli, and D. Moss, “Amorphous silicon nanowires combining high nonlinearity, fom and optical stability,” Opt. Express 20, 22609–22615 (2012).
    [Crossref] [PubMed]
  11. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011).
    [Crossref] [PubMed]
  12. T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (soh) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
    [Crossref] [PubMed]
  13. W. Zhang, S. Serna, N. Dubreuil, and E. Cassan, “Nonlinear optimization of slot si waveguides: Tpa minimization with fom tpa up to 4.25,” Opt. Lett. 40, 1212–1215 (2015).
    [Crossref] [PubMed]
  14. A. Spott, T. Baehr-Jones, R. Ding, Y. Liu, R. Bojko, T. OMalley, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Photolithographically fabricated low-loss asymmetric silicon slot waveguides,” Opt. Express 19, 10950–10958 (2011).
    [Crossref] [PubMed]
  15. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [Crossref] [PubMed]
  16. S. K. Selvaraja, P. D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. V. Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm cmos platform,” Optical Fiber Communication Conference p. Th2A.33 (2014).
  17. D. Shimura, T. Horikawa, H. Okayama, S.-H. Jeong, M. Tokushima, H. Sasaki, and T. Mogami, “High precision si waveguide devices designed for 1.31µ m and 1.55µ m wavelengths on 300mm-soi,” Group IV Photonics (GFP), 2014 IEEE 11th International Conference on pp. 31–32 (2014).
  18. S. Serna, W. Zhang, X. Leroux, D. Gao, D. Zhang, L. Vivien, and E. Cassan, “Potential for large optical gain improvement of erbium-doped slot waveguide amplifiers in silicon photonics,” J. Opt. Soc. Am. B 31, 2021–2028 (2014).
    [Crossref]
  19. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low v π l modulator with ghz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18, 15618–15623 (2010).
    [Crossref] [PubMed]
  20. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
    [Crossref] [PubMed]
  21. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
    [Crossref] [PubMed]
  22. M. T. Beels, M. S. Fleischman, I. Biaggio, B. Breiten, M. Jordan, and F. Diederich, “Compact tcbd based molecules and supramolecular assemblies for third-order nonlinear optics,” Opt. Mater. Express 2, 294–303 (2012).
    [Crossref]
  23. A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Liow, M. Hiltunen, A. Tervonen, G. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19, 26275–26282 (2011).
    [Crossref]
  24. J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proceedings J (Optoelectronics) 137, 282–289 (1990).
    [Crossref]
  25. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719 (2005).
    [Crossref]
  26. E. Jaberansary, T. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. Chong, “Scattering loss estimation using 2-d fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
    [Crossref]
  27. C. Ciminelli, F. DellOlio, V. M. Passaro, and M. N. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quant. Electron. 41, 285–298 (2009).
    [Crossref]
  28. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss si/sio 2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
    [Crossref]
  29. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007).
    [Crossref] [PubMed]
  30. J. R. Ong, “Linear and nonlinear photonics using resonant silicon nanophotonic devices,” Ph.D. thesis, University of California, San Diego (2014).
  31. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19, 3952–3961 (2011).
    [Crossref] [PubMed]
  32. A. Di Falco, L. OFaolain, and T. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
    [Crossref]
  33. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745 (2008).
    [Crossref] [PubMed]
  34. L. Christowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems, (Cambridge University Press, 2015).
  35. X. Bai, H. Liu, Q. Sun, N. Huang, and Z. Wang, “Broadband and efficient wavelength conversion in a slot-width switching silicon–organic hybrid waveguide,” J. Mod. Opt. pp. 1–8 (2015).
    [Crossref]
  36. B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008).
    [Crossref]

2015 (4)

S. Lefrancois, A. S. Clark, and B. J. Eggleton, “Optimizing optical bragg scattering for single-photon frequency conversion,” Phys. Rev. A 91, 013837 (2015).
[Crossref]

C. Xiong, M. J. Collins, M. J. Steel, T. F. Krauss, B. J. Eggleton, and A. S. Clark, “Photonic crystal waveguide sources of photons for quantum communication applications,” IEEE J. Sel. Topics Quantum Electron. 21, 1–10 (2015).

