Abstract

We report a transient absorption study of photocarrier dynamics in transition metal dichalcogenide alloy, Mo0.5W0.5S2. Photocarriers were injected by a 400-nm pump pulse and detected by a 660-nm probe pulse. We observed a fast energy relaxation process of about 0.7 ps. The photocarrier lifetime is in the range of 50 – 100 ps, which weakly depends on the injected photocarrier density and is a few times shorter than MoS2 and WS2, reflecting the relatively lower crystalline quality of the alloy. Saturable absorption was also observed in Mo0.5W0.5S2, with a saturation energy fluence of 32 μJ cm−2. These results provide important parameters on photocarrier properties of transition metal dichalcogenide alloys.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo 0.5 W0.5 S2

S. Bikorimana, P. Lama, A. Walser, R. Dorsinville, S. Anghel, A. Mitioglu, A. Micu, and L. Kulyuk
Opt. Express 24(18) 20685-20695 (2016)

Exciton dynamics in monolayer transition metal dichalcogenides [Invited]

Galan Moody, John Schaibley, and Xiaodong Xu
J. Opt. Soc. Am. B 33(7) C39-C49 (2016)

Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2

Bohua Chen, Xiaoyan Zhang, Kan Wu, Hao Wang, Jun Wang, and Jianping Chen
Opt. Express 23(20) 26723-26737 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref] [PubMed]
  2. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
    [Crossref]
  3. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
    [Crossref] [PubMed]
  4. D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
    [Crossref]
  5. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
    [Crossref] [PubMed]
  6. K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012).
    [Crossref] [PubMed]
  7. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trion in monolayer MoS2,” Nat. Mater. 12, 207–211 (2013).
    [Crossref]
  8. J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
    [Crossref] [PubMed]
  9. A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
    [Crossref]
  10. K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
    [Crossref]
  11. H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3, 1608 (2013).
    [Crossref] [PubMed]
  12. N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
    [Crossref]
  13. L. M. Malard, T. V. Alencar, A. P. M. Barboza, K. F. Mak, and A. M. de Paula, “Observation of intense second harmonic generation from MoS2 atomic crystals,” Phys. Rev. B 87, 201401 (2013).
    [Crossref]
  14. Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13, 3329–3333 (2013).
    [Crossref] [PubMed]
  15. A. K. Geim and I. V. Grigorieva, “Van der waals heterostructures,” Nature 499, 419–425 (2013).
    [Crossref] [PubMed]
  16. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
    [Crossref] [PubMed]
  17. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
    [Crossref] [PubMed]
  18. Y. F. Chen, J. Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. G. Shuai, Y. S. Huang, and L. M. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano 7, 4610 (2013).
    [Crossref] [PubMed]
  19. H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
    [Crossref] [PubMed]
  20. J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
    [Crossref]
  21. Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
    [Crossref]
  22. S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, and L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy,” Small 10, 2589–2594 (2014).
    [Crossref] [PubMed]
  23. W. T. Zhang, X. D. Li, T. T. Jiang, J. L. Q. Song, Y. Lin, L. X. Zhu, and X. L. Xu, “CVD synthesis of Mo1−xWxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide,” Nanoscale 7, 13554–13560 (2015).
    [Crossref] [PubMed]
  24. Q. L. Feng, N. N. Mao, J. X. Wu, H. Xu, C. M. Wang, J. Zhang, and L. M. Xie, “Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition,” ACS Nano 9, 7450–7455 (2015).
    [Crossref] [PubMed]
  25. H. L. Li, Q. L. Zhang, X. D. Duan, X. P. Wu, X. P. Fan, X. L. Zhu, X. J. Zhuang, W. Hu, H. Zhou, A. L. Pan, and X. F. Duan, “Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets,” J. Am. Chem. Soc. 137, 5284–5287 (2015).
    [Crossref] [PubMed]
  26. L. Yang, Q. Fu, W. H. Wang, J. Huang, J. L. Huang, J. Y. Zhang, and B. Xiang, “Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity,” Nanoscale 7, 10490–10497 (2015).
    [Crossref] [PubMed]
  27. V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
    [Crossref] [PubMed]
  28. Q. Fu, L. Yang, W. H. Wang, A. Han, J. Huang, P. W. Du, Z. Y. Fan, J. Y. Zhang, and B. Xiang, “Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(10x)Se2x with a tunable band gap,” Adv. Mater. 27, 4732–4738 (2015).
    [Crossref] [PubMed]
  29. Y. F. Chen, D. O. Dumcenco, Y. M. Zhu, X. Zhang, N. N. Mao, Q. L. Feng, M. Zhang, J. Zhang, P. H. Tan, Y. S. Huang, and L. M. Xie, “Composition-dependent raman modes of Mo1−xWxS2 monolayer alloys,” Nanoscale 6, 2833 (2014).
    [Crossref] [PubMed]
  30. A. Kutana, E. S. Penev, and B. I. Yakobson, “Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying,” Nanoscale 6, 5820 (2014).
    [Crossref] [PubMed]
  31. S. J. Zheng, L. F. Sun, T. T. Yin, A. M. Dubrovkin, F. C. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
    [Crossref]
  32. H. F. Liu, K. K. A. Antwi, S. Chua, and D. Z. Chi, “Vapor-phase growth and characterization of Mo1−xWxS2 atomic layers on 2-inch sapphire substrates,” Nanoscale 6, 624 (2014).
    [Crossref]
  33. J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
    [Crossref] [PubMed]
  34. B. Huang, M. Yoon, B. G. Sumpter, S. H. Wei, and F. Liu, “Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides,” Phys. Rev. Lett. 115, 126806 (2015).
    [Crossref] [PubMed]
  35. D. O. Dumcenco, H. Kobayashi, Z. Liu, Y. S. Huang, and K. Suenaga, “Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers,” Nat. Commun. 4, 1351 (2013).
    [Crossref]
  36. S. Yoshida, Y. Kobayashi, R. Sakurada, S. Mori, Y. Miyata, H. Mogi, T. Koyama, O. Takeuchi, and H. Shigekawa, “Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction,” Sci. Rep. 5, 14808 (2015).
    [Crossref]
  37. M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
    [Crossref] [PubMed]
  38. K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group-vi transition-metal dichalcogenides,” J. Phys. Chem. 86, 463 (1982).
    [Crossref]
  39. A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers-Kronig analysis of reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C 9, 2449 (1976).
    [Crossref]
  40. B. A. Ruzicka, N. Kumar, S. Wang, K. P. Loh, and H. Zhao, “Two-probe study of hot carriers in reduced graphene oxide,” J. Appl. Phys. 109, 084322 (2011).
    [Crossref]
  41. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32, 6601–6609 (1985).
    [Crossref]
  42. J. He, D. He, Y. Wang, Q. Cui, F. Ceballos, and H. Zhao, “Spatiotemporal dynamics of excitons in monolayer and bulk ws2,” Nanoscale 7, 9526 (2015).
    [Crossref] [PubMed]
  43. N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy,” J. of Appl. Phys. 113, 133702 (2013).
    [Crossref]
  44. H.-P. Komsa and A. V. Krasheninnikov, “Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles,” Phys. Rev. B 86, 241201 (2012).
    [Crossref]
  45. N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
    [Crossref]
  46. D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
    [Crossref] [PubMed]

