Abstract

This work reports the experimental demonstration of single-shot visualization of turbulent flows in all three spatial dimensions (3D) based on volumetric laser induced fluorescence (VLIF). The measurements were performed based on the LIF signal of iodine (I2) vapor seeded in the flow. In contrast to established planar LIF (PLIF) technique, the VLIF technique excited the seeded I2 vapor volumetrically by a thick laser slab. The volumetric LIF signals emitted were then simultaneously collected by a total of five cameras from five different orientations, based on which a 3D tomographic reconstruction was performed to obtain the 3D distribution of the I2 vapor in the target flow. Single-shot measurements (with a measurement duration of a few ns) were demonstrated in a 50 mm × 50 mm × 50 mm volume with a nominal spatial resolution of 0.42 mm and an actual resolution of ~0.71 mm in all three dimensions (corresponding to a total of 120 × 120 × 120 voxels).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot, volumetrically illuminated, three-dimensional, tomographic laser-induced-fluorescence imaging in a gaseous free jet

Benjamin R. Halls, Daniel J. Thul, Dirk Michaelis, Sukesh Roy, Terrence R. Meyer, and James R. Gord
Opt. Express 24(9) 10040-10049 (2016)

Direct comparison of two-dimensional and three-dimensional laser-induced fluorescence measurements on highly turbulent flames

Lin Ma, Qingchun Lei, Tyler Capil, Stephen D. Hammack, and Campbell D. Carter
Opt. Lett. 42(2) 267-270 (2017)

Volumetric imaging of turbulent reactive flows at kHz based on computed tomography