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2, 88–94 (2015).
[Crossref]

W. Zhang, S. Serna, N. Dubreuil, and E. Cassan, “Nonlinear optimization of slot si waveguides: Tpa minimization with fom tpa up to 4.25,” Opt. Lett. 40, 1212–1215 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (2)

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Technol. Lett. 25, 1699–1702 (2013).
[Crossref]

E. Jaberansary, T. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. Chong, “Scattering loss estimation using 2-d fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

2012 (3)

2011 (5)

2010 (2)

2009 (2)

2008 (3)

A. Di Falco, L. OFaolain, and T. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
[Crossref]

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008).
[Crossref]

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745 (2008).
[Crossref] [PubMed]

2007 (2)

2005 (1)

2004 (1)

2001 (1)

1990 (1)

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proceedings J (Optoelectronics) 137, 282–289 (1990).
[Crossref]

Absil, P.

S. K. Selvaraja, P. D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. V. Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm cmos platform,” Optical Fiber Communication Conference p. Th2A.33 (2014).

Agrawal, G. P.

Aguinaldo, R.

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Technol. Lett. 25, 1699–1702 (2013).
[Crossref]

Alasaarela, T.

Alloatti, L.

Armenise, M. N.

C. Ciminelli, F. DellOlio, V. M. Passaro, and M. N. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quant. Electron. 41, 285–298 (2009).
[Crossref]

Azzini, S.

Baehr-Jones, T.

Baets, R.

Bai, X.

X. Bai, H. Liu, Q. Sun, N. Huang, and Z. Wang, “Broadband and efficient wavelength conversion in a slot-width switching silicon–organic hybrid waveguide,” J. Mod. Opt. pp. 1–8 (2015).
[Crossref]

Bajoni, D.

Barklund, A.

Barwicz, T.

Beels, M. T.

Ben Bakir, B.

Benight, S.

Biaggio, I.

Bogaerts, W.

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[Crossref] [PubMed]

S. K. Selvaraja, P. D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. V. Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm cmos platform,” Optical Fiber Communication Conference p. Th2A.33 (2014).

Bogatscher, S.

Bojko, R.

Bourdelle, K.

S. K. Selvaraja, P. D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. V. Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm cmos platform,” Optical Fiber Communication Conference p. Th2A.33 (2014).

Breiten, B.

Cailler, C.

S. K. Selvaraja, P. D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. V. Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm cmos platform,” Optical Fiber Communication Conference p. Th2A.33 (2014).

Camacho, R. M.

Campenhout, J. V.

S. K. Selvaraja, P. D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. V. Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm cmos platform,” Optical Fiber Communication Conference p. Th2A.33 (2014).

Carletti, L.

Cassan, E.

Cerrina, F.

Chong, H. M.

E. Jaberansary, T. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. Chong, “Scattering loss estimation using 2-d fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

Christowski, L.

L. Christowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems, (Cambridge University Press, 2015).

Ciminelli, C.

C. Ciminelli, F. DellOlio, V. M. Passaro, and M. N. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quant. Electron. 41, 285–298 (2009).
[Crossref]

Clader, B. D.

Clark, A. S.

S. Lefrancois, A. S. Clark, and B. J. Eggleton, “Optimizing optical bragg scattering for single-photon frequency conversion,” Phys. Rev. A 91, 013837 (2015).
[Crossref]

C. Xiong, M. J. Collins, M. J. Steel, T. F. Krauss, B. J. Eggleton, and A. S. Clark, “Photonic crystal waveguide sources of photons for quantum communication applications,” IEEE J. Sel. Topics Quantum Electron. 21, 1–10 (2015).

Collins, M. J.

C. Xiong, M. J. Collins, M. J. Steel, T. F. Krauss, B. J. Eggleton, and A. S. Clark, “Photonic crystal waveguide sources of photons for quantum communication applications,” IEEE J. Sel. Topics Quantum Electron. 21, 1–10 (2015).

Dalton, L.

DellOlio, F.