2015 (11)

W. T. Zhang, X. D. Li, T. T. Jiang, J. L. Q. Song, Y. Lin, L. X. Zhu, and X. L. Xu, “CVD synthesis of Mo1−xWxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide,” Nanoscale 7, 13554–13560 (2015).
[Crossref] [PubMed]

Q. L. Feng, N. N. Mao, J. X. Wu, H. Xu, C. M. Wang, J. Zhang, and L. M. Xie, “Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition,” ACS Nano 9, 7450–7455 (2015).
[Crossref] [PubMed]

H. L. Li, Q. L. Zhang, X. D. Duan, X. P. Wu, X. P. Fan, X. L. Zhu, X. J. Zhuang, W. Hu, H. Zhou, A. L. Pan, and X. F. Duan, “Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets,” J. Am. Chem. Soc. 137, 5284–5287 (2015).
[Crossref] [PubMed]

L. Yang, Q. Fu, W. H. Wang, J. Huang, J. L. Huang, J. Y. Zhang, and B. Xiang, “Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity,” Nanoscale 7, 10490–10497 (2015).
[Crossref] [PubMed]

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

Q. Fu, L. Yang, W. H. Wang, A. Han, J. Huang, P. W. Du, Z. Y. Fan, J. Y. Zhang, and B. Xiang, “Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(10x)Se2x with a tunable band gap,” Adv. Mater. 27, 4732–4738 (2015).
[Crossref] [PubMed]

