Abstract

Based on the interaction between different spatial modes, semiconductor Bragg-reflection waveguides (BRWs) provide a highly functional platform for non-linear optics. For achieving any desired quantum optical functionality, we must control and engineer the properties of each spatial mode. To reach this purpose we extend the Fabry-Perot technique and achieve a detailed linear optical characterization of dispersive multimode semiconductor waveguides. With this efficient broadband spectral method we gain direct experimental access to the relevant modes of our BRWs and determine their group velocities. Furthermore, we show that our waveguides have lower than expected loss coefficients. This renders them suitable for integrated quantum optics applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A single-mode laser based on asymmetric Bragg reflection waveguides

Yu Li, Yanping Xi, Xun Li, and Wei-Ping Huang
Opt. Express 17(13) 11179-11186 (2009)

Continuous-wave second harmonic generation in Bragg reflection waveguides

Payam Abolghasem, Junbo Han, Bhavin J. Bijlani, Arghavan Arjmand, and Amr S. Helmy
Opt. Express 17(11) 9460-9467 (2009)

Single-sided Bragg reflection waveguides with multilayer core for monolithic semiconductor parametric devices

Payam Abolghasem and Amr S. Helmy
J. Opt. Soc. Am. B 29(6) 1367-1375 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman and R. H. Stolen, “Waveguides and fibers for nonlinear optics,” J. Opt. Soc. Am. B 6, 652–662 (1989).
    [Crossref]
  2. M. E. Anderson, M. Beck, M. G. Raymer, and J. D. Bierlein, “Quadrature squeezing with ultrashort pulses in nonlinear-optical waveguides,” Opt. Lett. 20, 620–622 (1995).
    [Crossref] [PubMed]
  3. D. K. Serkland, M. M. Fejer, R. L. Byer, and Y. Yamamoto, “Squeezing in a quasi-phase-matched LiNbO3 waveguide,” Opt. Lett. 20, 1649–1651 (1995).
    [Crossref] [PubMed]
  4. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
    [Crossref]
  5. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
    [Crossref]
  6. I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62–64 (1978).
    [Crossref]
  7. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
    [Crossref]
  8. S. Taebi, M. Khorasaninejad, and S. S. Saini, “Modified Fabry-Perot interferometric method for waveguide loss measurement,” Appl. Opt. 47, 6625–6630 (2008).
    [Crossref] [PubMed]
  9. D. Hofstetter and R. L. Thornton, “Theory of loss measurements of Fabry-Perot resonators by Fourier analysis of the transmission spectrum,” Opt. Lett. 22, 1831–1833 (1997).
    [Crossref]
  10. D. Hofstetter and R. L. Thornton, “Measurement of optical cavity properties in semiconductor lasers by Fourier analysis of the emission spectrum,” IEEE J. Quant. Electron. 34, 1914–1923 (1998).
    [Crossref]
  11. S. Chen, Q. Yan, Q. Xu, Z. Fan, and J. Liu, “Optical waveguide propagation loss measurement using multiple reflections method,” Opt. Comm. 256, 68–72 (2005).
    [Crossref]
  12. M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
    [Crossref]
  13. B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
    [Crossref] [PubMed]
  14. D. B. Anderson and J. T. Boyd, “Wideband CO2 laser second harmonic generation phase matched in GaAs thin-film waveguides,” Appl. Phys. Lett. 19, 266–268 (1971).
    [Crossref]
  15. M. G. Roelofs, A. Suna, W. Bindloss, and J. D. Bierlein, “Characterization of optical waveguides in KTiOPO4 by second harmonic spectroscopy,” J. Appl. Phys. 76, 4999–5006 (1994).
    [Crossref]
  16. K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).
    [Crossref]
  17. A. D. Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
    [Crossref]
  18. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express 17, 9460–9467 (2009).
    [Crossref] [PubMed]
  19. M. Karpinski, C. Radzewicz, and K. Banaszek, “Experimental characterization of three-wave mixing in a multimode nonlinear KTiOPO4 waveguide,” Appl. Phys. Lett. 94, 181105 (2009).
    [Crossref]
  20. A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P. J. Mosley, and C. Silberhorn, “Spatial modes in waveguided parametric downconversion,” Phys. Rev. A 80, 033829 (2009).
    [Crossref]
  21. P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103, 233901 (2009).
    [Crossref]
  22. R. Machulka, J. Svozilik, J. Soubusta, J. Perina, and O. Haderka, “Spatial and spectral properties of fields generated by pulsed second-harmonic generation in a periodically poled potassium-titanyl-phosphate waveguide,” Phys. Rev. A 87, 013836 (2013).
    [Crossref]
  23. J. D. Bierlein, A. Ferretti, L. H. Brixner, and W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
    [Crossref]
  24. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodicall poled KTP waveguides and bulk crystals,” Opt. Express 15, 7479–7488 (2007).
    [Crossref] [PubMed]
  25. A. Helmy, P. Abolghasem, J. S. Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
    [Crossref]
  26. A. Valles, M. Hendrych, J. Svozilik, R. Machulka, P. Abolghasem, D. Kang, B. J. Bijlani, A. S. Helmy, and J. P. Torres, “Generation of polarization-entangled photon pairs in a Bragg reflection waveguide,” Opt. Express 21, 10841–10849 (2013).
    [Crossref] [PubMed]
  27. J. J. Wathen, P. Apiratikul, C. J. K. Richardson, G. A. Porkolab, G. M. Carter, and T. E. Murphy, “Efficient continuous-wave four-wave mixing in bandgap-engineered AlGaAs waveguides,” Opt. Lett. 39, 3161–3164 (2014).
    [Crossref] [PubMed]
  28. L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
    [Crossref] [PubMed]
  29. R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
    [Crossref] [PubMed]
  30. D. Menashe, M. Tur, and Y. Danziger, “Interferometric technique for measuring dispersion of high order modes in optical fibres,” Electron. Lett. 37, 1439–1440 (2001).
    [Crossref]
  31. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008).
    [Crossref] [PubMed]
  32. T. Günthner, B. Pressl, K. Laiho, J. Geßler, S. Höfling, M. Kamp, C. Schneider, and G. Weihs, “Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide,” J. Opt. 17, 125201 (2015).
    [Crossref]
  33. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced Alx Ga1−x As Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
    [Crossref]
  34. C. M. Herzinger, C. C. Lu, T. A. DeTemple, and W. C. Chew, “The semiconductor waveguide facet reflectivity problem,” IEEE J. Quant. Electron. 29, 2273–2281 (1993).
    [Crossref]
  35. D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60, 754–767 (1986).
    [Crossref]
  36. A. Yariv and P. Yeh, Photonics (Oxford University, 2007), 6th ed.
  37. A. E. Siegman, Lasers (University Science Books, 1986).
  38. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of Alx Ga1−x As below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
    [Crossref]
  39. Princeton Instruments Spectroscopy Group, “Fully automated wavelength calibration method optimizes data accuracy,” (2011).
  40. K. Liu and F. Yu, “Accurate wavelength calibration method using system parameters for grating spectrometers,” Opt. Eng. 52, 013603 (2013).
    [Crossref]
  41. P. Jansson, Deconvolution of Images and Spectra (Academic Press, 1997).
  42. W. Guo, Y. Huang, C. Han, and L. Yu, “Measurement of gain spectrum for Fabry-Perot semiconductor lasers by the Fourier transform method with a deconvolution process,” IEEE J. Quant. Electron. 39, 716–721 (2003).
    [Crossref]