Xuesong Li and Lin Ma
Opt. Express 22(4) 4768-4778 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50(6), 441–454 (1990).
    [Crossref]
  2. A. Lozano, B. Yip, and R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13(6), 369–376 (1992).
    [Crossref]
  3. I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10(1), 41–49 (1990).
    [Crossref]
  4. T. Medford, P. Danehy, S. Jones, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser-induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011), pp. 1–14.
    [Crossref]
  5. J. M. Seitzman, G. Kychakoff, and R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10(9), 439–441 (1985).
    [Crossref] [PubMed]
  6. Y. Zhao, C. Tong, and L. Ma, “Demonstration of a new laser diagnostic based on photodissociation spectroscopy for imaging mixture fraction in a non-premixed jet flame,” Appl. Spectrosc. 64(4), 377–383 (2010).
    [Crossref] [PubMed]
  7. Y. Zhao, C. Tong, and L. Ma, “Assessment of a novel flow visualization technique using photodissociation spectroscopy,” Appl. Spectrosc. 63(2), 199–206 (2009).
    [Crossref] [PubMed]
  8. Y. Zhao, C. Tong, and L. Ma, “Kinetics of I2 and HI photodissociation with implications in flame diagnostics,” Appl. Phys. B 104(3), 689–698 (2011).
    [Crossref]
  9. M. J. Dyer and D. R. Crosley, “Two-dimensional imaging of OH laser-induced fluorescence in a flame,” Opt. Lett. 7(8), 382–384 (1982).
    [Crossref] [PubMed]
  10. C. D. Carter, J. M. Donbar, and J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B 66(1), 129–132 (1998).
    [Crossref]
  11. S. D. Hammack, T. Lee, K. Y. Hsu, and C. D. Carter, “High-repetition-rate OH planar laser-induced fluorescence of a cavity flameholder,” J. Prop. Pow. 29(5), 1248–1251 (2013).
    [Crossref]
  12. G. Kychakoff, P. H. Paul, I. van Cruyningen, and R. K. Hanson, “Movies and 3-D images of flowfields using planar laser-induced fluorescence,” Appl. Opt. 26(13), 2498–2500 (1987).
    [Crossref] [PubMed]
  13. J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
    [Crossref]
  14. K. Y. Cho, A. Satija, T. L. Pourpoint, S. F. Son, and R. P. Lucht, “High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion,” Appl. Opt. 53(3), 316–326 (2014).
    [Crossref] [PubMed]
  15. V. A. Miller, V. A. Troutman, and R. K. Hanson, “Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene,” Meas. Sci. Technol. 25(7), 075403 (2014).
    [Crossref]
  16. R. Wellander, M. Richter, and M. Alden, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55(6), 1–12 (2014).
    [Crossref]
  17. T. C. Island, B. J. Patrie, M. G. Mungal, and R. K. Hanson, “Instantaneous three-dimensional flow visualization of a supersonic mixing layer,” Exp. Fluids 20(4), 249–256 (1996).
    [Crossref]
  18. M. Zhang, J. Wang, W. Jin, Z. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162(5), 2087–2097 (2015).
    [Crossref]
  19. W. Ng and Y. Zhang, “Stereoscopic imaging and reconstruction of the 3D geometry of flame surfaces,” Exp. Fluids 34(4), 484–493 (2003).
    [Crossref]
  20. K. Y. Cheung and Y. Zhang, “Stereo imaging and analysis of combustion process in a gas turbine combustor,” Meas. Sci. Technol. 17(12), 3221–3228 (2006).
    [Crossref]
  21. P. M. Danehy, B. F. Bathel, J. A. Inman, D. W. Alderfer, and S. B. Jones, “Stereoscopic Imaging in Hypersonic Boundary Layers using Planar Laser-Induced Fluorescence,” in 26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (AIAA, 2008), pp. 1–15.
  22. X. Li and L. Ma, “Capabilities and limitations of 3D flame measurements based on computed tomography of chemiluminescence,” Combust. Flame 162(3), 642–651 (2015).
    [Crossref]
  23. Y. Wu, Q. Lei, and L. Ma, “Experimental demonstration of 4D imaging in two-phase flows based on computed tomography at 5 kHz,” Appl. Opt. 53(24), 5547–5553 (2014).
    [Crossref] [PubMed]
  24. X. Li and L. Ma, “Volumetric imaging of turbulent reactive flows at kHz based on computed tomography,” Opt. Express 22(4), 4768–4778 (2014).
    [Crossref] [PubMed]
  25. W. Cai, X. Li, F. Li, and L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21(6), 7050–7064 (2013).
    [Crossref] [PubMed]
  26. J. Floyd, P. Geipel, and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
    [Crossref]
  27. J. Floyd and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): High resolution and instantaneous 3-D measurements of a Matrix burner,” Proc. Combust. Inst. 33(1), 751–758 (2011).
    [Crossref]
  28. M. Kang, Y. Wu, and L. Ma, “Fiber-based endoscopes for 3D combustion measurements: view registration and spatial resolution,” Combust. Flame 161(12), 3063–3072 (2014).
    [Crossref]
  29. M. Kang, X. Li, and L. Ma, “Three-dimensional flame measurements using fiber-based endoscopes,” Proc. Combust. Inst. 35(3), 3821–3828 (2015).
    [Crossref]
  30. W. Cai, X. Li, and L. Ma, “Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging,” Appl. Opt. 52(33), 8106–8116 (2013).
    [Crossref] [PubMed]
  31. W. Cai and L. Ma, “Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnostics of unsteady reactive flows,” Appl. Opt. 49(4), 601–610 (2010).
    [Crossref] [PubMed]
  32. W. Cai and L. Ma, “Applications of critical temperature in minimizing functions of continuous variables with simulated annealing algorithm,” Comput. Phys. Commun. 181(1), 11–16 (2010).
    [Crossref]
  33. L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
    [Crossref]

2015 (4)

M. Zhang, J. Wang, W. Jin, Z. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162(5), 2087–2097 (2015).
[Crossref]

X. Li and L. Ma, “Capabilities and limitations of 3D flame measurements based on computed tomography of chemiluminescence,” Combust. Flame 162(3), 642–651 (2015).
[Crossref]

M. Kang, X. Li, and L. Ma, “Three-dimensional flame measurements using fiber-based endoscopes,” Proc. Combust. Inst. 35(3), 3821–3828 (2015).
[Crossref]

