Abstract

A microwave photonic bandstop filter is proposed and experimentally demonstrated in this work. The filter exhibits promising performance combination of reconfigurability, frequency tunability, and bandwidth adjustment. The phase modulation on two orthogonal polarization states produces a bandpass and a lowpass MPF, respectively. The key concept of destructive interference between the bandpass and lowpass MPF enables the reconfiguration of MPF from bandpass to bandstop. By adjusting the wavelength of two orthogonally polarized optical carriers and the bandwidth of an optical bandpass filter, the bandstop filter is tunable in terms of center frequency and bandwidth.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon-on-insulator-based microwave photonic filter with widely adjustable bandwidth

Lu Xu, Jie Hou, Haitao Tang, Yuan Yu, Yu Yu, Xuewen Shu, and Xinliang Zhang
Photon. Res. 7(2) 110-115 (2019)

Widely tunable single bandpass microwave photonic filter based on Brillouin-assisted optical carrier recovery

Wen Ting Wang, Jian Guo Liu, Wen Hui Sun, Wei Yu Wang, Sun Long Wang, and Ning Hua Zhu
Opt. Express 22(24) 29304-29313 (2014)

Switchable microwave photonic filter based on a dual-parallel Mach–Zehnder modulator

Ling Wang, Chengwu Yang, Ming Li, Ninghua Zhu, and Wei Li
Appl. Opt. 57(16) 4537-4541 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [Crossref]
  2. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
    [Crossref]
  3. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  4. X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
    [Crossref]
  5. L.-S. Yan, J. Ye, H.-Y. Jiang, W. Pan, B. Luo, A.-L. Yi, Y.-H. Guo, and X. S. Yao, “A photonic comb filter with independently and digitally tunable bandwidth and frequency spacing,” IEEE Photonics Technol. Lett. 23(13), 857–859 (2011).
    [Crossref]
  6. Y. Zhang and S. Pan, “Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photonics Technol. Lett. 25(2), 187–189 (2013).
    [Crossref]
  7. E. H. W. Chan and R. A. Minasian, “High-resolution photonics-based interference suppression filter with wide passband,” J. Lightwave Technol. 21(12), 3144–3149 (2003).
    [Crossref]
  8. Y. Yu, E. Xu, J. Dong, L. Zhou, X. Li, and X. Zhang, “Switchable microwave photonic filter between high Q bandpass filter and notch filter with flat passband based on phase modulation,” Opt. Express 18(24), 25271–25282 (2010).
    [Crossref] [PubMed]
  9. X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photonics Technol. Lett. 10(1), 138–140 (1998).
    [Crossref]
  10. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
    [Crossref]
  11. W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photonics J. 5(4), 5501411 (2013).
    [Crossref]
  12. D. Marpaung, B. Morrison, M. Pagani, R. Pant, D. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2(2), 76–83 (2015).
    [Crossref]
  13. X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45(7), 362–363 (2009).
    [Crossref]
  14. W. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
    [Crossref]
  15. E. Xu and J. Yao, “Frequency-and notch-depth-tunable single-notch microwave photonic filter,” IEEE Photonics Technol. Lett. 27(19), 2063–2066 (2015).
    [Crossref]
  16. J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
    [Crossref]
  17. T. Chen, X. Yi, L. Li, and R. Minasian, “Single passband microwave photonic filter with wideband tunability and adjustable bandwidth,” Opt. Lett. 37(22), 4699–4701 (2012).
    [Crossref] [PubMed]
  18. J. Ge, H. Feng, G. Scott, and M. P. Fok, “High-speed tunable microwave photonic notch filter based on phase modulator incorporated Lyot filter,” Opt. Lett. 40(1), 48–51 (2015).
    [Crossref] [PubMed]
  19. J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
    [Crossref]
  20. W. Li, J. G. Liu, and N. H. Zhu, “A widely and continuously tunable frequency doubling optoelectronic oscillator,” IEEE Photonics Technol. Lett. 27(13), 1461–1464 (2015).
    [Crossref]
  21. S. Shahnia, M. Pagani, B. Morrison, B. J. Eggleton, and D. Marpaung, “Independent manipulation of the phase and amplitude of optical sidebands in a highly-stable RF photonic filter,” Opt. Express 23(18), 23278–23286 (2015).
    [Crossref] [PubMed]