2015 (1)

T. Günthner, B. Pressl, K. Laiho, J. Geßler, S. Höfling, M. Kamp, C. Schneider, and G. Weihs, “Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide,” J. Opt. 17, 125201 (2015).
[Crossref]

2014 (1)

2013 (3)

R. Machulka, J. Svozilik, J. Soubusta, J. Perina, and O. Haderka, “Spatial and spectral properties of fields generated by pulsed second-harmonic generation in a periodically poled potassium-titanyl-phosphate waveguide,” Phys. Rev. A 87, 013836 (2013).
[Crossref]

A. Valles, M. Hendrych, J. Svozilik, R. Machulka, P. Abolghasem, D. Kang, B. J. Bijlani, A. S. Helmy, and J. P. Torres, “Generation of polarization-entangled photon pairs in a Bragg reflection waveguide,” Opt. Express 21, 10841–10849 (2013).
[Crossref] [PubMed]

K. Liu and F. Yu, “Accurate wavelength calibration method using system parameters for grating spectrometers,” Opt. Eng. 52, 013603 (2013).
[Crossref]

2012 (1)

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref] [PubMed]

2011 (1)

A. Helmy, P. Abolghasem, J. S. Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

2009 (6)

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express 17, 9460–9467 (2009).
[Crossref] [PubMed]

M. Karpinski, C. Radzewicz, and K. Banaszek, “Experimental characterization of three-wave mixing in a multimode nonlinear KTiOPO4 waveguide,” Appl. Phys. Lett. 94, 181105 (2009).
[Crossref]

A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P. J. Mosley, and C. Silberhorn, “Spatial modes in waveguided parametric downconversion,” Phys. Rev. A 80, 033829 (2009).
[Crossref]

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103, 233901 (2009).
[Crossref]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced Alx Ga1−x As Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[Crossref]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[Crossref] [PubMed]

2008 (5)

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
[Crossref]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

S. Taebi, M. Khorasaninejad, and S. S. Saini, “Modified Fabry-Perot interferometric method for waveguide loss measurement,” Appl. Opt. 47, 6625–6630 (2008).
[Crossref] [PubMed]

J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, “Spatially and spectrally resolved imaging of modal content in large-mode-area fibers,” Opt. Express 16, 7233–7243 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

2005 (2)

A. D. Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

S. Chen, Q. Yan, Q. Xu, Z. Fan, and J. Liu, “Optical waveguide propagation loss measurement using multiple reflections method,” Opt. Comm. 256, 68–72 (2005).
[Crossref]

2003 (1)