L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
[Crossref]

2014 (6)

K. Y. Cho, A. Satija, T. L. Pourpoint, S. F. Son, and R. P. Lucht, “High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion,” Appl. Opt. 53(3), 316–326 (2014).
[Crossref] [PubMed]

X. Li and L. Ma, “Volumetric imaging of turbulent reactive flows at kHz based on computed tomography,” Opt. Express 22(4), 4768–4778 (2014).
[Crossref] [PubMed]

Y. Wu, Q. Lei, and L. Ma, “Experimental demonstration of 4D imaging in two-phase flows based on computed tomography at 5 kHz,” Appl. Opt. 53(24), 5547–5553 (2014).
[Crossref] [PubMed]

M. Kang, Y. Wu, and L. Ma, “Fiber-based endoscopes for 3D combustion measurements: view registration and spatial resolution,” Combust. Flame 161(12), 3063–3072 (2014).
[Crossref]

V. A. Miller, V. A. Troutman, and R. K. Hanson, “Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene,” Meas. Sci. Technol. 25(7), 075403 (2014).
[Crossref]

R. Wellander, M. Richter, and M. Alden, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55(6), 1–12 (2014).
[Crossref]

2013 (3)

2011 (3)

Y. Zhao, C. Tong, and L. Ma, “Kinetics of I2 and HI photodissociation with implications in flame diagnostics,” Appl. Phys. B 104(3), 689–698 (2011).
[Crossref]

J. Floyd, P. Geipel, and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

J. Floyd and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): High resolution and instantaneous 3-D measurements of a Matrix burner,” Proc. Combust. Inst. 33(1), 751–758 (2011).
[Crossref]

2010 (3)

2009 (1)

2006 (1)

K. Y. Cheung and Y. Zhang, “Stereo imaging and analysis of combustion process in a gas turbine combustor,” Meas. Sci. Technol. 17(12), 3221–3228 (2006).
[Crossref]

2003 (1)

W. Ng and Y. Zhang, “Stereoscopic imaging and reconstruction of the 3D geometry of flame surfaces,” Exp. Fluids 34(4), 484–493 (2003).
[Crossref]

2002 (1)

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

1998 (1)

C. D. Carter, J. M. Donbar, and J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B 66(1), 129–132 (1998).
[Crossref]

1996 (1)

T. C. Island, B. J. Patrie, M. G. Mungal, and R. K. Hanson, “Instantaneous three-dimensional flow visualization of a supersonic mixing layer,” Exp. Fluids 20(4), 249–256 (1996).
[Crossref]

1992 (1)

A. Lozano, B. Yip, and R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13(6), 369–376 (1992).
[Crossref]

1990 (2)

I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10(1), 41–49 (1990).
[Crossref]

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50(6), 441–454 (1990).
[Crossref]

1987 (1)

1985 (1)

1982 (1)

Alden, M.

R. Wellander, M. Richter, and M. Alden, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55(6), 1–12 (2014).
[Crossref]

Aldén, M.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Alderfer, D. W.

P. M. Danehy, B. F. Bathel, J. A. Inman, D. W. Alderfer, and S. B. Jones, “Stereoscopic Imaging in Hypersonic Boundary Layers using Planar Laser-Induced Fluorescence,” in 26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (AIAA, 2008), pp. 1–15.

Bathel, B. F.

P. M. Danehy, B. F. Bathel, J. A. Inman, D. W. Alderfer, and S. B. Jones, “Stereoscopic Imaging in Hypersonic Boundary Layers using Planar Laser-Induced Fluorescence,” in 26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (AIAA, 2008), pp. 1–15.

Cai, W.

Carter, C. D.

L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
[Crossref]

S. D. Hammack, T. Lee, K. Y. Hsu, and C. D. Carter, “High-repetition-rate OH planar laser-induced fluorescence of a cavity flameholder,” J. Prop. Pow. 29(5), 1248–1251 (2013).
[Crossref]

C. D. Carter, J. M. Donbar, and J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B 66(1), 129–132 (1998).
[Crossref]

Cheung, K. Y.