C. Ciminelli, F. DellOlio, V. M. Passaro, and M. N. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quant. Electron. 41, 285–298 (2009).
[Crossref]

Densmore, A.

Di Falco, A.

A. Di Falco, L. OFaolain, and T. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
[Crossref]

Diederich, F.

Ding, R.

Dinu, R.

Dubreuil, N.

Dumon, P.

Eggleton, B. J.

C. Xiong, M. J. Collins, M. J. Steel, T. F. Krauss, B. J. Eggleton, and A. S. Clark, “Photonic crystal waveguide sources of photons for quantum communication applications,” IEEE J. Sel. Topics Quantum Electron. 21, 1–10 (2015).

S. Lefrancois, A. S. Clark, and B. J. Eggleton, “Optimizing optical bragg scattering for single-photon frequency conversion,” Phys. Rev. A 91, 013837 (2015).
[Crossref]

Y. Zhang, C. Husko, J. Schröder, S. Lefrancois, I. H. Rey, T. F. Krauss, and B. J. Eggleton, “Phase-sensitive amplification in silicon photonic crystal waveguides,” Opt. Lett. 39, 363–366 (2014).
[Crossref] [PubMed]

Esembeson, B.

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008).
[Crossref]

Fedeli, J.

Fedeli, J.-M.

Fleischman, M. S.

Foster, A. C.

Fournier, M.

Freude, W.

Gaeta, A. L.

Galili, M.

Galli, M.

Gao, D.

Gould, M.

Grassani, D.

Green, W. M.

X. Liu, B. Kuyken, W. M. Green, R. M. Osgood, R. Baets, and G. Roelkens, “Mid-infrared nonlinear silicon photonics,” Proc. SPIE8990, 89900O–89900O-10 (2014).

Grillet, C.

Grosse, P.

Haus, H. A.

Hendrickson, S. M.

Heyn, P. D.

S. K. Selvaraja, P. D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. V. Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm cmos platform,” Optical Fiber Communication Conference p. Th2A.33 (2014).

Hill, C.

Hillerkuss, D.

Hiltunen, M.

Hochberg, M.

Honkanen, S.

Horikawa, T.

D. Shimura, T. Horikawa, H. Okayama, S.-H. Jeong, M. Tokushima, H. Sasaki, and T. Mogami, “High precision si waveguide devices designed for 1.31µ m and 1.55µ m wavelengths on 300mm-soi,” Group IV Photonics (GFP), 2014 IEEE 11th International Conference on pp. 31–32 (2014).

Hu, H.

Huang, N.

X. Bai, H. Liu, Q. Sun, N. Huang, and Z. Wang, “Broadband and efficient wavelength conversion in a slot-width switching silicon–organic hybrid waveguide,” J. Mod. Opt. pp. 1–8 (2015).
[Crossref]

Huang, S.

Husko, C.

Hvam, J. M.

Jaberansary, E.

E. Jaberansary, T. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. Chong, “Scattering loss estimation using 2-d fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

Jacome, L.

Janz, S.

Jen, A.

Jen, A. K.-Y.

Jeong, S.-H.

D. Shimura, T. Horikawa, H. Okayama, S.-H. Jeong, M. Tokushima, H. Sasaki, and T. Mogami, “High precision si waveguide devices designed for 1.31µ m and 1.55µ m wavelengths on 300mm-soi,” Group IV Photonics (GFP), 2014 IEEE 11th International Conference on pp. 31–32 (2014).

Jeppesen, P.

Ji, H.

Jordan, M.

Karvonen, L.

Kimerling, L. C.

Koos, C.

Korn, D.

Krauss, T.

A. Di Falco, L. OFaolain, and T. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
[Crossref]

Krauss, T. F.

C. Xiong, M. J. Collins, M. J. Steel, T. F. Krauss, B. J. Eggleton, and A. S. Clark, “Photonic crystal waveguide sources of photons for quantum communication applications,” IEEE J. Sel. Topics Quantum Electron. 21, 1–10 (2015).