W. Guo, Y. Huang, C. Han, and L. Yu, “Measurement of gain spectrum for Fabry-Perot semiconductor lasers by the Fourier transform method with a deconvolution process,” IEEE J. Quant. Electron. 39, 716–721 (2003).
[Crossref]

2001 (2)

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).
[Crossref]

D. Menashe, M. Tur, and Y. Danziger, “Interferometric technique for measuring dispersion of high order modes in optical fibres,” Electron. Lett. 37, 1439–1440 (2001).
[Crossref]

2000 (1)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of Alx Ga1−x As below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[Crossref]

1998 (1)

D. Hofstetter and R. L. Thornton, “Measurement of optical cavity properties in semiconductor lasers by Fourier analysis of the emission spectrum,” IEEE J. Quant. Electron. 34, 1914–1923 (1998).
[Crossref]

1997 (1)

1995 (2)

1994 (1)

M. G. Roelofs, A. Suna, W. Bindloss, and J. D. Bierlein, “Characterization of optical waveguides in KTiOPO4 by second harmonic spectroscopy,” J. Appl. Phys. 76, 4999–5006 (1994).
[Crossref]

1993 (1)

C. M. Herzinger, C. C. Lu, T. A. DeTemple, and W. C. Chew, “The semiconductor waveguide facet reflectivity problem,” IEEE J. Quant. Electron. 29, 2273–2281 (1993).
[Crossref]

1989 (1)

1987 (1)

J. D. Bierlein, A. Ferretti, L. H. Brixner, and W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[Crossref]

1986 (1)

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60, 754–767 (1986).
[Crossref]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[Crossref]

1978 (1)

I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62–64 (1978).
[Crossref]

1971 (1)

D. B. Anderson and J. T. Boyd, “Wideband CO2 laser second harmonic generation phase matched in GaAs thin-film waveguides,” Appl. Phys. Lett. 19, 266–268 (1971).
[Crossref]

Abolghasem, P.

A. Valles, M. Hendrych, J. Svozilik, R. Machulka, P. Abolghasem, D. Kang, B. J. Bijlani, A. S. Helmy, and J. P. Torres, “Generation of polarization-entangled photon pairs in a Bragg reflection waveguide,” Opt. Express 21, 10841–10849 (2013).
[Crossref] [PubMed]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref] [PubMed]

A. Helmy, P. Abolghasem, J. S. Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express 17, 9460–9467 (2009).
[Crossref] [PubMed]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced Alx Ga1−x As Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[Crossref]

Aitchison, J. S.

A. Helmy, P. Abolghasem, J. S. Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Allione, M.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
[Crossref]

Anderson, D. B.

D. B. Anderson and J. T. Boyd, “Wideband CO2 laser second harmonic generation phase matched in GaAs thin-film waveguides,” Appl. Phys. Lett. 19, 266–268 (1971).
[Crossref]

Anderson, M. E.

Apiratikul, P.

Arjmand, A.

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express 17, 9460–9467 (2009).
[Crossref] [PubMed]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced Alx Ga1−x As Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[Crossref]

Artemyev, M. V.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
[Crossref]

Aspnes, D. E.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60, 754–767 (1986).
[Crossref]

Assanto, G.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

Banaszek, K.

M. Karpinski, C. Radzewicz, and K. Banaszek, “Experimental characterization of three-wave mixing in a multimode nonlinear KTiOPO4 waveguide,” Appl. Phys. Lett. 94, 181105 (2009).
[Crossref]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367–1369 (2001).
[Crossref]

Battle, P.

Beausoleil, R. G.

Beck, M.

Berger, V.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

A. D. Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

Bhat, R.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60, 754–767 (1986).
[Crossref]

Bierlein, J. D.

M. E. Anderson, M. Beck, M. G. Raymer, and J. D. Bierlein, “Quadrature squeezing with ultrashort pulses in nonlinear-optical waveguides,” Opt. Lett. 20, 620–622 (1995).
[Crossref] [PubMed]

M. G. Roelofs, A. Suna, W. Bindloss, and J. D. Bierlein, “Characterization of optical waveguides in KTiOPO4 by second harmonic spectroscopy,” J. Appl. Phys. 76, 4999–5006 (1994).
[Crossref]

J. D. Bierlein, A. Ferretti, L. H. Brixner, and W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[Crossref]

Bijlani, B.

A. Helmy, P. Abolghasem, J. S. Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Bijlani, B. J.

Bindloss, W.

M. G. Roelofs, A. Suna, W. Bindloss, and J. D. Bierlein, “Characterization of optical waveguides in KTiOPO4 by second harmonic spectroscopy,” J. Appl. Phys. 76, 4999–5006 (1994).
[Crossref]

Boyd, J. T.

D. B. Anderson and J. T. Boyd, “Wideband CO2 laser second harmonic generation phase matched in GaAs thin-film waveguides,” Appl. Phys. Lett. 19, 266–268 (1971).
[Crossref]

Brixner, L. H.

J. D. Bierlein, A. Ferretti, L. H. Brixner, and W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[Crossref]

Büchter, D.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Byer, R. L.

Calligaro, M.

A. D. Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

Carter, G. M.

Chen, S.