K. Y. Cheung and Y. Zhang, “Stereo imaging and analysis of combustion process in a gas turbine combustor,” Meas. Sci. Technol. 17(12), 3221–3228 (2006).
[Crossref]

Cho, K. Y.

Christensen, M.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Crosley, D. R.

Danehy, P.

T. Medford, P. Danehy, S. Jones, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser-induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011), pp. 1–14.
[Crossref]

Danehy, P. M.

P. M. Danehy, B. F. Bathel, J. A. Inman, D. W. Alderfer, and S. B. Jones, “Stereoscopic Imaging in Hypersonic Boundary Layers using Planar Laser-Induced Fluorescence,” in 26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (AIAA, 2008), pp. 1–15.

Donbar, J. M.

C. D. Carter, J. M. Donbar, and J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B 66(1), 129–132 (1998).
[Crossref]

Driscoll, J. F.

C. D. Carter, J. M. Donbar, and J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B 66(1), 129–132 (1998).
[Crossref]

Dyer, M. J.

Floyd, J.

J. Floyd, P. Geipel, and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

J. Floyd and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): High resolution and instantaneous 3-D measurements of a Matrix burner,” Proc. Combust. Inst. 33(1), 751–758 (2011).
[Crossref]

Geipel, P.

J. Floyd, P. Geipel, and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

Hammack, S. D.

S. D. Hammack, T. Lee, K. Y. Hsu, and C. D. Carter, “High-repetition-rate OH planar laser-induced fluorescence of a cavity flameholder,” J. Prop. Pow. 29(5), 1248–1251 (2013).
[Crossref]

Hanson, R. K.

V. A. Miller, V. A. Troutman, and R. K. Hanson, “Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene,” Meas. Sci. Technol. 25(7), 075403 (2014).
[Crossref]

T. C. Island, B. J. Patrie, M. G. Mungal, and R. K. Hanson, “Instantaneous three-dimensional flow visualization of a supersonic mixing layer,” Exp. Fluids 20(4), 249–256 (1996).
[Crossref]

A. Lozano, B. Yip, and R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13(6), 369–376 (1992).
[Crossref]

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50(6), 441–454 (1990).
[Crossref]

I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10(1), 41–49 (1990).
[Crossref]

G. Kychakoff, P. H. Paul, I. van Cruyningen, and R. K. Hanson, “Movies and 3-D images of flowfields using planar laser-induced fluorescence,” Appl. Opt. 26(13), 2498–2500 (1987).
[Crossref] [PubMed]

J. M. Seitzman, G. Kychakoff, and R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10(9), 439–441 (1985).
[Crossref] [PubMed]

Hsu, K. Y.

S. D. Hammack, T. Lee, K. Y. Hsu, and C. D. Carter, “High-repetition-rate OH planar laser-induced fluorescence of a cavity flameholder,” J. Prop. Pow. 29(5), 1248–1251 (2013).
[Crossref]

Huang, Z.

M. Zhang, J. Wang, W. Jin, Z. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162(5), 2087–2097 (2015).
[Crossref]

Hult, J.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Hultqvist, A.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Inman, J. A.

P. M. Danehy, B. F. Bathel, J. A. Inman, D. W. Alderfer, and S. B. Jones, “Stereoscopic Imaging in Hypersonic Boundary Layers using Planar Laser-Induced Fluorescence,” in 26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (AIAA, 2008), pp. 1–15.

Island, T. C.

T. C. Island, B. J. Patrie, M. G. Mungal, and R. K. Hanson, “Instantaneous three-dimensional flow visualization of a supersonic mixing layer,” Exp. Fluids 20(4), 249–256 (1996).
[Crossref]

Jiang, N.

T. Medford, P. Danehy, S. Jones, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser-induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011), pp. 1–14.
[Crossref]

Jin, W.

M. Zhang, J. Wang, W. Jin, Z. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162(5), 2087–2097 (2015).
[Crossref]

Johansson, B.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Jones, S.

