Abstract

Highly efficient volume phase gratings have been fabricated in low-iron soda lime glass using femtosecond (fs) laser pulses with 1030 nm wavelength and 270 fs pulse duration. Optical simulations based on rigorous coupled-wave analysis theory were performed to determine optimal grating parameters and designs for the application of the gratings for light management in solar modules, suggesting a very effective blazed-like design. Several of such blazed phase gratings have been fabricated and analyzed by measuring their diffraction efficiencies into first and higher orders. Up to 77% of the incoming light in the wavelength region relevant for silicon-based photovoltaics were diffracted by these gratings. Typical induced refractive index changes between 0.002 and 0.006 were derived by comparing the experimental efficiencies with the simulation results.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yamada, H. Nakamura, T. Sugiura, K. Sakuta, and K. Kurokawa, “Reflection loss analysis by optical modeling of PV module,” Sol. Energy Mater. Sol. Cells 67(1), 405–413 (2001).
    [Crossref]
  2. J. Schneider, M. Turek, M. Dyrba, I. Baumann, B. Koll, and T. Booz, “Combined effect of light harvesting strings, anti-reflective coating, thin glass, and high ultraviolet transmission encapsulant to reduce optical lsses in solar modules,” Prog. Photovolt. Res. Appl. 22(7), 830–837 (2014).
    [Crossref]
  3. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
    [Crossref]
  4. G. Seifert, I. Schwedler, J. Schneider, and R. B. Wehrspohn, “Light management in solar modules,” in Photon Management in Solar Cells, eds. R.B. Wehrspohn, U. Rau, A. Gombert (Wiley-VCH 2015), pp. 323–347.
  5. J. Jaus, M. Duell, J. Eckert, F. Adurodija, B. Li, R. A. Mickiewicz, and D. M. Doble, “Approaches to improving energy yield from PV modules,” Proc. SPIE 7773, 77730S (2010).
    [Crossref]
  6. L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laserwritten deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
    [Crossref]
  7. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
    [Crossref] [PubMed]
  8. W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett. 25(22), 1669–1671 (2000).
    [Crossref] [PubMed]
  9. S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phy. A 103(2), 257–261 (2011).
    [Crossref]
  10. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
    [Crossref]
  11. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(5), L687–L689 (2005).
    [Crossref]
  12. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  13. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1–2), 47–61 (2006).
    [Crossref]
  14. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
    [Crossref] [PubMed]
  15. C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 102(1), 35–38 (2011).
    [Crossref]
  16. I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45(1), 015802 (2006).
    [Crossref]
  17. T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E. B. Kley, A. Tünnermann, O. Parriaux, and A. V. Tishchenko, “Highly dispersive dielectric transmission gratings with 100% diffraction efficiency,“ Proc. SPIE 6883, 68830U (2008).
  18. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
    [Crossref]
  19. W. Watanabe, T. Tamaki, Y. Ozeki, and K. Itoh, Progress in Ultrafast Intense Laser Science VI (Springer Berlin Heidelberg, 2010), Ch. 9.
  20. V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
    [Crossref]
  21. M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman-Nath regime diffraction by phase gratings,” Opt. Commun. 32(1), 19–23 (1980).
    [Crossref]
  22. M. Muchow, T. Büchner, and G. Seifert, “Femtosecond laser-induced optical microstructures inside glass volume for light management in solar modules,” in Proc. of 29th EU PVSEC (2014), pp. 214–217.
  23. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2), 416–424 (2008).
    [Crossref]
  24. R. Berlich, J. Choi, C. Mazuir, W. V. Schoenfeld, S. Nolte, and M. Richardson, “Spatially resolved measurement of femtosecond laser induced refractive index changes in transparent materials,” Opt. Lett. 37(14), 3003–3005 (2012).
    [Crossref] [PubMed]
  25. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11), 2387–2391 (2011).
    [Crossref]
  26. F. Hashimoto, T. Yoshino, Y. Ozeki, and K. Itoh, “Large increase in refractive index inside silica glass after the movement of voids caused by femtosecond laser pulses,” Jpn. J. Appl. Phys. 53(4), 042601 (2014).
    [Crossref]

2015 (1)

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laserwritten deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