S. Chen, Q. Yan, Q. Xu, Z. Fan, and J. Liu, “Optical waveguide propagation loss measurement using multiple reflections method,” Opt. Comm. 256, 68–72 (2005).
[Crossref]

Chew, W. C.

C. M. Herzinger, C. C. Lu, T. A. DeTemple, and W. C. Chew, “The semiconductor waveguide facet reflectivity problem,” IEEE J. Quant. Electron. 29, 2273–2281 (1993).
[Crossref]

Christ, A.

A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P. J. Mosley, and C. Silberhorn, “Spatial modes in waveguided parametric downconversion,” Phys. Rev. A 80, 033829 (2009).
[Crossref]

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103, 233901 (2009).
[Crossref]

Christodoulides, D. N.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

Danziger, Y.

D. Menashe, M. Tur, and Y. Danziger, “Interferometric technique for measuring dispersion of high order modes in optical fibres,” Electron. Lett. 37, 1439–1440 (2001).
[Crossref]

DeTemple, T. A.

C. M. Herzinger, C. C. Lu, T. A. DeTemple, and W. C. Chew, “The semiconductor waveguide facet reflectivity problem,” IEEE J. Quant. Electron. 29, 2273–2281 (1993).
[Crossref]

Ducci, S.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

A. D. Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

Eckstein, A.

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103, 233901 (2009).
[Crossref]

A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P. J. Mosley, and C. Silberhorn, “Spatial modes in waveguided parametric downconversion,” Phys. Rev. A 80, 033829 (2009).
[Crossref]

Fan, Z.

S. Chen, Q. Yan, Q. Xu, Z. Fan, and J. Liu, “Optical waveguide propagation loss measurement using multiple reflections method,” Opt. Comm. 256, 68–72 (2005).
[Crossref]

Fedutik, Y.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
[Crossref]

Fejer, M. M.

Ferretti, A.

J. D. Bierlein, A. Ferretti, L. H. Brixner, and W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[Crossref]

Fiorentino, M.

Gehrsitz, S.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of Alx Ga1−x As below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[Crossref]

Geßler, J.

T. Günthner, B. Pressl, K. Laiho, J. Geßler, S. Höfling, M. Kamp, C. Schneider, and G. Weihs, “Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide,” J. Opt. 17, 125201 (2015).
[Crossref]

Ghalmi, S.

Gourgon, C.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of Alx Ga1−x As below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[Crossref]

Grundkötter, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Günthner, T.

T. Günthner, B. Pressl, K. Laiho, J. Geßler, S. Höfling, M. Kamp, C. Schneider, and G. Weihs, “Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide,” J. Opt. 17, 125201 (2015).
[Crossref]

Guo, W.

W. Guo, Y. Huang, C. Han, and L. Yu, “Measurement of gain spectrum for Fabry-Perot semiconductor lasers by the Fourier transform method with a deconvolution process,” IEEE J. Quant. Electron. 39, 716–721 (2003).
[Crossref]

Haderka, O.

R. Machulka, J. Svozilik, J. Soubusta, J. Perina, and O. Haderka, “Spatial and spectral properties of fields generated by pulsed second-harmonic generation in a periodically poled potassium-titanyl-phosphate waveguide,” Phys. Rev. A 87, 013836 (2013).
[Crossref]

Han, C.

W. Guo, Y. Huang, C. Han, and L. Yu, “Measurement of gain spectrum for Fabry-Perot semiconductor lasers by the Fourier transform method with a deconvolution process,” IEEE J. Quant. Electron. 39, 716–721 (2003).
[Crossref]

Han, J.

A. Helmy, P. Abolghasem, J. S. Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Continuous-wave second harmonic generation in Bragg reflection waveguides,” Opt. Express 17, 9460–9467 (2009).
[Crossref] [PubMed]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced Alx Ga1−x As Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[Crossref]

Helmy, A.

A. Helmy, P. Abolghasem, J. S. Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Helmy, A. S.

Hendrych, M.

Herres, N.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of Alx Ga1−x As below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[Crossref]

Herrmann, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Herzinger, C. M.

C. M. Herzinger, C. C. Lu, T. A. DeTemple, and W. C. Chew, “The semiconductor waveguide facet reflectivity problem,” IEEE J. Quant. Electron. 29, 2273–2281 (1993).
[Crossref]

Höfling, S.

T. Günthner, B. Pressl, K. Laiho, J. Geßler, S. Höfling, M. Kamp, C. Schneider, and G. Weihs, “Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide,” J. Opt. 17, 125201 (2015).
[Crossref]

Hofstetter, D.

D. Hofstetter and R. L. Thornton, “Measurement of optical cavity properties in semiconductor lasers by Fourier analysis of the emission spectrum,” IEEE J. Quant. Electron. 34, 1914–1923 (1998).
[Crossref]

D. Hofstetter and R. L. Thornton, “Theory of loss measurements of Fabry-Perot resonators by Fourier analysis of the transmission spectrum,” Opt. Lett. 22, 1831–1833 (1997).
[Crossref]

Holmes, B.

A. Helmy, P. Abolghasem, J. S. Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Horn, R.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref] [PubMed]

Hsu, W. Y.