T. Medford, P. Danehy, S. Jones, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser-induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011), pp. 1–14.
[Crossref]

Jones, S. B.

P. M. Danehy, B. F. Bathel, J. A. Inman, D. W. Alderfer, and S. B. Jones, “Stereoscopic Imaging in Hypersonic Boundary Layers using Planar Laser-Induced Fluorescence,” in 26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (AIAA, 2008), pp. 1–15.

Kang, M.

M. Kang, X. Li, and L. Ma, “Three-dimensional flame measurements using fiber-based endoscopes,” Proc. Combust. Inst. 35(3), 3821–3828 (2015).
[Crossref]

M. Kang, Y. Wu, and L. Ma, “Fiber-based endoscopes for 3D combustion measurements: view registration and spatial resolution,” Combust. Flame 161(12), 3063–3072 (2014).
[Crossref]

Kempf, A. M.

J. Floyd, P. Geipel, and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

J. Floyd and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): High resolution and instantaneous 3-D measurements of a Matrix burner,” Proc. Combust. Inst. 33(1), 751–758 (2011).
[Crossref]

Kobayashi, H.

M. Zhang, J. Wang, W. Jin, Z. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162(5), 2087–2097 (2015).
[Crossref]

Kychakoff, G.

Lee, T.

S. D. Hammack, T. Lee, K. Y. Hsu, and C. D. Carter, “High-repetition-rate OH planar laser-induced fluorescence of a cavity flameholder,” J. Prop. Pow. 29(5), 1248–1251 (2013).
[Crossref]

Lei, Q.

L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
[Crossref]

Y. Wu, Q. Lei, and L. Ma, “Experimental demonstration of 4D imaging in two-phase flows based on computed tomography at 5 kHz,” Appl. Opt. 53(24), 5547–5553 (2014).
[Crossref] [PubMed]

Lempert, W.

T. Medford, P. Danehy, S. Jones, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser-induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011), pp. 1–14.
[Crossref]

Li, F.

Li, X.

Lozano, A.

A. Lozano, B. Yip, and R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13(6), 369–376 (1992).
[Crossref]

I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10(1), 41–49 (1990).
[Crossref]

Lucht, R. P.

Ma, L.

M. Kang, X. Li, and L. Ma, “Three-dimensional flame measurements using fiber-based endoscopes,” Proc. Combust. Inst. 35(3), 3821–3828 (2015).
[Crossref]

X. Li and L. Ma, “Capabilities and limitations of 3D flame measurements based on computed tomography of chemiluminescence,” Combust. Flame 162(3), 642–651 (2015).
[Crossref]

M. Zhang, J. Wang, W. Jin, Z. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162(5), 2087–2097 (2015).
[Crossref]

L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
[Crossref]

X. Li and L. Ma, “Volumetric imaging of turbulent reactive flows at kHz based on computed tomography,” Opt. Express 22(4), 4768–4778 (2014).
[Crossref] [PubMed]

Y. Wu, Q. Lei, and L. Ma, “Experimental demonstration of 4D imaging in two-phase flows based on computed tomography at 5 kHz,” Appl. Opt. 53(24), 5547–5553 (2014).
[Crossref] [PubMed]

M. Kang, Y. Wu, and L. Ma, “Fiber-based endoscopes for 3D combustion measurements: view registration and spatial resolution,” Combust. Flame 161(12), 3063–3072 (2014).
[Crossref]

W. Cai, X. Li, and L. Ma, “Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging,” Appl. Opt. 52(33), 8106–8116 (2013).
[Crossref] [PubMed]

W. Cai, X. Li, F. Li, and L. Ma, “Numerical and experimental validation of a three-dimensional combustion diagnostic based on tomographic chemiluminescence,” Opt. Express 21(6), 7050–7064 (2013).
[Crossref] [PubMed]