2015 (5)

2013 (2)

W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photonics J. 5(4), 5501411 (2013).
[Crossref]

Y. Zhang and S. Pan, “Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photonics Technol. Lett. 25(2), 187–189 (2013).
[Crossref]

2012 (3)

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

W. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

T. Chen, X. Yi, L. Li, and R. Minasian, “Single passband microwave photonic filter with wideband tunability and adjustable bandwidth,” Opt. Lett. 37(22), 4699–4701 (2012).
[Crossref] [PubMed]

2011 (2)

L.-S. Yan, J. Ye, H.-Y. Jiang, W. Pan, B. Luo, A.-L. Yi, Y.-H. Guo, and X. S. Yao, “A photonic comb filter with independently and digitally tunable bandwidth and frequency spacing,” IEEE Photonics Technol. Lett. 23(13), 857–859 (2011).
[Crossref]

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

2010 (3)

J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

Y. Yu, E. Xu, J. Dong, L. Zhou, X. Li, and X. Zhang, “Switchable microwave photonic filter between high Q bandpass filter and notch filter with flat passband based on phase modulation,” Opt. Express 18(24), 25271–25282 (2010).
[Crossref] [PubMed]

2009 (2)

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45(7), 362–363 (2009).
[Crossref]

2006 (1)

2004 (1)

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

2003 (1)

1998 (1)

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photonics Technol. Lett. 10(1), 138–140 (1998).
[Crossref]

Bull, J. D.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Capmany, J.

Chan, E. H. W.

Chen, T.

Choi, D.

Dong, J.

Eggleton, B. J.

Fairburn, M.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Feng, H.

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Fok, M. P.

Galán, J. V.

J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Ge, J.

Ghanipour, P.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Guo, Y.-H.

L.-S. Yan, J. Ye, H.-Y. Jiang, W. Pan, B. Luo, A.-L. Yi, Y.-H. Guo, and X. S. Yao, “A photonic comb filter with independently and digitally tunable bandwidth and frequency spacing,” IEEE Photonics Technol. Lett. 23(13), 857–859 (2011).
[Crossref]

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Huang, T. X. H.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

Jaeger, N. A. F.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Jiang, H.-Y.

L.-S. Yan, J. Ye, H.-Y. Jiang, W. Pan, B. Luo, A.-L. Yi, Y.-H. Guo, and X. S. Yao, “A photonic comb filter with independently and digitally tunable bandwidth and frequency spacing,” IEEE Photonics Technol. Lett. 23(13), 857–859 (2011).
[Crossref]

Kato, H.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Leaird, D. E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Li, L.

Li, M.

W. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, W.

W. Li, J. G. Liu, and N. H. Zhu, “A widely and continuously tunable frequency doubling optoelectronic oscillator,” IEEE Photonics Technol. Lett. 27(13), 1461–1464 (2015).
[Crossref]

W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photonics J. 5(4), 5501411 (2013).
[Crossref]

W. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, X.

Liu, J. G.

W. Li, J. G. Liu, and N. H. Zhu, “A widely and continuously tunable frequency doubling optoelectronic oscillator,” IEEE Photonics Technol. Lett. 27(13), 1461–1464 (2015).
[Crossref]

Long, C. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Luo, B.

L.-S. Yan, J. Ye, H.-Y. Jiang, W. Pan, B. Luo, A.-L. Yi, Y.-H. Guo, and X. S. Yao, “A photonic comb filter with independently and digitally tunable bandwidth and frequency spacing,” IEEE Photonics Technol. Lett. 23(13), 857–859 (2011).
[Crossref]

Luther-Davies, B.

Madden, S. J.

Marpaung, D.

Martí, J.

J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Minasian, R.

Minasian, R. A.

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45(7), 362–363 (2009).
[Crossref]

E. H. W. Chan and R. A. Minasian, “High-resolution photonics-based interference suppression filter with wide passband,” J. Lightwave Technol. 21(12), 3144–3149 (2003).
[Crossref]

Morrison, B.