2014 (2)

J. Schneider, M. Turek, M. Dyrba, I. Baumann, B. Koll, and T. Booz, “Combined effect of light harvesting strings, anti-reflective coating, thin glass, and high ultraviolet transmission encapsulant to reduce optical lsses in solar modules,” Prog. Photovolt. Res. Appl. 22(7), 830–837 (2014).
[Crossref]

F. Hashimoto, T. Yoshino, Y. Ozeki, and K. Itoh, “Large increase in refractive index inside silica glass after the movement of voids caused by femtosecond laser pulses,” Jpn. J. Appl. Phys. 53(4), 042601 (2014).
[Crossref]

2012 (2)

2011 (3)

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11), 2387–2391 (2011).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phy. A 103(2), 257–261 (2011).
[Crossref]

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 102(1), 35–38 (2011).
[Crossref]

2010 (1)

J. Jaus, M. Duell, J. Eckert, F. Adurodija, B. Li, R. A. Mickiewicz, and D. M. Doble, “Approaches to improving energy yield from PV modules,” Proc. SPIE 7773, 77730S (2010).
[Crossref]

2008 (3)

T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E. B. Kley, A. Tünnermann, O. Parriaux, and A. V. Tishchenko, “Highly dispersive dielectric transmission gratings with 100% diffraction efficiency,“ Proc. SPIE 6883, 68830U (2008).

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
[Crossref] [PubMed]

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2), 416–424 (2008).
[Crossref]

2007 (1)

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
[Crossref]

2006 (2)

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45(1), 015802 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1–2), 47–61 (2006).
[Crossref]

2005 (1)

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(5), L687–L689 (2005).
[Crossref]

2004 (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

2003 (1)

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

2001 (1)

T. Yamada, H. Nakamura, T. Sugiura, K. Sakuta, and K. Kurokawa, “Reflection loss analysis by optical modeling of PV module,” Sol. Energy Mater. Sol. Cells 67(1), 405–413 (2001).
[Crossref]

2000 (1)

1996 (2)

1980 (1)

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman-Nath regime diffraction by phase gratings,” Opt. Commun. 32(1), 19–23 (1980).
[Crossref]

Adurodija, F.

J. Jaus, M. Duell, J. Eckert, F. Adurodija, B. Li, R. A. Mickiewicz, and D. M. Doble, “Approaches to improving energy yield from PV modules,” Proc. SPIE 7773, 77730S (2010).
[Crossref]

Baumann, I.

J. Schneider, M. Turek, M. Dyrba, I. Baumann, B. Koll, and T. Booz, “Combined effect of light harvesting strings, anti-reflective coating, thin glass, and high ultraviolet transmission encapsulant to reduce optical lsses in solar modules,” Prog. Photovolt. Res. Appl. 22(7), 830–837 (2014).
[Crossref]

Berlich, R.

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1–2), 47–61 (2006).
[Crossref]

Booz, T.

J. Schneider, M. Turek, M. Dyrba, I. Baumann, B. Koll, and T. Booz, “Combined effect of light harvesting strings, anti-reflective coating, thin glass, and high ultraviolet transmission encapsulant to reduce optical lsses in solar modules,” Prog. Photovolt. Res. Appl. 22(7), 830–837 (2014).
[Crossref]

Brandt, N.

Brückner, F.

T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E. B. Kley, A. Tünnermann, O. Parriaux, and A. V. Tishchenko, “Highly dispersive dielectric transmission gratings with 100% diffraction efficiency,“ Proc. SPIE 6883, 68830U (2008).

Büchner, T.

M. Muchow, T. Büchner, and G. Seifert, “Femtosecond laser-induced optical microstructures inside glass volume for light management in solar modules,” in Proc. of 29th EU PVSEC (2014), pp. 214–217.

Callan, J. P.

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

Choi, J.

Ciapurin, I. V.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45(1), 015802 (2006).
[Crossref]

Clausnitzer, T.

T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E. B. Kley, A. Tünnermann, O. Parriaux, and A. V. Tishchenko, “Highly dispersive dielectric transmission gratings with 100% diffraction efficiency,“ Proc. SPIE 6883, 68830U (2008).