S. J. Zheng, L. F. Sun, T. T. Yin, A. M. Dubrovkin, F. C. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

S. Yoshida, Y. Kobayashi, R. Sakurada, S. Mori, Y. Miyata, H. Mogi, T. Koyama, O. Takeuchi, and H. Shigekawa, “Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction,” Sci. Rep. 5, 14808 (2015).
[Crossref]

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

B. Huang, M. Yoon, B. G. Sumpter, S. H. Wei, and F. Liu, “Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides,” Phys. Rev. Lett. 115, 126806 (2015).
[Crossref] [PubMed]

J. He, D. He, Y. Wang, Q. Cui, F. Ceballos, and H. Zhao, “Spatiotemporal dynamics of excitons in monolayer and bulk ws2,” Nanoscale 7, 9526 (2015).
[Crossref] [PubMed]

2014 (12)

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

H. F. Liu, K. K. A. Antwi, S. Chua, and D. Z. Chi, “Vapor-phase growth and characterization of Mo1−xWxS2 atomic layers on 2-inch sapphire substrates,” Nanoscale 6, 624 (2014).
[Crossref]

Y. F. Chen, D. O. Dumcenco, Y. M. Zhu, X. Zhang, N. N. Mao, Q. L. Feng, M. Zhang, J. Zhang, P. H. Tan, Y. S. Huang, and L. M. Xie, “Composition-dependent raman modes of Mo1−xWxS2 monolayer alloys,” Nanoscale 6, 2833 (2014).
[Crossref] [PubMed]

A. Kutana, E. S. Penev, and B. I. Yakobson, “Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying,” Nanoscale 6, 5820 (2014).
[Crossref] [PubMed]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, and L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy,” Small 10, 2589–2594 (2014).
[Crossref] [PubMed]

2013 (11)

H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3, 1608 (2013).
[Crossref] [PubMed]

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
[Crossref]

L. M. Malard, T. V. Alencar, A. P. M. Barboza, K. F. Mak, and A. M. de Paula, “Observation of intense second harmonic generation from MoS2 atomic crystals,” Phys. Rev. B 87, 201401 (2013).
[Crossref]

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13, 3329–3333 (2013).
[Crossref] [PubMed]

A. K. Geim and I. V. Grigorieva, “Van der waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref] [PubMed]

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trion in monolayer MoS2,” Nat. Mater. 12, 207–211 (2013).
[Crossref]

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy,” J. of Appl. Phys. 113, 133702 (2013).
[Crossref]

D. O. Dumcenco, H. Kobayashi, Z. Liu, Y. S. Huang, and K. Suenaga, “Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers,” Nat. Commun. 4, 1351 (2013).
[Crossref]

Y. F. Chen, J. Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. G. Shuai, Y. S. Huang, and L. M. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano 7, 4610 (2013).
[Crossref] [PubMed]

2012 (6)

H.-P. Komsa and A. V. Krasheninnikov, “Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles,” Phys. Rev. B 86, 241201 (2012).
[Crossref]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref] [PubMed]

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
[Crossref]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref] [PubMed]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012).
[Crossref] [PubMed]

2011 (1)

B. A. Ruzicka, N. Kumar, S. Wang, K. P. Loh, and H. Zhao, “Two-probe study of hot carriers in reduced graphene oxide,” J. Appl. Phys. 109, 084322 (2011).
[Crossref]

2010 (2)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

1985 (1)

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32, 6601–6609 (1985).
[Crossref]

1982 (1)

K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group-vi transition-metal dichalcogenides,” J. Phys. Chem. 86, 463 (1982).
[Crossref]

1976 (1)

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers-Kronig analysis of reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C 9, 2449 (1976).
[Crossref]

Aivazian, G.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

Ajayan, P. M.

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
[Crossref]

Alencar, T. V.

L. M. Malard, T. V. Alencar, A. P. M. Barboza, K. F. Mak, and A. M. de Paula, “Observation of intense second harmonic generation from MoS2 atomic crystals,” Phys. Rev. B 87, 201401 (2013).
[Crossref]

Antwi, K. K. A.

H. F. Liu, K. K. A. Antwi, S. Chua, and D. Z. Chi, “Vapor-phase growth and characterization of Mo1−xWxS2 atomic layers on 2-inch sapphire substrates,” Nanoscale 6, 624 (2014).
[Crossref]

Aslan, O. B.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Barboza, A. P. M.