Ortega, B.

Pagani, M.

Palací, J.

J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Pan, S.

Y. Zhang and S. Pan, “Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photonics Technol. Lett. 25(2), 187–189 (2013).
[Crossref]

Pan, W.

L.-S. Yan, J. Ye, H.-Y. Jiang, W. Pan, B. Luo, A.-L. Yi, Y.-H. Guo, and X. S. Yao, “A photonic comb filter with independently and digitally tunable bandwidth and frequency spacing,” IEEE Photonics Technol. Lett. 23(13), 857–859 (2011).
[Crossref]

Pant, R.

Pastor, D.

Reid, A.

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Scott, G.

Shahnia, S.

Supradeepa, V. R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Vidal, B.

J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Villanueva, G. E.

J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Wang, L. X.

W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photonics J. 5(4), 5501411 (2013).
[Crossref]

Weiner, A. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Wu, R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Xu, E.

Yan, L.-S.

L.-S. Yan, J. Ye, H.-Y. Jiang, W. Pan, B. Luo, A.-L. Yi, Y.-H. Guo, and X. S. Yao, “A photonic comb filter with independently and digitally tunable bandwidth and frequency spacing,” IEEE Photonics Technol. Lett. 23(13), 857–859 (2011).
[Crossref]

Yao, J.

E. Xu and J. Yao, “Frequency-and notch-depth-tunable single-notch microwave photonic filter,” IEEE Photonics Technol. Lett. 27(19), 2063–2066 (2015).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Yao, J. P.

W. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Yao, X. S.

L.-S. Yan, J. Ye, H.-Y. Jiang, W. Pan, B. Luo, A.-L. Yi, Y.-H. Guo, and X. S. Yao, “A photonic comb filter with independently and digitally tunable bandwidth and frequency spacing,” IEEE Photonics Technol. Lett. 23(13), 857–859 (2011).
[Crossref]

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photonics Technol. Lett. 10(1), 138–140 (1998).
[Crossref]

Ye, J.

L.-S. Yan, J. Ye, H.-Y. Jiang, W. Pan, B. Luo, A.-L. Yi, Y.-H. Guo, and X. S. Yao, “A photonic comb filter with independently and digitally tunable bandwidth and frequency spacing,” IEEE Photonics Technol. Lett. 23(13), 857–859 (2011).
[Crossref]

Yi, A.-L.

L.-S. Yan, J. Ye, H.-Y. Jiang, W. Pan, B. Luo, A.-L. Yi, Y.-H. Guo, and X. S. Yao, “A photonic comb filter with independently and digitally tunable bandwidth and frequency spacing,” IEEE Photonics Technol. Lett. 23(13), 857–859 (2011).
[Crossref]

Yi, X.

T. Chen, X. Yi, L. Li, and R. Minasian, “Single passband microwave photonic filter with wideband tunability and adjustable bandwidth,” Opt. Lett. 37(22), 4699–4701 (2012).
[Crossref] [PubMed]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45(7), 362–363 (2009).
[Crossref]

Yu, Y.

Zhang, W.

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

Zhang, X.

Zhang, Y.

Y. Zhang and S. Pan, “Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photonics Technol. Lett. 25(2), 187–189 (2013).
[Crossref]

Zhou, L.

Zhu, N. H.

W. Li, J. G. Liu, and N. H. Zhu, “A widely and continuously tunable frequency doubling optoelectronic oscillator,” IEEE Photonics Technol. Lett. 27(13), 1461–1464 (2015).
[Crossref]

W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photonics J. 5(4), 5501411 (2013).
[Crossref]

Electron. Lett. (1)

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45(7), 362–363 (2009).
[Crossref]

IEEE Photonics J. (1)

W. Li, L. X. Wang, and N. H. Zhu, “All-optical microwave photonic single-passband filter based on polarization control through stimulated Brillouin scattering,” IEEE Photonics J. 5(4), 5501411 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (7)

L.-S. Yan, J. Ye, H.-Y. Jiang, W. Pan, B. Luo, A.-L. Yi, Y.-H. Guo, and X. S. Yao, “A photonic comb filter with independently and digitally tunable bandwidth and frequency spacing,” IEEE Photonics Technol. Lett. 23(13), 857–859 (2011).
[Crossref]