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1–2), 47–61 (2006).
[Crossref]

Davis, K. M.

Doble, D. M.

J. Jaus, M. Duell, J. Eckert, F. Adurodija, B. Li, R. A. Mickiewicz, and D. M. Doble, “Approaches to improving energy yield from PV modules,” Proc. SPIE 7773, 77730S (2010).
[Crossref]

Döring, S.

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phy. A 103(2), 257–261 (2011).
[Crossref]

Duell, M.

J. Jaus, M. Duell, J. Eckert, F. Adurodija, B. Li, R. A. Mickiewicz, and D. M. Doble, “Approaches to improving energy yield from PV modules,” Proc. SPIE 7773, 77730S (2010).
[Crossref]

Dyrba, M.

J. Schneider, M. Turek, M. Dyrba, I. Baumann, B. Koll, and T. Booz, “Combined effect of light harvesting strings, anti-reflective coating, thin glass, and high ultraviolet transmission encapsulant to reduce optical lsses in solar modules,” Prog. Photovolt. Res. Appl. 22(7), 830–837 (2014).
[Crossref]

Eaton, S. M.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11), 2387–2391 (2011).
[Crossref]

Eckert, J.

J. Jaus, M. Duell, J. Eckert, F. Adurodija, B. Li, R. A. Mickiewicz, and D. M. Doble, “Approaches to improving energy yield from PV modules,” Proc. SPIE 7773, 77730S (2010).
[Crossref]

Eder, G. C.

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laserwritten deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

Fan, S.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Finlay, R. J.

Gaylord, T. K.

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman-Nath regime diffraction by phase gratings,” Opt. Commun. 32(1), 19–23 (1980).
[Crossref]

Glebov, L. B.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45(1), 015802 (2006).
[Crossref]

Glezer, E. N.

Gottmann, J.

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
[Crossref] [PubMed]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Hashimoto, F.

F. Hashimoto, T. Yoshino, Y. Ozeki, and K. Itoh, “Large increase in refractive index inside silica glass after the movement of voids caused by femtosecond laser pulses,” Jpn. J. Appl. Phys. 53(4), 042601 (2014).
[Crossref]

Hayashi, K.

Heinze, R.

T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E. B. Kley, A. Tünnermann, O. Parriaux, and A. V. Tishchenko, “Highly dispersive dielectric transmission gratings with 100% diffraction efficiency,“ Proc. SPIE 6883, 68830U (2008).

Her, T.-H.

Herman, P. R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11), 2387–2391 (2011).
[Crossref]

Hirao, K.

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1–2), 47–61 (2006).
[Crossref]

Horn, A.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Horn-Solle, H.

Huang, L.

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

Itoh, K.

F. Hashimoto, T. Yoshino, Y. Ozeki, and K. Itoh, “Large increase in refractive index inside silica glass after the movement of voids caused by femtosecond laser pulses,” Jpn. J. Appl. Phys. 53(4), 042601 (2014).
[Crossref]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(5), L687–L689 (2005).
[Crossref]

W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett. 25(22), 1669–1671 (2000).
[Crossref] [PubMed]

Jaus, J.

J. Jaus, M. Duell, J. Eckert, F. Adurodija, B. Li, R. A. Mickiewicz, and D. M. Doble, “Approaches to improving energy yield from PV modules,” Proc. SPIE 7773, 77730S (2010).
[Crossref]

Kämpfe, T.

T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E. B. Kley, A. Tünnermann, O. Parriaux, and A. V. Tishchenko, “Highly dispersive dielectric transmission gratings with 100% diffraction efficiency,“ Proc. SPIE 6883, 68830U (2008).

Kley, E. B.

T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E. B. Kley, A. Tünnermann, O. Parriaux, and A. V. Tishchenko, “Highly dispersive dielectric transmission gratings with 100% diffraction efficiency,“ Proc. SPIE 6883, 68830U (2008).

Koll, B.

J. Schneider, M. Turek, M. Dyrba, I. Baumann, B. Koll, and T. Booz, “Combined effect of light harvesting strings, anti-reflective coating, thin glass, and high ultraviolet transmission encapsulant to reduce optical lsses in solar modules,” Prog. Photovolt. Res. Appl. 22(7), 830–837 (2014).
[Crossref]

Krol, D. M.