J. D. Bierlein, A. Ferretti, L. H. Brixner, and W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[Crossref]

Hu, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Huang, Y.

W. Guo, Y. Huang, C. Han, and L. Yu, “Measurement of gain spectrum for Fabry-Perot semiconductor lasers by the Fourier transform method with a deconvolution process,” IEEE J. Quant. Electron. 39, 716–721 (2003).
[Crossref]

Hutchings, D.

A. Helmy, P. Abolghasem, J. S. Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Jansson, P.

P. Jansson, Deconvolution of Images and Spectra (Academic Press, 1997).

Kaminow, I. P.

I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62–64 (1978).
[Crossref]

Kamp, M.

T. Günthner, B. Pressl, K. Laiho, J. Geßler, S. Höfling, M. Kamp, C. Schneider, and G. Weihs, “Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide,” J. Opt. 17, 125201 (2015).
[Crossref]

Kang, D.

Karpinski, M.

M. Karpinski, C. Radzewicz, and K. Banaszek, “Experimental characterization of three-wave mixing in a multimode nonlinear KTiOPO4 waveguide,” Appl. Phys. Lett. 94, 181105 (2009).
[Crossref]

Kelso, S. M.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60, 754–767 (1986).
[Crossref]

Khorasaninejad, M.

Laiho, K.

T. Günthner, B. Pressl, K. Laiho, J. Geßler, S. Höfling, M. Kamp, C. Schneider, and G. Weihs, “Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide,” J. Opt. 17, 125201 (2015).
[Crossref]

A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P. J. Mosley, and C. Silberhorn, “Spatial modes in waveguided parametric downconversion,” Phys. Rev. A 80, 033829 (2009).
[Crossref]

Lanco, L.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

A. D. Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

Lauckner, T.

A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P. J. Mosley, and C. Silberhorn, “Spatial modes in waveguided parametric downconversion,” Phys. Rev. A 80, 033829 (2009).
[Crossref]

Lederer, F.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

Leo, G.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

Likforman, J.-P.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

Liu, J.

S. Chen, Q. Yan, Q. Xu, Z. Fan, and J. Liu, “Optical waveguide propagation loss measurement using multiple reflections method,” Opt. Comm. 256, 68–72 (2005).
[Crossref]

Liu, K.

K. Liu and F. Yu, “Accurate wavelength calibration method using system parameters for grating spectrometers,” Opt. Eng. 52, 013603 (2013).
[Crossref]

Logan, R. A.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60, 754–767 (1986).
[Crossref]

Lu, C. C.

C. M. Herzinger, C. C. Lu, T. A. DeTemple, and W. C. Chew, “The semiconductor waveguide facet reflectivity problem,” IEEE J. Quant. Electron. 29, 2273–2281 (1993).
[Crossref]

Machulka, R.

A. Valles, M. Hendrych, J. Svozilik, R. Machulka, P. Abolghasem, D. Kang, B. J. Bijlani, A. S. Helmy, and J. P. Torres, “Generation of polarization-entangled photon pairs in a Bragg reflection waveguide,” Opt. Express 21, 10841–10849 (2013).
[Crossref] [PubMed]

R. Machulka, J. Svozilik, J. Soubusta, J. Perina, and O. Haderka, “Spatial and spectral properties of fields generated by pulsed second-harmonic generation in a periodically poled potassium-titanyl-phosphate waveguide,” Phys. Rev. A 87, 013836 (2013).
[Crossref]

Marcadet, X.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

Menashe, D.

D. Menashe, M. Tur, and Y. Danziger, “Interferometric technique for measuring dispersion of high order modes in optical fibres,” Electron. Lett. 37, 1439–1440 (2001).
[Crossref]

Min, Y.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Mosley, P. J.

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103, 233901 (2009).
[Crossref]

A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P. J. Mosley, and C. Silberhorn, “Spatial modes in waveguided parametric downconversion,” Phys. Rev. A 80, 033829 (2009).
[Crossref]

Munro, M. W.

Murphy, T. E.

Nicholson, J. W.

Nouroozi, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Orlov, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Ortiz, V.

A. D. Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

Perina, J.

R. Machulka, J. Svozilik, J. Soubusta, J. Perina, and O. Haderka, “Spatial and spectral properties of fields generated by pulsed second-harmonic generation in a periodically poled potassium-titanyl-phosphate waveguide,” Phys. Rev. A 87, 013836 (2013).
[Crossref]

Porkolab, G. A.

Pressl, B.

T. Günthner, B. Pressl, K. Laiho, J. Geßler, S. Höfling, M. Kamp, C. Schneider, and G. Weihs, “Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide,” J. Opt. 17, 125201 (2015).
[Crossref]

Quiring, V.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Radzewicz, C.

M. Karpinski, C. Radzewicz, and K. Banaszek, “Experimental characterization of three-wave mixing in a multimode nonlinear KTiOPO4 waveguide,” Appl. Phys. Lett. 94, 181105 (2009).
[Crossref]

Ramachandran, S.

Raymer, M. G.