Y. Zhang, C. Husko, J. Schröder, S. Lefrancois, I. H. Rey, T. F. Krauss, and B. J. Eggleton, “Phase-sensitive amplification in silicon photonic crystal waveguides,” Opt. Lett. 39, 363–366 (2014).
[Crossref] [PubMed]

Kumar, R.

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Technol. Lett. 25, 1699–1702 (2013).
[Crossref]

Kuyken, B.

X. Liu, B. Kuyken, W. M. Green, R. M. Osgood, R. Baets, and G. Roelkens, “Mid-infrared nonlinear silicon photonics,” Proc. SPIE8990, 89900O–89900O-10 (2014).

Lacey, J.

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proceedings J (Optoelectronics) 137, 282–289 (1990).
[Crossref]

Lee, K. K.

Lefrancois, S.

S. Lefrancois, A. S. Clark, and B. J. Eggleton, “Optimizing optical bragg scattering for single-photon frequency conversion,” Phys. Rev. A 91, 013837 (2015).
[Crossref]

Y. Zhang, C. Husko, J. Schröder, S. Lefrancois, I. H. Rey, T. F. Krauss, and B. J. Eggleton, “Phase-sensitive amplification in silicon photonic crystal waveguides,” Opt. Lett. 39, 363–366 (2014).
[Crossref] [PubMed]

Lepage, G.

S. K. Selvaraja, P. D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. V. Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm cmos platform,” Optical Fiber Communication Conference p. Th2A.33 (2014).

Leroux, X.

Leuthold, J.

Levy, J. S.

Li, F.

Li, J.

Lim, D. R.

Liow, T.

Lipson, M.

Liscidini, M.

Liu, H.

X. Bai, H. Liu, Q. Sun, N. Huang, and Z. Wang, “Broadband and efficient wavelength conversion in a slot-width switching silicon–organic hybrid waveguide,” J. Mod. Opt. pp. 1–8 (2015).
[Crossref]

Liu, X.

X. Liu, B. Kuyken, W. M. Green, R. M. Osgood, R. Baets, and G. Roelkens, “Mid-infrared nonlinear silicon photonics,” Proc. SPIE8990, 89900O–89900O-10 (2014).

Liu, Y.

Lo, G.

Luo, J.

Ma, R.

Masaud, T.

E. Jaberansary, T. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. Chong, “Scattering loss estimation using 2-d fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

Mashanovich, G. Z.

E. Jaberansary, T. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. Chong, “Scattering loss estimation using 2-d fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

Mathlouthi, W.

McNab, S.

Menezo, S.

Michinobu, T.

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008).
[Crossref]

Milosevic, M. M.

E. Jaberansary, T. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. Chong, “Scattering loss estimation using 2-d fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

Mogami, T.

D. Shimura, T. Horikawa, H. Okayama, S.-H. Jeong, M. Tokushima, H. Sasaki, and T. Mogami, “High precision si waveguide devices designed for 1.31µ m and 1.55µ m wavelengths on 300mm-soi,” Group IV Photonics (GFP), 2014 IEEE 11th International Conference on pp. 31–32 (2014).

Monat, C.

Mookherjea, S.

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Technol. Lett. 25, 1699–1702 (2013).
[Crossref]

Moss, D.

Nedeljkovic, M.

E. Jaberansary, T. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. Chong, “Scattering loss estimation using 2-d fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

OFaolain, L.

A. Di Falco, L. OFaolain, and T. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
[Crossref]

Okawachi, Y.

Okayama, H.

D. Shimura, T. Horikawa, H. Okayama, S.-H. Jeong, M. Tokushima, H. Sasaki, and T. Mogami, “High precision si waveguide devices designed for 1.31µ m and 1.55µ m wavelengths on 300mm-soi,” Group IV Photonics (GFP), 2014 IEEE 11th International Conference on pp. 31–32 (2014).

OMalley, T.

Ong, J. R.

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Technol. Lett. 25, 1699–1702 (2013).
[Crossref]

J. R. Ong, “Linear and nonlinear photonics using resonant silicon nanophotonic devices,” Ph.D. thesis, University of California, San Diego (2014).

Ong, P.