Y. Zhao, C. Tong, and L. Ma, “Kinetics of I2 and HI photodissociation with implications in flame diagnostics,” Appl. Phys. B 104(3), 689–698 (2011).
[Crossref]

Y. Zhao, C. Tong, and L. Ma, “Demonstration of a new laser diagnostic based on photodissociation spectroscopy for imaging mixture fraction in a non-premixed jet flame,” Appl. Spectrosc. 64(4), 377–383 (2010).
[Crossref] [PubMed]

W. Cai and L. Ma, “Applications of critical temperature in minimizing functions of continuous variables with simulated annealing algorithm,” Comput. Phys. Commun. 181(1), 11–16 (2010).
[Crossref]

W. Cai and L. Ma, “Hyperspectral tomography based on proper orthogonal decomposition as motivated by imaging diagnostics of unsteady reactive flows,” Appl. Opt. 49(4), 601–610 (2010).
[Crossref] [PubMed]

Y. Zhao, C. Tong, and L. Ma, “Assessment of a novel flow visualization technique using photodissociation spectroscopy,” Appl. Spectrosc. 63(2), 199–206 (2009).
[Crossref] [PubMed]

Medford, T.

T. Medford, P. Danehy, S. Jones, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser-induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011), pp. 1–14.
[Crossref]

Meyer, T.

T. Medford, P. Danehy, S. Jones, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser-induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011), pp. 1–14.
[Crossref]

Miller, J.

T. Medford, P. Danehy, S. Jones, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser-induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011), pp. 1–14.
[Crossref]

Miller, V. A.

V. A. Miller, V. A. Troutman, and R. K. Hanson, “Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene,” Meas. Sci. Technol. 25(7), 075403 (2014).
[Crossref]

Mungal, M. G.

T. C. Island, B. J. Patrie, M. G. Mungal, and R. K. Hanson, “Instantaneous three-dimensional flow visualization of a supersonic mixing layer,” Exp. Fluids 20(4), 249–256 (1996).
[Crossref]

Ng, W.

W. Ng and Y. Zhang, “Stereoscopic imaging and reconstruction of the 3D geometry of flame surfaces,” Exp. Fluids 34(4), 484–493 (2003).
[Crossref]

Nygren, J.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Ombrello, T. M.

L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
[Crossref]

Patrie, B. J.

T. C. Island, B. J. Patrie, M. G. Mungal, and R. K. Hanson, “Instantaneous three-dimensional flow visualization of a supersonic mixing layer,” Exp. Fluids 20(4), 249–256 (1996).
[Crossref]

Paul, P. H.

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50(6), 441–454 (1990).
[Crossref]

G. Kychakoff, P. H. Paul, I. van Cruyningen, and R. K. Hanson, “Movies and 3-D images of flowfields using planar laser-induced fluorescence,” Appl. Opt. 26(13), 2498–2500 (1987).
[Crossref] [PubMed]

Pourpoint, T. L.

Richter, M.

R. Wellander, M. Richter, and M. Alden, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55(6), 1–12 (2014).
[Crossref]

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

Satija, A.

Seitzman, J. M.

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50(6), 441–454 (1990).
[Crossref]

J. M. Seitzman, G. Kychakoff, and R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10(9), 439–441 (1985).
[Crossref] [PubMed]

Son, S. F.

Tong, C.

Troutman, V. A.

V. A. Miller, V. A. Troutman, and R. K. Hanson, “Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene,” Meas. Sci. Technol. 25(7), 075403 (2014).
[Crossref]

van Cruyningen, I.

I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10(1), 41–49 (1990).
[Crossref]

G. Kychakoff, P. H. Paul, I. van Cruyningen, and R. K. Hanson, “Movies and 3-D images of flowfields using planar laser-induced fluorescence,” Appl. Opt. 26(13), 2498–2500 (1987).
[Crossref] [PubMed]

Wang, J.

M. Zhang, J. Wang, W. Jin, Z. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162(5), 2087–2097 (2015).
[Crossref]

Webster, M.

T. Medford, P. Danehy, S. Jones, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser-induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011), pp. 1–14.
[Crossref]

Wellander, R.