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[Crossref]

Reinhart, F. K.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of Alx Ga1−x As below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[Crossref]

Reza, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Richardson, C. J. K.

Ricken, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Roberts, T. D.

Roelofs, M. G.

M. G. Roelofs, A. Suna, W. Bindloss, and J. D. Bierlein, “Characterization of optical waveguides in KTiOPO4 by second harmonic spectroscopy,” J. Appl. Phys. 76, 4999–5006 (1994).
[Crossref]

Rossi, A. D.

A. D. Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

Sagnes, I.

A. D. Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

Saini, S. S.

Schneider, C.

T. Günthner, B. Pressl, K. Laiho, J. Geßler, S. Höfling, M. Kamp, C. Schneider, and G. Weihs, “Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide,” J. Opt. 17, 125201 (2015).
[Crossref]

Segev, M.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

Serkland, D. K.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Sigg, H.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of Alx Ga1−x As below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[Crossref]

Silberberg, Y.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

Silberhorn, C.

A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P. J. Mosley, and C. Silberhorn, “Spatial modes in waveguided parametric downconversion,” Phys. Rev. A 80, 033829 (2009).
[Crossref]

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103, 233901 (2009).
[Crossref]

Sohler, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[Crossref]

Soubusta, J.

R. Machulka, J. Svozilik, J. Soubusta, J. Perina, and O. Haderka, “Spatial and spectral properties of fields generated by pulsed second-harmonic generation in a periodically poled potassium-titanyl-phosphate waveguide,” Phys. Rev. A 87, 013836 (2013).
[Crossref]

Spillane, S. M.

Stegeman, G. I.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

G. I. Stegeman and R. H. Stolen, “Waveguides and fibers for nonlinear optics,” J. Opt. Soc. Am. B 6, 652–662 (1989).
[Crossref]

Stolen, R. H.

Stulz, L. W.

I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62–64 (1978).
[Crossref]

Suche, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Suna, A.

M. G. Roelofs, A. Suna, W. Bindloss, and J. D. Bierlein, “Characterization of optical waveguides in KTiOPO4 by second harmonic spectroscopy,” J. Appl. Phys. 76, 4999–5006 (1994).
[Crossref]

Svozilik, J.

R. Machulka, J. Svozilik, J. Soubusta, J. Perina, and O. Haderka, “Spatial and spectral properties of fields generated by pulsed second-harmonic generation in a periodically poled potassium-titanyl-phosphate waveguide,” Phys. Rev. A 87, 013836 (2013).
[Crossref]

A. Valles, M. Hendrych, J. Svozilik, R. Machulka, P. Abolghasem, D. Kang, B. J. Bijlani, A. S. Helmy, and J. P. Torres, “Generation of polarization-entangled photon pairs in a Bragg reflection waveguide,” Opt. Express 21, 10841–10849 (2013).
[Crossref] [PubMed]

Taebi, S.

Temnov, V. V.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
[Crossref]

Thornton, R. L.

D. Hofstetter and R. L. Thornton, “Measurement of optical cavity properties in semiconductor lasers by Fourier analysis of the emission spectrum,” IEEE J. Quant. Electron. 34, 1914–1923 (1998).
[Crossref]

D. Hofstetter and R. L. Thornton, “Theory of loss measurements of Fabry-Perot resonators by Fourier analysis of the transmission spectrum,” Opt. Lett. 22, 1831–1833 (1997).
[Crossref]

Torres, J. P.

Tur, M.

D. Menashe, M. Tur, and Y. Danziger, “Interferometric technique for measuring dispersion of high order modes in optical fibres,” Electron. Lett. 37, 1439–1440 (2001).
[Crossref]

U’Ren, A. B.

Valles, A.

van Houwelingen, J. A. W.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

Vannahme, C.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Vonlanthen, A.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of Alx Ga1−x As below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[Crossref]

Wagner, S.

A. Helmy, P. Abolghasem, J. S. Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Walmsley, I. A.

Wathen, J. J.

Weihs, G.

T. Günthner, B. Pressl, K. Laiho, J. Geßler, S. Höfling, M. Kamp, C. Schneider, and G. Weihs, “Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide,” J. Opt. 17, 125201 (2015).
[Crossref]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref] [PubMed]

Woggon, U.

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
[Crossref]

Xu, Q.

S. Chen, Q. Yan, Q. Xu, Z. Fan, and J. Liu, “Optical waveguide propagation loss measurement using multiple reflections method,” Opt. Comm. 256, 68–72 (2005).
[Crossref]

Yablon, A. D.

Yamamoto, Y.

Yan, Q.

S. Chen, Q. Yan, Q. Xu, Z. Fan, and J. Liu, “Optical waveguide propagation loss measurement using multiple reflections method,” Opt. Comm. 256, 68–72 (2005).
[Crossref]

Yariv, A.

A. Yariv and P. Yeh, Photonics (Oxford University, 2007), 6th ed.

Yeh, P.

A. Yariv and P. Yeh, Photonics (Oxford University, 2007), 6th ed.

Younis, U.