L. M. Malard, T. V. Alencar, A. P. M. Barboza, K. F. Mak, and A. M. de Paula, “Observation of intense second harmonic generation from MoS2 atomic crystals,” Phys. Rev. B 87, 201401 (2013).
[Crossref]

Barroso, D.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Bartels, L.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Beal, A. R.

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers-Kronig analysis of reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C 9, 2449 (1976).
[Crossref]

Belle, B. D.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Berkelbach, T. C.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Bobek, S.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Brezin, L.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

Britnell, L.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Casiraghi, C.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Ceballos, F.

J. He, D. He, Y. Wang, Q. Cui, F. Ceballos, and H. Zhao, “Spatiotemporal dynamics of excitons in monolayer and bulk ws2,” Nanoscale 7, 9526 (2015).
[Crossref] [PubMed]

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
[Crossref]

Chaki, S. H.

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

Chang, W. H.

S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, and L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy,” Small 10, 2589–2594 (2014).
[Crossref] [PubMed]

Chang, Y. H.

S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, and L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy,” Small 10, 2589–2594 (2014).
[Crossref] [PubMed]

Chemla, D. S.

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32, 6601–6609 (1985).
[Crossref]

Chen, G.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

Chen, X.

H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3, 1608 (2013).
[Crossref] [PubMed]

Chen, Y.

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

Chen, Y. F.

Y. F. Chen, D. O. Dumcenco, Y. M. Zhu, X. Zhang, N. N. Mao, Q. L. Feng, M. Zhang, J. Zhang, P. H. Tan, Y. S. Huang, and L. M. Xie, “Composition-dependent raman modes of Mo1−xWxS2 monolayer alloys,” Nanoscale 6, 2833 (2014).
[Crossref] [PubMed]

Y. F. Chen, J. Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. G. Shuai, Y. S. Huang, and L. M. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano 7, 4610 (2013).
[Crossref] [PubMed]

Chernikov, A.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Chi, D. Z.

H. F. Liu, K. K. A. Antwi, S. Chua, and D. Z. Chi, “Vapor-phase growth and characterization of Mo1−xWxS2 atomic layers on 2-inch sapphire substrates,” Nanoscale 6, 624 (2014).
[Crossref]

Chim, C. Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Chiu, M. H.

S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, and L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy,” Small 10, 2589–2594 (2014).
[Crossref] [PubMed]

Choi, H.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Choi, T.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Chua, S.

H. F. Liu, K. K. A. Antwi, S. Chua, and D. Z. Chi, “Vapor-phase growth and characterization of Mo1−xWxS2 atomic layers on 2-inch sapphire substrates,” Nanoscale 6, 624 (2014).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref] [PubMed]

Cui, Q.

J. He, D. He, Y. Wang, Q. Cui, F. Ceballos, and H. Zhao, “Spatiotemporal dynamics of excitons in monolayer and bulk ws2,” Nanoscale 7, 9526 (2015).
[Crossref] [PubMed]

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
[Crossref]

Cui, X.

H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3, 1608 (2013).
[Crossref] [PubMed]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref] [PubMed]

Dai, J.

H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3, 1608 (2013).
[Crossref] [PubMed]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref] [PubMed]

Davis, B.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

de Paula, A. M.

L. M. Malard, T. V. Alencar, A. P. M. Barboza, K. F. Mak, and A. M. de Paula, “Observation of intense second harmonic generation from MoS2 atomic crystals,” Phys. Rev. B 87, 201401 (2013).
[Crossref]

Dean, C. R.

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13, 3329–3333 (2013).
[Crossref] [PubMed]

Deng, S.

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

Dong, F.

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

Du, P. W.

Q. Fu, L. Yang, W. H. Wang, A. Han, J. Huang, P. W. Du, Z. Y. Fan, J. Y. Zhang, and B. Xiang, “Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(10x)Se2x with a tunable band gap,” Adv. Mater. 27, 4732–4738 (2015).
[Crossref] [PubMed]

Duan, W.

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

Duan, X. D.

H. L. Li, Q. L. Zhang, X. D. Duan, X. P. Wu, X. P. Fan, X. L. Zhu, X. J. Zhuang, W. Hu, H. Zhou, A. L. Pan, and X. F. Duan, “Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets,” J. Am. Chem. Soc. 137, 5284–5287 (2015).
[Crossref] [PubMed]

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Duan, X. F.