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2), 416–424 (2008).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

Kuna, L.

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laserwritten deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

Kurokawa, K.

T. Yamada, H. Nakamura, T. Sugiura, K. Sakuta, and K. Kurokawa, “Reflection loss analysis by optical modeling of PV module,” Sol. Energy Mater. Sol. Cells 67(1), 405–413 (2001).
[Crossref]

Leiner, C.

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laserwritten deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

Li, B.

J. Jaus, M. Duell, J. Eckert, F. Adurodija, B. Li, R. A. Mickiewicz, and D. M. Doble, “Approaches to improving energy yield from PV modules,” Proc. SPIE 7773, 77730S (2010).
[Crossref]

Liu, V.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

Magnusson, R.

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman-Nath regime diffraction by phase gratings,” Opt. Commun. 32(1), 19–23 (1980).
[Crossref]

Mazuir, C.

Mazur, E.

Mickiewicz, R. A.

J. Jaus, M. Duell, J. Eckert, F. Adurodija, B. Li, R. A. Mickiewicz, and D. M. Doble, “Approaches to improving energy yield from PV modules,” Proc. SPIE 7773, 77730S (2010).
[Crossref]

Milosavljevic, M.

Miura, K.

Miyamoto, I.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Moharam, M. G.

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman-Nath regime diffraction by phase gratings,” Opt. Commun. 32(1), 19–23 (1980).
[Crossref]

Muchow, M.

M. Muchow, T. Büchner, and G. Seifert, “Femtosecond laser-induced optical microstructures inside glass volume for light management in solar modules,” in Proc. of 29th EU PVSEC (2014), pp. 214–217.

Müller, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Nakamura, H.

T. Yamada, H. Nakamura, T. Sugiura, K. Sakuta, and K. Kurokawa, “Reflection loss analysis by optical modeling of PV module,” Sol. Energy Mater. Sol. Cells 67(1), 405–413 (2001).
[Crossref]

Ng, M. L.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11), 2387–2391 (2011).
[Crossref]

Nishii, J.

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(5), L687–L689 (2005).
[Crossref]

W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett. 25(22), 1669–1671 (2000).
[Crossref] [PubMed]

Nolte, S.

R. Berlich, J. Choi, C. Mazuir, W. V. Schoenfeld, S. Nolte, and M. Richardson, “Spatially resolved measurement of femtosecond laser induced refractive index changes in transparent materials,” Opt. Lett. 37(14), 3003–3005 (2012).
[Crossref] [PubMed]

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 102(1), 35–38 (2011).
[Crossref]

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phy. A 103(2), 257–261 (2011).
[Crossref]

Osellame, R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11), 2387–2391 (2011).
[Crossref]

Ozeki, Y.

F. Hashimoto, T. Yoshino, Y. Ozeki, and K. Itoh, “Large increase in refractive index inside silica glass after the movement of voids caused by femtosecond laser pulses,” Jpn. J. Appl. Phys. 53(4), 042601 (2014).
[Crossref]

Parriaux, O.

T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E. B. Kley, A. Tünnermann, O. Parriaux, and A. V. Tishchenko, “Highly dispersive dielectric transmission gratings with 100% diffraction efficiency,“ Proc. SPIE 6883, 68830U (2008).

Peharz, G.

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laserwritten deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

Rajeev, P. P.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1–2), 47–61 (2006).
[Crossref]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1–2), 47–61 (2006).
[Crossref]

Rech, B.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Richardson, M.

Richter, D.

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 102(1), 35–38 (2011).
[Crossref]

Richter, S.

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phy. A 103(2), 257–261 (2011).
[Crossref]

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

Sakuta, K.

T. Yamada, H. Nakamura, T. Sugiura, K. Sakuta, and K. Kurokawa, “Reflection loss analysis by optical modeling of PV module,” Sol. Energy Mater. Sol. Cells 67(1), 405–413 (2001).
[Crossref]

Schneider, J.