A. Helmy, P. Abolghasem, J. S. Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Yu, F.

K. Liu and F. Yu, “Accurate wavelength calibration method using system parameters for grating spectrometers,” Opt. Eng. 52, 013603 (2013).
[Crossref]

Yu, L.

W. Guo, Y. Huang, C. Han, and L. Yu, “Measurement of gain spectrum for Fabry-Perot semiconductor lasers by the Fourier transform method with a deconvolution process,” IEEE J. Quant. Electron. 39, 716–721 (2003).
[Crossref]

Zbinden, H.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[Crossref]

Appl. Phys. Lett. (4)

I. P. Kaminow and L. W. Stulz, “Loss in cleaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett. 33, 62–64 (1978).
[Crossref]

D. B. Anderson and J. T. Boyd, “Wideband CO2 laser second harmonic generation phase matched in GaAs thin-film waveguides,” Appl. Phys. Lett. 19, 266–268 (1971).
[Crossref]

M. Karpinski, C. Radzewicz, and K. Banaszek, “Experimental characterization of three-wave mixing in a multimode nonlinear KTiOPO4 waveguide,” Appl. Phys. Lett. 94, 181105 (2009).
[Crossref]

J. D. Bierlein, A. Ferretti, L. H. Brixner, and W. Y. Hsu, “Fabrication and characterization of optical waveguides in KTiOPO4,” Appl. Phys. Lett. 50, 1216–1218 (1987).
[Crossref]

Electron. Lett. (1)

D. Menashe, M. Tur, and Y. Danziger, “Interferometric technique for measuring dispersion of high order modes in optical fibres,” Electron. Lett. 37, 1439–1440 (2001).
[Crossref]

IEEE J. Quant. Electron. (3)

C. M. Herzinger, C. C. Lu, T. A. DeTemple, and W. C. Chew, “The semiconductor waveguide facet reflectivity problem,” IEEE J. Quant. Electron. 29, 2273–2281 (1993).
[Crossref]

D. Hofstetter and R. L. Thornton, “Measurement of optical cavity properties in semiconductor lasers by Fourier analysis of the emission spectrum,” IEEE J. Quant. Electron. 34, 1914–1923 (1998).
[Crossref]

W. Guo, Y. Huang, C. Han, and L. Yu, “Measurement of gain spectrum for Fabry-Perot semiconductor lasers by the Fourier transform method with a deconvolution process,” IEEE J. Quant. Electron. 39, 716–721 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced Alx Ga1−x As Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[Crossref]

J. Appl. Phys. (4)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of Alx Ga1−x As below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[Crossref]

M. G. Roelofs, A. Suna, W. Bindloss, and J. D. Bierlein, “Characterization of optical waveguides in KTiOPO4 by second harmonic spectroscopy,” J. Appl. Phys. 76, 4999–5006 (1994).
[Crossref]

A. D. Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1-xAs,” J. Appl. Phys. 60, 754–767 (1986).
[Crossref]

J. Opt. (1)

T. Günthner, B. Pressl, K. Laiho, J. Geßler, S. Höfling, M. Kamp, C. Schneider, and G. Weihs, “Broadband indistinguishability from bright parametric downconversion in a semiconductor waveguide,” J. Opt. 17, 125201 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

A. Helmy, P. Abolghasem, J. S. Aitchison, B. Bijlani, J. Han, B. Holmes, D. Hutchings, U. Younis, and S. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photon. Rev. 5, 272–286 (2011).
[Crossref]

Nano Lett. (1)

M. Allione, V. V. Temnov, Y. Fedutik, U. Woggon, and M. V. Artemyev, “Surface plasmon mediated interference phenomena in low-q silver nanowire cavities,” Nano Lett. 8, 31–35 (2008).
[Crossref]

Opt. Comm. (1)

S. Chen, Q. Yan, Q. Xu, Z. Fan, and J. Liu, “Optical waveguide propagation loss measurement using multiple reflections method,” Opt. Comm. 256, 68–72 (2005).
[Crossref]

Opt. Eng. (1)

K. Liu and F. Yu, “Accurate wavelength calibration method using system parameters for grating spectrometers,” Opt. Eng. 52, 013603 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Opt. Photon. News (1)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photon. News 19, 24–31 (2008).
[Crossref]

Phys. Rep. (1)

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008).
[Crossref]

Phys. Rev. A (2)

A. Christ, K. Laiho, A. Eckstein, T. Lauckner, P. J. Mosley, and C. Silberhorn, “Spatial modes in waveguided parametric downconversion,” Phys. Rev. A 80, 033829 (2009).
[Crossref]

R. Machulka, J. Svozilik, J. Soubusta, J. Perina, and O. Haderka, “Spatial and spectral properties of fields generated by pulsed second-harmonic generation in a periodically poled potassium-titanyl-phosphate waveguide,” Phys. Rev. A 87, 013836 (2013).
[Crossref]

Phys. Rev. Lett. (3)

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett. 103, 233901 (2009).
[Crossref]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett. 97, 173901 (2006).
[Crossref] [PubMed]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref] [PubMed]

Other (4)