H. L. Li, Q. L. Zhang, X. D. Duan, X. P. Wu, X. P. Fan, X. L. Zhu, X. J. Zhuang, W. Hu, H. Zhou, A. L. Pan, and X. F. Duan, “Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets,” J. Am. Chem. Soc. 137, 5284–5287 (2015).
[Crossref] [PubMed]

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Dubrovkin, A. M.

S. J. Zheng, L. F. Sun, T. T. Yin, A. M. Dubrovkin, F. C. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Dumcenco, D. O.

Y. F. Chen, D. O. Dumcenco, Y. M. Zhu, X. Zhang, N. N. Mao, Q. L. Feng, M. Zhang, J. Zhang, P. H. Tan, Y. S. Huang, and L. M. Xie, “Composition-dependent raman modes of Mo1−xWxS2 monolayer alloys,” Nanoscale 6, 2833 (2014).
[Crossref] [PubMed]

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

D. O. Dumcenco, H. Kobayashi, Z. Liu, Y. S. Huang, and K. Suenaga, “Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers,” Nat. Commun. 4, 1351 (2013).
[Crossref]

Y. F. Chen, J. Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. G. Shuai, Y. S. Huang, and L. M. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano 7, 4610 (2013).
[Crossref] [PubMed]

Dussarrat, C.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Eaves, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Eckmann, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Erickson, K. J.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

Fan, H. J.

S. J. Zheng, L. F. Sun, T. T. Yin, A. M. Dubrovkin, F. C. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Fan, X. P.

H. L. Li, Q. L. Zhang, X. D. Duan, X. P. Wu, X. P. Fan, X. L. Zhu, X. J. Zhuang, W. Hu, H. Zhou, A. L. Pan, and X. F. Duan, “Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets,” J. Am. Chem. Soc. 137, 5284–5287 (2015).
[Crossref] [PubMed]

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Fan, Z. Y.

Q. Fu, L. Yang, W. H. Wang, A. Han, J. Huang, P. W. Du, Z. Y. Fan, J. Y. Zhang, and B. Xiang, “Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(10x)Se2x with a tunable band gap,” Adv. Mater. 27, 4732–4738 (2015).
[Crossref] [PubMed]

Feng, Q.

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

Feng, Q. L.

Q. L. Feng, N. N. Mao, J. X. Wu, H. Xu, C. M. Wang, J. Zhang, and L. M. Xie, “Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition,” ACS Nano 9, 7450–7455 (2015).
[Crossref] [PubMed]

Y. F. Chen, D. O. Dumcenco, Y. M. Zhu, X. Zhang, N. N. Mao, Q. L. Feng, M. Zhang, J. Zhang, P. H. Tan, Y. S. Huang, and L. M. Xie, “Composition-dependent raman modes of Mo1−xWxS2 monolayer alloys,” Nanoscale 6, 2833 (2014).
[Crossref] [PubMed]

Feng, W.

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
[Crossref]

Fu, Q.

L. Yang, Q. Fu, W. H. Wang, J. Huang, J. L. Huang, J. Y. Zhang, and B. Xiang, “Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity,” Nanoscale 7, 10490–10497 (2015).
[Crossref] [PubMed]

Q. Fu, L. Yang, W. H. Wang, A. Han, J. Huang, P. W. Du, Z. Y. Fan, J. Y. Zhang, and B. Xiang, “Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(10x)Se2x with a tunable band gap,” Adv. Mater. 27, 4732–4738 (2015).
[Crossref] [PubMed]

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Geim, A. K.

A. K. Geim and I. V. Grigorieva, “Van der waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref] [PubMed]

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Georgiou, T.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Ghimire, N. J.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

Gorbachev, R. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Grigorenko, A. N.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref] [PubMed]

Guo, P. F.

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Han, A.

Q. Fu, L. Yang, W. H. Wang, A. Han, J. Huang, P. W. Du, Z. Y. Fan, J. Y. Zhang, and B. Xiang, “Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(10x)Se2x with a tunable band gap,” Adv. Mater. 27, 4732–4738 (2015).
[Crossref] [PubMed]

Harutyunyan, A. R.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

He, D.