R. Wellander, M. Richter, and M. Alden, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55(6), 1–12 (2014).
[Crossref]

Wu, Y.

L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
[Crossref]

Y. Wu, Q. Lei, and L. Ma, “Experimental demonstration of 4D imaging in two-phase flows based on computed tomography at 5 kHz,” Appl. Opt. 53(24), 5547–5553 (2014).
[Crossref] [PubMed]

M. Kang, Y. Wu, and L. Ma, “Fiber-based endoscopes for 3D combustion measurements: view registration and spatial resolution,” Combust. Flame 161(12), 3063–3072 (2014).
[Crossref]

Yip, B.

A. Lozano, B. Yip, and R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13(6), 369–376 (1992).
[Crossref]

Zhang, M.

M. Zhang, J. Wang, W. Jin, Z. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162(5), 2087–2097 (2015).
[Crossref]

Zhang, Y.

K. Y. Cheung and Y. Zhang, “Stereo imaging and analysis of combustion process in a gas turbine combustor,” Meas. Sci. Technol. 17(12), 3221–3228 (2006).
[Crossref]

W. Ng and Y. Zhang, “Stereoscopic imaging and reconstruction of the 3D geometry of flame surfaces,” Exp. Fluids 34(4), 484–493 (2003).
[Crossref]

Zhao, Y.

Appl. Opt. (5)

Appl. Phys. B (4)

L. Ma, Q. Lei, Y. Wu, T. M. Ombrello, and C. D. Carter, “3D measurements of ignition processes at 20 kHz in a supersonic combustor,” Appl. Phys. B 119(2), 313–318 (2015).
[Crossref]

C. D. Carter, J. M. Donbar, and J. F. Driscoll, “Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames,” Appl. Phys. B 66(1), 129–132 (1998).
[Crossref]

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50(6), 441–454 (1990).
[Crossref]

Y. Zhao, C. Tong, and L. Ma, “Kinetics of I2 and HI photodissociation with implications in flame diagnostics,” Appl. Phys. B 104(3), 689–698 (2011).
[Crossref]

Appl. Spectrosc. (2)

Combust. Flame (4)

J. Floyd, P. Geipel, and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame,” Combust. Flame 158(2), 376–391 (2011).
[Crossref]

M. Kang, Y. Wu, and L. Ma, “Fiber-based endoscopes for 3D combustion measurements: view registration and spatial resolution,” Combust. Flame 161(12), 3063–3072 (2014).
[Crossref]

X. Li and L. Ma, “Capabilities and limitations of 3D flame measurements based on computed tomography of chemiluminescence,” Combust. Flame 162(3), 642–651 (2015).
[Crossref]

M. Zhang, J. Wang, W. Jin, Z. Huang, H. Kobayashi, and L. Ma, “Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame,” Combust. Flame 162(5), 2087–2097 (2015).
[Crossref]

Comput. Phys. Commun. (1)

W. Cai and L. Ma, “Applications of critical temperature in minimizing functions of continuous variables with simulated annealing algorithm,” Comput. Phys. Commun. 181(1), 11–16 (2010).
[Crossref]

Exp. Fluids (5)

W. Ng and Y. Zhang, “Stereoscopic imaging and reconstruction of the 3D geometry of flame surfaces,” Exp. Fluids 34(4), 484–493 (2003).
[Crossref]

A. Lozano, B. Yip, and R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13(6), 369–376 (1992).
[Crossref]

I. van Cruyningen, A. Lozano, and R. K. Hanson, “Quantitative imaging of concentration by planar laser-induced fluorescence,” Exp. Fluids 10(1), 41–49 (1990).
[Crossref]

R. Wellander, M. Richter, and M. Alden, “Time-resolved (kHz) 3D imaging of OH PLIF in a flame,” Exp. Fluids 55(6), 1–12 (2014).
[Crossref]