S. K. Selvaraja, P. D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. V. Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm cmos platform,” Optical Fiber Communication Conference p. Th2A.33 (2014).

Osgood, R. M.

X. Liu, B. Kuyken, W. M. Green, R. M. Osgood, R. Baets, and G. Roelkens, “Mid-infrared nonlinear silicon photonics,” Proc. SPIE8990, 89900O–89900O-10 (2014).

Oxenløwe, L. K.

Palmer, R.

Paniccia, M.

Passaro, V. M.

C. Ciminelli, F. DellOlio, V. M. Passaro, and M. N. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quant. Electron. 41, 285–298 (2009).
[Crossref]

Payne, F.

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proceedings J (Optoelectronics) 137, 282–289 (1990).
[Crossref]

Pelusi, M.

Peucheret, C.

Pomerene, A.

Poulton, C.

Pu, M.

Reinhardt, W.

Rey, I. H.

Rigny, A.

S. K. Selvaraja, P. D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. V. Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm cmos platform,” Optical Fiber Communication Conference p. Th2A.33 (2014).

Roelkens, G.

X. Liu, B. Kuyken, W. M. Green, R. M. Osgood, R. Baets, and G. Roelkens, “Mid-infrared nonlinear silicon photonics,” Proc. SPIE8990, 89900O–89900O-10 (2014).

Rong, H.

Saha, K.

Sasaki, H.

D. Shimura, T. Horikawa, H. Okayama, S.-H. Jeong, M. Tokushima, H. Sasaki, and T. Mogami, “High precision si waveguide devices designed for 1.31µ m and 1.55µ m wavelengths on 300mm-soi,” Group IV Photonics (GFP), 2014 IEEE 11th International Conference on pp. 31–32 (2014).

Säynätjoki, A.

Schröder, J.

Scimeca, M. L.

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (soh) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
[Crossref] [PubMed]

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008).
[Crossref]

Selvaraja, S. K.

S. K. Selvaraja, P. D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. V. Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm cmos platform,” Optical Fiber Communication Conference p. Th2A.33 (2014).

Serna, S.

Shimura, D.

D. Shimura, T. Horikawa, H. Okayama, S.-H. Jeong, M. Tokushima, H. Sasaki, and T. Mogami, “High precision si waveguide devices designed for 1.31µ m and 1.55µ m wavelengths on 300mm-soi,” Group IV Photonics (GFP), 2014 IEEE 11th International Conference on pp. 31–32 (2014).

Shin, J.

Sipe, J.

Sorel, M.

Spott, A.

Steel, M. J.

C. Xiong, M. J. Collins, M. J. Steel, T. F. Krauss, B. J. Eggleton, and A. S. Clark, “Photonic crystal waveguide sources of photons for quantum communication applications,” IEEE J. Sel. Topics Quantum Electron. 21, 1–10 (2015).

Strain, M. J.

Sullivan, P.

Sun, Q.

X. Bai, H. Liu, Q. Sun, N. Huang, and Z. Wang, “Broadband and efficient wavelength conversion in a slot-width switching silicon–organic hybrid waveguide,” J. Mod. Opt. pp. 1–8 (2015).
[Crossref]

Tervonen, A.

Tokushima, M.

D. Shimura, T. Horikawa, H. Okayama, S.-H. Jeong, M. Tokushima, H. Sasaki, and T. Mogami, “High precision si waveguide devices designed for 1.31µ m and 1.55µ m wavelengths on 300mm-soi,” Group IV Photonics (GFP), 2014 IEEE 11th International Conference on pp. 31–32 (2014).

Tu, X.

Vallaitis, T.

VanThourhout, D.

S. K. Selvaraja, P. D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. V. Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm cmos platform,” Optical Fiber Communication Conference p. Th2A.33 (2014).

Vivien, L.

Vlasov, Y.

Wang, Z.

X. Bai, H. Liu, Q. Sun, N. Huang, and Z. Wang, “Broadband and efficient wavelength conversion in a slot-width switching silicon–organic hybrid waveguide,” J. Mod. Opt. pp. 1–8 (2015).
[Crossref]

Wen, Y. H.

Wieland, J.