J. He, D. He, Y. Wang, Q. Cui, F. Ceballos, and H. Zhao, “Spatiotemporal dynamics of excitons in monolayer and bulk ws2,” Nanoscale 7, 9526 (2015).
[Crossref] [PubMed]

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy,” J. of Appl. Phys. 113, 133702 (2013).
[Crossref]

He, J.

J. He, D. He, Y. Wang, Q. Cui, F. Ceballos, and H. Zhao, “Spatiotemporal dynamics of excitons in monolayer and bulk ws2,” Nanoscale 7, 9526 (2015).
[Crossref] [PubMed]

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy,” J. of Appl. Phys. 113, 133702 (2013).
[Crossref]

He, J. H.

S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, and L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy,” Small 10, 2589–2594 (2014).
[Crossref] [PubMed]

He, K.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trion in monolayer MoS2,” Nat. Mater. 12, 207–211 (2013).
[Crossref]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012).
[Crossref] [PubMed]

He, R.

H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3, 1608 (2013).
[Crossref] [PubMed]

Heinz, T. F.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trion in monolayer MoS2,” Nat. Mater. 12, 207–211 (2013).
[Crossref]

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13, 3329–3333 (2013).
[Crossref] [PubMed]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Hill, H. M.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Hone, J.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trion in monolayer MoS2,” Nat. Mater. 12, 207–211 (2013).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Hong, J.

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

Hsu, C. L.

S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, and L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy,” Small 10, 2589–2594 (2014).
[Crossref] [PubMed]

Hsu, W. T.

S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, and L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy,” Small 10, 2589–2594 (2014).
[Crossref] [PubMed]

Hsu, Y. T.

S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, and L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy,” Small 10, 2589–2594 (2014).
[Crossref] [PubMed]

Hu, W.

H. L. Li, Q. L. Zhang, X. D. Duan, X. P. Wu, X. P. Fan, X. L. Zhu, X. J. Zhuang, W. Hu, H. Zhou, A. L. Pan, and X. F. Duan, “Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets,” J. Am. Chem. Soc. 137, 5284–5287 (2015).
[Crossref] [PubMed]

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Huang, B.

B. Huang, M. Yoon, B. G. Sumpter, S. H. Wei, and F. Liu, “Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides,” Phys. Rev. Lett. 115, 126806 (2015).
[Crossref] [PubMed]

Huang, J.

L. Yang, Q. Fu, W. H. Wang, J. Huang, J. L. Huang, J. Y. Zhang, and B. Xiang, “Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity,” Nanoscale 7, 10490–10497 (2015).
[Crossref] [PubMed]

Q. Fu, L. Yang, W. H. Wang, A. Han, J. Huang, P. W. Du, Z. Y. Fan, J. Y. Zhang, and B. Xiang, “Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(10x)Se2x with a tunable band gap,” Adv. Mater. 27, 4732–4738 (2015).
[Crossref] [PubMed]

Huang, J. L.

L. Yang, Q. Fu, W. H. Wang, J. Huang, J. L. Huang, J. Y. Zhang, and B. Xiang, “Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity,” Nanoscale 7, 10490–10497 (2015).
[Crossref] [PubMed]

Huang, Y. S.

Y. F. Chen, D. O. Dumcenco, Y. M. Zhu, X. Zhang, N. N. Mao, Q. L. Feng, M. Zhang, J. Zhang, P. H. Tan, Y. S. Huang, and L. M. Xie, “Composition-dependent raman modes of Mo1−xWxS2 monolayer alloys,” Nanoscale 6, 2833 (2014).
[Crossref] [PubMed]

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

D. O. Dumcenco, H. Kobayashi, Z. Liu, Y. S. Huang, and K. Suenaga, “Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers,” Nat. Commun. 4, 1351 (2013).
[Crossref]

Y. F. Chen, J. Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. G. Shuai, Y. S. Huang, and L. M. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano 7, 4610 (2013).
[Crossref] [PubMed]

Hughes, H. P.

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers-Kronig analysis of reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C 9, 2449 (1976).
[Crossref]

Hybertsen, M. S.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Isarraraz, M.

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Jalil, R.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Jiang, T. T.

W. T. Zhang, X. D. Li, T. T. Jiang, J. L. Q. Song, Y. Lin, L. X. Zhu, and X. L. Xu, “CVD synthesis of Mo1−xWxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide,” Nanoscale 7, 13554–13560 (2015).
[Crossref] [PubMed]

Jin, C.

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

Jones, A. M.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

Jung, H.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref] [PubMed]

Kam, K. K.