J. Schneider, M. Turek, M. Dyrba, I. Baumann, B. Koll, and T. Booz, “Combined effect of light harvesting strings, anti-reflective coating, thin glass, and high ultraviolet transmission encapsulant to reduce optical lsses in solar modules,” Prog. Photovolt. Res. Appl. 22(7), 830–837 (2014).
[Crossref]

Schoenfeld, W. V.

Seifert, G.

M. Muchow, T. Büchner, and G. Seifert, “Femtosecond laser-induced optical microstructures inside glass volume for light management in solar modules,” in Proc. of 29th EU PVSEC (2014), pp. 214–217.

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1–2), 47–61 (2006).
[Crossref]

Smirnov, V. I.

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45(1), 015802 (2006).
[Crossref]

Springer, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Sugimoto, N.

Sugiura, T.

T. Yamada, H. Nakamura, T. Sugiura, K. Sakuta, and K. Kurokawa, “Reflection loss analysis by optical modeling of PV module,” Sol. Energy Mater. Sol. Cells 67(1), 405–413 (2001).
[Crossref]

Tamaki, T.

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(5), L687–L689 (2005).
[Crossref]

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1–2), 47–61 (2006).
[Crossref]

Thomas, J.

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 102(1), 35–38 (2011).
[Crossref]

Tishchenko, A. V.

T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E. B. Kley, A. Tünnermann, O. Parriaux, and A. V. Tishchenko, “Highly dispersive dielectric transmission gratings with 100% diffraction efficiency,“ Proc. SPIE 6883, 68830U (2008).

Toma, T.

Tünnermann, A.

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phy. A 103(2), 257–261 (2011).
[Crossref]

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 102(1), 35–38 (2011).
[Crossref]

T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E. B. Kley, A. Tünnermann, O. Parriaux, and A. V. Tishchenko, “Highly dispersive dielectric transmission gratings with 100% diffraction efficiency,“ Proc. SPIE 6883, 68830U (2008).

Turek, M.

J. Schneider, M. Turek, M. Dyrba, I. Baumann, B. Koll, and T. Booz, “Combined effect of light harvesting strings, anti-reflective coating, thin glass, and high ultraviolet transmission encapsulant to reduce optical lsses in solar modules,” Prog. Photovolt. Res. Appl. 22(7), 830–837 (2014).
[Crossref]

Vanecek, M.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Voigtländer, C.

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 102(1), 35–38 (2011).
[Crossref]

Watanabe, W.

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(5), L687–L689 (2005).
[Crossref]

W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett. 25(22), 1669–1671 (2000).
[Crossref] [PubMed]

Wortmann, D.

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16(3), 1517–1522 (2008).
[Crossref] [PubMed]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Yamada, K.

Yamada, T.

T. Yamada, H. Nakamura, T. Sugiura, K. Sakuta, and K. Kurokawa, “Reflection loss analysis by optical modeling of PV module,” Sol. Energy Mater. Sol. Cells 67(1), 405–413 (2001).
[Crossref]

Yoshino, F.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Yoshino, T.

F. Hashimoto, T. Yoshino, Y. Ozeki, and K. Itoh, “Large increase in refractive index inside silica glass after the movement of voids caused by femtosecond laser pulses,” Jpn. J. Appl. Phys. 53(4), 042601 (2014).
[Crossref]

Appl. Phy. A (1)

S. Richter, S. Döring, A. Tünnermann, and S. Nolte, “Bonding of glass with femtosecond laser pulses at high repetition rates,” Appl. Phy. A 103(2), 257–261 (2011).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (3)

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys., A Mater. Sci. Process. 84(1–2), 47–61 (2006).
[Crossref]

C. Voigtländer, D. Richter, J. Thomas, A. Tünnermann, and S. Nolte, “Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 102(1), 35–38 (2011).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 76(3), 367–372 (2003).
[Crossref]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183(10), 2233–2244 (2012).
[Crossref]

J. Laser Micro/Nanoeng. (1)

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoeng. 2(1), 57–63 (2007).
[Crossref]

J. Non-Cryst. Solids (2)

D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids 354(2), 416–424 (2008).
[Crossref]

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11), 2387–2391 (2011).
[Crossref]

Jpn. J. Appl. Phys. (2)