Winroth, G.

S. K. Selvaraja, P. D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. V. Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm cmos platform,” Optical Fiber Communication Conference p. Th2A.33 (2014).

Witzens, J.

Xiong, C.

C. Xiong, M. J. Collins, M. J. Steel, T. F. Krauss, B. J. Eggleton, and A. S. Clark, “Photonic crystal waveguide sources of photons for quantum communication applications,” IEEE J. Sel. Topics Quantum Electron. 21, 1–10 (2015).

Xu, D.

Yin, L.

Yu, H.

Yvind, K.

Zhang, D.

Zhang, W.

Zhang, Y.

Adv. Mater. (1)

B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, and I. Biaggio, “A high-optical quality supramolecular assembly for third-order integrated nonlinear optics,” Adv. Mater. 20, 4584–4587 (2008).
[Crossref]

Appl. Phys. Lett. (1)

A. Di Falco, L. OFaolain, and T. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008).
[Crossref]

IEE Proceedings J (Optoelectronics) (1)

J. Lacey and F. Payne, “Radiation loss from planar waveguides with random wall imperfections,” IEE Proceedings J (Optoelectronics) 137, 282–289 (1990).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

C. Xiong, M. J. Collins, M. J. Steel, T. F. Krauss, B. J. Eggleton, and A. S. Clark, “Photonic crystal waveguide sources of photons for quantum communication applications,” IEEE J. Sel. Topics Quantum Electron. 21, 1–10 (2015).

IEEE Photon. J. (1)

E. Jaberansary, T. Masaud, M. M. Milosevic, M. Nedeljkovic, G. Z. Mashanovich, and H. M. Chong, “Scattering loss estimation using 2-d fourier analysis and modeling of sidewall roughness on optical waveguides,” IEEE Photon. J. 5, 6601010 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient cw four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Technol. Lett. 25, 1699–1702 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (12)

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low v π l modulator with ghz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18, 15618–15623 (2010).
[Crossref] [PubMed]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011).
[Crossref] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007).
[Crossref] [PubMed]

A. Spott, T. Baehr-Jones, R. Ding, Y. Liu, R. Bojko, T. OMalley, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Photolithographically fabricated low-loss asymmetric silicon slot waveguides,” Opt. Express 19, 10950–10958 (2011).
[Crossref] [PubMed]

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref] [PubMed]

F. Li, M. Pelusi, D. Xu, A. Densmore, R. Ma, S. Janz, and D. Moss, “Error-free all-optical demultiplexing at 160gb/s via fwm in a silicon nanowire,” Opt. Express 18, 3905–3910 (2010).
[Crossref] [PubMed]

M. Pu, H. Hu, C. Peucheret, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide,” Opt. Express 20, 16374–16380 (2012).
[Crossref]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. Fedeli, and D. Moss, “Amorphous silicon nanowires combining high nonlinearity, fom and optical stability,” Opt. Express 20, 22609–22615 (2012).
[Crossref] [PubMed]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (soh) waveguide geometries,” Opt. Express 17, 17357–17368 (2009).
[Crossref] [PubMed]

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745 (2008).
[Crossref] [PubMed]

A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Liow, M. Hiltunen, A. Tervonen, G. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19, 26275–26282 (2011).
[Crossref]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19, 3952–3961 (2011).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. Express (1)

Opt. Quant. Electron. (1)

C. Ciminelli, F. DellOlio, V. M. Passaro, and M. N. Armenise, “Fully three-dimensional accurate modeling of scattering loss in optical waveguides,” Opt. Quant. Electron. 41, 285–298 (2009).
[Crossref]

Optica (1)

Phys. Rev. A (1)

S. Lefrancois, A. S. Clark, and B. J. Eggleton, “Optimizing optical bragg scattering for single-photon frequency conversion,” Phys. Rev. A 91, 013837 (2015).
[Crossref]

Other (6)

X. Liu, B. Kuyken, W. M. Green, R. M. Osgood, R. Baets, and G. Roelkens, “Mid-infrared nonlinear silicon photonics,” Proc. SPIE8990, 89900O–89900O-10 (2014).