K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group-vi transition-metal dichalcogenides,” J. Phys. Chem. 86, 463 (1982).
[Crossref]

Katsnelson, M. I.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Kawakami, R.

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Kim, H.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Kim, J.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Kim, Y.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Kim, Y.-J.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref] [PubMed]

Klee, V.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Kobayashi, H.

D. O. Dumcenco, H. Kobayashi, Z. Liu, Y. S. Huang, and K. Suenaga, “Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers,” Nat. Commun. 4, 1351 (2013).
[Crossref]

Kobayashi, Y.

S. Yoshida, Y. Kobayashi, R. Sakurada, S. Mori, Y. Miyata, H. Mogi, T. Koyama, O. Takeuchi, and H. Shigekawa, “Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction,” Sci. Rep. 5, 14808 (2015).
[Crossref]

Komsa, H.-P.

H.-P. Komsa and A. V. Krasheninnikov, “Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles,” Phys. Rev. B 86, 241201 (2012).
[Crossref]

Koyama, T.

S. Yoshida, Y. Kobayashi, R. Sakurada, S. Mori, Y. Miyata, H. Mogi, T. Koyama, O. Takeuchi, and H. Shigekawa, “Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction,” Sci. Rep. 5, 14808 (2015).
[Crossref]

Krasheninnikov, A. V.

H.-P. Komsa and A. V. Krasheninnikov, “Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles,” Phys. Rev. B 86, 241201 (2012).
[Crossref]

Kumar, N.

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
[Crossref]

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy,” J. of Appl. Phys. 113, 133702 (2013).
[Crossref]

B. A. Ruzicka, N. Kumar, S. Wang, K. P. Loh, and H. Zhao, “Two-probe study of hot carriers in reduced graphene oxide,” J. Appl. Phys. 109, 084322 (2011).
[Crossref]

Kutana, A.

A. Kutana, E. S. Penev, and B. I. Yakobson, “Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying,” Nanoscale 6, 5820 (2014).
[Crossref] [PubMed]

Lansalot-Matras, C.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Le, D.

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Lee, C.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trion in monolayer MoS2,” Nat. Mater. 12, 207–211 (2013).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Lee, C. W.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Lee, G. H.

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trion in monolayer MoS2,” Nat. Mater. 12, 207–211 (2013).
[Crossref]

Lee, S. J.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Lee, Z.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Leist, J.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Leonard, F.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

Li, H. L.

H. L. Li, Q. L. Zhang, X. D. Duan, X. P. Wu, X. P. Fan, X. L. Zhu, X. J. Zhuang, W. Hu, H. Zhou, A. L. Pan, and X. F. Duan, “Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets,” J. Am. Chem. Soc. 137, 5284–5287 (2015).
[Crossref] [PubMed]

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Li, L. J.

S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, and L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy,” Small 10, 2589–2594 (2014).
[Crossref] [PubMed]

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Li, X. D.

W. T. Zhang, X. D. Li, T. T. Jiang, J. L. Q. Song, Y. Lin, L. X. Zhu, and X. L. Xu, “CVD synthesis of Mo1−xWxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide,” Nanoscale 7, 13554–13560 (2015).
[Crossref] [PubMed]

Li, Y.

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13, 3329–3333 (2013).
[Crossref] [PubMed]

Li, Y. L.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Liang, W. Y.

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers-Kronig analysis of reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C 9, 2449 (1976).
[Crossref]

Lin, F.

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

Lin, Y.

W. T. Zhang, X. D. Li, T. T. Jiang, J. L. Q. Song, Y. Lin, L. X. Zhu, and X. L. Xu, “CVD synthesis of Mo1−xWxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide,” Nanoscale 7, 13554–13560 (2015).
[Crossref] [PubMed]

Liu, F.

B. Huang, M. Yoon, B. G. Sumpter, S. H. Wei, and F. Liu, “Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides,” Phys. Rev. Lett. 115, 126806 (2015).
[Crossref] [PubMed]

Liu, F. C.

S. J. Zheng, L. F. Sun, T. T. Yin, A. M. Dubrovkin, F. C. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Liu, G. B.

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
[Crossref]

Liu, G.-B.

H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3, 1608 (2013).
[Crossref] [PubMed]

Liu, H. F.