Y. Zhang and S. Pan, “Complex coefficient microwave photonic filter using a polarization-modulator-based phase shifter,” IEEE Photonics Technol. Lett. 25(2), 187–189 (2013).
[Crossref]

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photonics Technol. Lett. 10(1), 138–140 (1998).
[Crossref]

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technol. Lett. 23(23), 1775–1777 (2011).
[Crossref]

W. Li, J. G. Liu, and N. H. Zhu, “A widely and continuously tunable frequency doubling optoelectronic oscillator,” IEEE Photonics Technol. Lett. 27(13), 1461–1464 (2015).
[Crossref]

E. Xu and J. Yao, “Frequency-and notch-depth-tunable single-notch microwave photonic filter,” IEEE Photonics Technol. Lett. 27(19), 2063–2066 (2015).
[Crossref]

J. Palací, G. E. Villanueva, J. V. Galán, J. Martí, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

X. Yi, T. X. H. Huang, and R. A. Minasian, “Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients,” IEEE Trans. Microw. Theory Tech. 58(11), 3088–3093 (2010).
[Crossref]

W. Li, M. Li, and J. P. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (1)

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (1)

Proc. SPIE (1)

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, “40 GHz electro-optic polarization modulator for fiber optic communications systems,” Proc. SPIE 5577, 133–143 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of (a) the proposed MPF and (b)-(d) the principle behind the MPF.
Fig. 2
Fig. 2 Measured optical spectra of (a) orthogonally polarized optical carriers and (b) the modulated optical carriers.
Fig. 3
Fig. 3 Measured (a) magnitude and (b) phase responses of the bandpass, lowpass, and bandstop filters.
Fig. 4
Fig. 4 The transform from bandpass to bandstop MPF when the power of TLS2 was tuned.
Fig. 5
Fig. 5 The center frequency tunability of (a) the bandpass and (b) the bandstop MPF by adjusting the bandwidth of the OBPF and the wavelength of TLS2.
Fig. 6
Fig. 6 The bandwidth tunability of (a) the bandpass and (b) the bandstop MPF by adjusting the wavelength of the TLS1.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E P B C ( t ) = [ E x ( t ) E y ( t ) ] = [ E 1 exp ( j ω 1 t ) E 2 exp ( j ω 2 t ) ]
E P o l M ( t ) = [ E x ( t ) E y ( t ) ] = [ E 1 exp ( j ω 1 t + j β sin ( ω m t ) ) E 2 exp ( j ω 2 t j β sin ( ω m t ) ) ]
E P o l M ( t ) = [ E x ( t ) E y ( t ) ] = [ E 1 exp ( j ω 1 t ) [ J 0 + J 1 exp ( j ω m t + j π ) + J 1 exp ( j ω m t ) ] E 2 exp ( j ω 2 t ) [ J 0 + J 1 exp ( j ω m t ) + J 1 exp ( j ω m t + j π ) ] ]
i x ( t ) = R E x ( t ) E x * ( t ) = { R E 1 2 [ J 0 2 + J 1 2 + 2 J 0 J 1 cos ( ω m t ) ] , f o r f B 2 f C < ω m 2 π < f B 2 + f C 0 , e l s e .
i y ( t ) = R E y ( t ) E y * ( t ) = { R E 2 2 [ J 0 2 + J 1 2 + 2 J 0 J 1 cos ( ω m t + π ) ] , f o r 0 < ω m 2 π < f B 0 , e l s e .
i ( t ) = i x ( t ) + i y ( t ) = { R E 2 2 [ J 0 2 + J 1 2 + 2 J 0 J 1 cos ( ω m t + π ) ] , f o r 0 < ω m 2 π < f B 2 f C , f B 2 + f C < ω m 2 π < f B R E 1 2 [ J 0 2 + J 1 2 + 2 J 0 J 1 cos ( ω m t ) ] R E 2 2 [ J 0 2 + J 1 2 + 2 J 0 J 1 cos ( ω m t ) ] , f o r f B 2 f C < ω m 2 π < f B 2 + f C .

Metrics