F. Hashimoto, T. Yoshino, Y. Ozeki, and K. Itoh, “Large increase in refractive index inside silica glass after the movement of voids caused by femtosecond laser pulses,” Jpn. J. Appl. Phys. 53(4), 042601 (2014).
[Crossref]

T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44(5), L687–L689 (2005).
[Crossref]

Opt. Commun. (1)

M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Raman-Nath regime diffraction by phase gratings,” Opt. Commun. 32(1), 19–23 (1980).
[Crossref]

Opt. Eng. (1)

I. V. Ciapurin, L. B. Glebov, and V. I. Smirnov, “Modeling of phase volume diffractive gratings, part 1: transmitting sinusoidal uniform gratings,” Opt. Eng. 45(1), 015802 (2006).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Proc. SPIE (2)

J. Jaus, M. Duell, J. Eckert, F. Adurodija, B. Li, R. A. Mickiewicz, and D. M. Doble, “Approaches to improving energy yield from PV modules,” Proc. SPIE 7773, 77730S (2010).
[Crossref]

T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E. B. Kley, A. Tünnermann, O. Parriaux, and A. V. Tishchenko, “Highly dispersive dielectric transmission gratings with 100% diffraction efficiency,“ Proc. SPIE 6883, 68830U (2008).

Prog. Photovolt. Res. Appl. (2)

L. Kuna, G. C. Eder, C. Leiner, and G. Peharz, “Reducing shadowing losses with femtosecond-laserwritten deflective optical elements in the bulk of EVA encapsulation,” Prog. Photovolt. Res. Appl. 23(9), 1120–1130 (2015).
[Crossref]

J. Schneider, M. Turek, M. Dyrba, I. Baumann, B. Koll, and T. Booz, “Combined effect of light harvesting strings, anti-reflective coating, thin glass, and high ultraviolet transmission encapsulant to reduce optical lsses in solar modules,” Prog. Photovolt. Res. Appl. 22(7), 830–837 (2014).
[Crossref]

Sol. Energy (1)

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

T. Yamada, H. Nakamura, T. Sugiura, K. Sakuta, and K. Kurokawa, “Reflection loss analysis by optical modeling of PV module,” Sol. Energy Mater. Sol. Cells 67(1), 405–413 (2001).
[Crossref]

Other (3)

M. Muchow, T. Büchner, and G. Seifert, “Femtosecond laser-induced optical microstructures inside glass volume for light management in solar modules,” in Proc. of 29th EU PVSEC (2014), pp. 214–217.

G. Seifert, I. Schwedler, J. Schneider, and R. B. Wehrspohn, “Light management in solar modules,” in Photon Management in Solar Cells, eds. R.B. Wehrspohn, U. Rau, A. Gombert (Wiley-VCH 2015), pp. 323–347.

W. Watanabe, T. Tamaki, Y. Ozeki, and K. Itoh, Progress in Ultrafast Intense Laser Science VI (Springer Berlin Heidelberg, 2010), Ch. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Sketch of optical microstructures and the light management in a solar module around the front side metallization.

Fig. 2
Fig. 2

(a) Pulse energy dependence of induced modification length for three different focusing optics (b) Phase contrast microscope image of a cross section of induced refractive index changes.

Fig. 3
Fig. 3

(a) Sketch of a simple phase grating (b) ηD for a phase grating with a = 6 µm, b = 3 µm, λ = 785nm.

Fig. 4
Fig. 4

Experimental and simulation results of ηD for a phase grating with a = 6 µm, b = 3 µm and l = 150 µm at wavelength (a) 405 nm (b) 514nm (c) 635 nm and (d) 785 nm.

Fig. 5
Fig. 5

(a) Sketch of a three-step blazed phase grating (b) ηPV for a three-step blazed phase grating with a = 8 µm, b = 2 µm, λ = 300 – 1100 nm.

Fig. 6
Fig. 6

Experimental and simulation results of ηD for a three-step blazed phase grating with a = 8 µm, b = 2 µm and l = 150 µm at wavelengths (a) 405 nm (b) 514nm (c) 635 nm and (d) 785 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η D (λ)= I 0 (λ) I 0th (λ) I 0 (λ) .
η PV = 1 R 300nm 1100nm η D (λ) with R= 300nm 1100nm dλ .

Metrics