T. C. Island, B. J. Patrie, M. G. Mungal, and R. K. Hanson, “Instantaneous three-dimensional flow visualization of a supersonic mixing layer,” Exp. Fluids 20(4), 249–256 (1996).
[Crossref]

J. Prop. Pow. (1)

S. D. Hammack, T. Lee, K. Y. Hsu, and C. D. Carter, “High-repetition-rate OH planar laser-induced fluorescence of a cavity flameholder,” J. Prop. Pow. 29(5), 1248–1251 (2013).
[Crossref]

Meas. Sci. Technol. (2)

V. A. Miller, V. A. Troutman, and R. K. Hanson, “Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene,” Meas. Sci. Technol. 25(7), 075403 (2014).
[Crossref]

K. Y. Cheung and Y. Zhang, “Stereo imaging and analysis of combustion process in a gas turbine combustor,” Meas. Sci. Technol. 17(12), 3221–3228 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Proc. Combust. Inst. (3)

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[Crossref]

M. Kang, X. Li, and L. Ma, “Three-dimensional flame measurements using fiber-based endoscopes,” Proc. Combust. Inst. 35(3), 3821–3828 (2015).
[Crossref]

J. Floyd and A. M. Kempf, “Computed Tomography of Chemiluminescence (CTC): High resolution and instantaneous 3-D measurements of a Matrix burner,” Proc. Combust. Inst. 33(1), 751–758 (2011).
[Crossref]

Other (2)

P. M. Danehy, B. F. Bathel, J. A. Inman, D. W. Alderfer, and S. B. Jones, “Stereoscopic Imaging in Hypersonic Boundary Layers using Planar Laser-Induced Fluorescence,” in 26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference (AIAA, 2008), pp. 1–15.

T. Medford, P. Danehy, S. Jones, N. Jiang, M. Webster, W. Lempert, J. Miller, and T. Meyer, “Stereoscopic planar laser-induced fluorescence imaging at 500 kHz,” in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011), pp. 1–14.
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (2141 KB)      3D view of undeveloped I2 flow
» Visualization 2: MP4 (2614 KB)      3D view of developed I2 flow

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Panel (a): experimental setup from the top view. Panel (b): the spatial profile of VLIF laser intensity at y = 0.
Fig. 2
Fig. 2 Controlled VLIF experiments performed in a dye cell. Panel (a): dye concentration at three locations obtained from 3D VLIF measurements. Panel (b): scaled laser intensity along the VLIF laser path at three different z locations (z = 20, 30 and 40 mm). Panel (c): laser intensity at three locations obtained using the 3D VLIF reconstruction algorithm. Panel (d): comparison of the laser intensity obtained by 3D reconstruction and direct 2D measurement.
Fig. 3
Fig. 3 A set of example projections measured by camera 1 through 5. Panel (a): the PLIF image captured by camera 1. Panels (b) - (f): the VLIF projections captured by camera 1 through 5.
Fig. 4
Fig. 4 Panel (a) 3D VLIF measurement of a jet flow (see also Visualization 1), Panel (b) three 2D slices of the measurement (panel b).
Fig. 5
Fig. 5 Comparison of VLIF against PLIF in an under-developed turbulent jet flow. Panel (a): the VLIF reconstruction at the central layer at y = 0. Panel (b): PLIF measurement of the flow at its central plane (captured by camera 1). White line shows the edge extracted from the image. Panel (c): panel (a) overlapped with the edge extracted from the PLIF image (i.e., the white line shown in panel (b)).
Fig. 6
Fig. 6 Comparison of 2D reconstructed slice against the experimental PLIF and VLIF projection in a fully developed turbulent flow (see also Visualization 2). Panel (a)-(c): three of the five projections used in the VLIF reconstruction, captured by camera 1, 3, and 4, respectively. Panel (d): the VLIF reconstruction at the central layer at y = 0. Panel (e): PLIF measurement of the flow at its central plane (captured by camera 1). White line shows the edge extracted from the image. Panel (f): panel (d) overlapped with the edge extracted from the PLIF image (i.e., the white line shown in panel (e)).

Metrics