A. Yariv and P. Yeh, Photonics (Oxford University, 2007), 6th ed.

A. E. Siegman, Lasers (University Science Books, 1986).

P. Jansson, Deconvolution of Images and Spectra (Academic Press, 1997).

Princeton Instruments Spectroscopy Group, “Fully automated wavelength calibration method optimizes data accuracy,” (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Simulated spectrum of the fringe pattern of two dispersive (ng,1 = 4.1, ng,2 = 3.5) and lossy modes (R = 0.3, k = 10−5) representative of our 0.9 mm long sample. Excitation strength is 80% for Mode 1 and 20% for Mode 2. The peaks appear at multiples of the resonators optical lengths indicating the group effective index for each mode. There are five passes of each mode visible. The inset shows an excerpt of the simulated fringe pattern with its two-mode beating.
Fig. 2
Fig. 2 SEM image of a waveguide on the sample. (a) The ridge after carrying out the measurements. Note that the sample has been exposed to the laboratory atmosphere for more than half a year. (b) Close view of the core region. The SEM-measured thickness values were used in the detailed simulation in Appendix B.
Fig. 3
Fig. 3 (a) Experimental setup consisting of the SLED, polarization control optics (half-wave plate and sheet polarizer), coupling optics (microscope objective and aspheric lens) and spectrograph. For optimization on SHG (see main text), a tunable telecom laser is backcoupled and analyzed with another spectrometer. Ψ and γ are the geometrical parameters of the spectrograph used for calibration (see Appendix C). (b) Raw, 14.5 nm wide, stitched transmission spectrum where different colors show the three exposures of different wavelength ranges. The 210 Fabry-Perot fringes of the waveguide resonator are superimposed on the oscillation (FSR ≈ 2 nm) of another resonator formed by other optics. The power envelope is determined by the spectrum of the SLED.
Fig. 4
Fig. 4 (a) Modulus of the Fourier transform of the transmission spectrum from Fig. 3(b) (blue solid line). Superimposed is a second spectrum showing the result from optimizing by maximizing SHG in the waveguide (orange solid line). The strongest mode is visible up to the 4th pass. Two modes and their respective total loss value R ˜ are indicated. (b) Linear plot of the first pass with five easily discernible modes. (c) The minimum visible mode numbers of several waveguides with different ridge widths.
Fig. 5
Fig. 5 Dispersion map, or spectrogram, of the first pass of the waveguide in Fig. 4. Each horizontal row represents a mode spectrum like Fig. 4, but only a limited wavelength range of the original transmission spectrum data is processed. Each part is weighted with a sinc window and centered on the wavelength plotted on the vertical axis. The window is then slightly shifted on the wavelength axis and the resulting slices are stacked. This allows a more local recovery of the group index at the expense of resolution in the mode spectrum. A mode-dependent shift of the group index with the central wavelength of the window is clearly visible, indicating GVD.
Fig. 6
Fig. 6 Group indices of the four simulated slab modes with their respective mode shape E2 along the vertical direction z. We do not expect the lowest effective index mode to contribute significantly to the spectrum. Nevertheless, this illustrates that the group index can be drastically different than the effective index. The numbers indicate the corresponding modes in Fig. 4. Intuitively, we expect the TIR mode to be the strongest mode, while the Bragg mode can be identified by the SHG optimization procedure (see Sec. 3). Furthermore, the simulated group index dispersion as well as the relative separation to the TIR and Bragg modes match best for mode 3 in Figs. 4 and 5.
Fig. 7
Fig. 7 Fourier mode spectrum with four simulated modes, and three easily discernible. The inset shows a portion of the simulated multimode transmission spectrum. The numbers indicate the corresponding modes in Fig. 4.
Fig. 8
Fig. 8 Experimental setup for recording the transmission spectrum. Note that Δxin is strongly exaggerated for illustration purposes.
Fig. 9
Fig. 9 Real space camera image of the Argon 772.5887 nm and 772.6333 nm lines.
Fig. 10
Fig. 10 Bias of the total loss R ˜ for several modes with different group indices for the resolution (10 pm) measured in our system. For example, with a 0.9 mm sample the measured values of R ˜ may be multiplied with a correction factor of 1.07 − 1.14, depending on the mode.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T ( β ) = ( 1 R ) 2 exp ( 2 k L β ) + 4 sin ( ϕ ) [ 1 R exp ( 2 k L β ) ] 2 + 4 R exp ( 2 k L β ) sin 2 ( ϕ + n L β ) ,
R ˜ = R e α L .
δ ( β ) = n ( β ) L β ,
I ( β ) = n x i T i ( β ) ,
T i ( β ) = ( 1 R i ) 2 exp ( 2 k i L β ) + 4 sin ( ϕ ) [ 1 R i exp ( 2 k i L β ) ] 2 + 4 R i exp ( 2 k i L β ) sin 2 ( ϕ + δ i ( β ) ) ,
λ ( Ψ , Δ x cam ) = d m [ sin ( Ψ γ 2 arctan Δ x in f ) + sin ( Ψ + λ 2 + arctan Δ x cam f ) ] , and Ψ ( λ c ) = arcsin ( m λ c 2 d cos λ 2 ) .

Metrics