S. K. Selvaraja, P. D. Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K. Bourdelle, W. Bogaerts, D. VanThourhout, J. V. Campenhout, and P. Absil, “Highly uniform and low-loss passive silicon photonics devices using a 300mm cmos platform,” Optical Fiber Communication Conference p. Th2A.33 (2014).

D. Shimura, T. Horikawa, H. Okayama, S.-H. Jeong, M. Tokushima, H. Sasaki, and T. Mogami, “High precision si waveguide devices designed for 1.31µ m and 1.55µ m wavelengths on 300mm-soi,” Group IV Photonics (GFP), 2014 IEEE 11th International Conference on pp. 31–32 (2014).

J. R. Ong, “Linear and nonlinear photonics using resonant silicon nanophotonic devices,” Ph.D. thesis, University of California, San Diego (2014).

L. Christowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems, (Cambridge University Press, 2015).

X. Bai, H. Liu, Q. Sun, N. Huang, and Z. Wang, “Broadband and efficient wavelength conversion in a slot-width switching silicon–organic hybrid waveguide,” J. Mod. Opt. pp. 1–8 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Silicon-organic hybrid slot waveguide geometry. The nonlinear polymer cladding is DDMEBT, the waveguide height h is 220nm.
Fig. 2
Fig. 2 Contour plots of FOMTPA with varying slot waveguide geometries. Data above the anti-diagonals are not plotted due to the symmetry of the structure. A blue background indicates single-mode geometries and an amber background indicates multi-mode geometries.
Fig. 3
Fig. 3 Contour plots of Re(γwg) [W−1 m−1] with varying slot waveguide geometries. Data above the anti-diagonals are not plotted due to the symmetry of the structure. A blue background indicates single-mode geometries and an amber background indicates multi-mode geometries.
Fig. 4
Fig. 4 Plots of roughness scattering loss in dB/cm with varying slot waveguide geometries. Data above the anti-diagonals are not plotted due to the symmetry of the structure.
Fig. 5
Fig. 5 Plots of FWM conversion efficiency η in dB with varying slot waveguide geometries. Waveguide nonlinearity γwg and roughness scattering loss α correspond to the values in Fig. 2, 3 and 4. Pump power is fixed at P0 = 200mW. Waveguide length is chosen to be the linear loss optimized length L = 1.
Fig. 6
Fig. 6 Plots of FWM conversion efficiency η in dB with varying slot waveguide geometries. Waveguide length is L = 8mm.
Fig. 7
Fig. 7 FWM conversion efficiency η(dB) versus pump power P. Rib waveguide dimensions are 650 × 220 nm with a slab height of 70 nm. Slot waveguide dimensions are 260 × 220 nm for both cores, with slot width of 100nm. (a)η assuming no FCA. (b)η including the effects of FCA with varying free carrier lifetimes.
Fig. 8
Fig. 8 Steady state temperature change ΔT in the silicon slot waveguide under TPA heating at 1W pump power. The heat source has a uniform density of 0.215mW/(µm3) within the silicon cores.
Fig. 9
Fig. 9 Plots of FWM conversion efficiency η in dB with varying waveguide heights. Pump power is fixed at P0 = 200mW. Waveguide length is chosen to be the linear loss optimized length L = 1.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

γ w g = 3 ω 4 c Z 0 χ ( 3 ) | E | 4 d x d y | Re { E × H * } d x d y | 2 .
n 2 = 3 4 Z 0 n 0 2 Re { χ ( 3 ) }
α 2 = 3 2 k 0 Z 0 n 0 2 Im { χ ( 3 ) } .
η = ( γ P ¯ L ) 2 e α L e 4 γ P ¯ L
P ¯ = 1 2 γ L log ( 1 + 2 γ P 0 L )
η = ( γ 2 γ ) 2 [ log ( 1 + 2 γ P 0 α ( 1 e α L ) 1 + 2 γ P 0 α ( 1 e α L ) ] 2 e α L .
L o p t = log ( 1 ( e 1 ) α 2 γ P 0 ) α e 1 2 γ P 0 .

Metrics