H. F. Liu, K. K. A. Antwi, S. Chua, and D. Z. Chi, “Vapor-phase growth and characterization of Mo1−xWxS2 atomic layers on 2-inch sapphire substrates,” Nanoscale 6, 624 (2014).
[Crossref]

Liu, Z.

S. J. Zheng, L. F. Sun, T. T. Yin, A. M. Dubrovkin, F. C. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Y. F. Chen, J. Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. G. Shuai, Y. S. Huang, and L. M. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano 7, 4610 (2013).
[Crossref] [PubMed]

D. O. Dumcenco, H. Kobayashi, Z. Liu, Y. S. Huang, and K. Suenaga, “Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers,” Nat. Commun. 4, 1351 (2013).
[Crossref]

Loh, K. P.

B. A. Ruzicka, N. Kumar, S. Wang, K. P. Loh, and H. Zhao, “Two-probe study of hot carriers in reduced graphene oxide,” J. Appl. Phys. 109, 084322 (2011).
[Crossref]

Lou, J.

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
[Crossref]

Lu, I. H.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

Ma, L.

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Ma, Q.

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Mak, K. F.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trion in monolayer MoS2,” Nat. Mater. 12, 207–211 (2013).
[Crossref]

L. M. Malard, T. V. Alencar, A. P. M. Barboza, K. F. Mak, and A. M. de Paula, “Observation of intense second harmonic generation from MoS2 atomic crystals,” Phys. Rev. B 87, 201401 (2013).
[Crossref]

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13, 3329–3333 (2013).
[Crossref] [PubMed]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Malard, L. M.

L. M. Malard, T. V. Alencar, A. P. M. Barboza, K. F. Mak, and A. M. de Paula, “Observation of intense second harmonic generation from MoS2 atomic crystals,” Phys. Rev. B 87, 201401 (2013).
[Crossref]

Mandrus, D. G.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

Mann, J.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Mao, N.

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

Mao, N. N.

Q. L. Feng, N. N. Mao, J. X. Wu, H. Xu, C. M. Wang, J. Zhang, and L. M. Xie, “Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition,” ACS Nano 9, 7450–7455 (2015).
[Crossref] [PubMed]

Y. F. Chen, D. O. Dumcenco, Y. M. Zhu, X. Zhang, N. N. Mao, Q. L. Feng, M. Zhang, J. Zhang, P. H. Tan, Y. S. Huang, and L. M. Xie, “Composition-dependent raman modes of Mo1−xWxS2 monolayer alloys,” Nanoscale 6, 2833 (2014).
[Crossref] [PubMed]

Martinez, J. P.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

McKinley, J.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

Miller, D. A. B.

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32, 6601–6609 (1985).
[Crossref]

Mishchenko, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Miyata, Y.

S. Yoshida, Y. Kobayashi, R. Sakurada, S. Mori, Y. Miyata, H. Mogi, T. Koyama, O. Takeuchi, and H. Shigekawa, “Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction,” Sci. Rep. 5, 14808 (2015).
[Crossref]

Mogi, H.

S. Yoshida, Y. Kobayashi, R. Sakurada, S. Mori, Y. Miyata, H. Mogi, T. Koyama, O. Takeuchi, and H. Shigekawa, “Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction,” Sci. Rep. 5, 14808 (2015).
[Crossref]

Mori, S.

S. Yoshida, Y. Kobayashi, R. Sakurada, S. Mori, Y. Miyata, H. Mogi, T. Koyama, O. Takeuchi, and H. Shigekawa, “Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction,” Sci. Rep. 5, 14808 (2015).
[Crossref]

Morozov, S. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Myoung, J. M.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Najmaei, S.

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
[Crossref]

Neto, A. H. C.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Nguyen, A.

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Nguyen, A. E.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

Novoselov, K. S.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Odenthal, P. M.

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Palacio, G. V.

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Pan, A. L.

H. L. Li, Q. L. Zhang, X. D. Duan, X. P. Wu, X. P. Fan, X. L. Zhu, X. J. Zhuang, W. Hu, H. Zhou, A. L. Pan, and X. F. Duan, “Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets,” J. Am. Chem. Soc. 137, 5284–5287 (2015).
[Crossref] [PubMed]

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Park, J.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Parkinson, B. A.

K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group-vi transition-metal dichalcogenides,” J. Phys. Chem. 86, 463 (1982).
[Crossref]

Penev, E. S.

A. Kutana, E. S. Penev, and B. I. Yakobson, “Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying,” Nanoscale 6, 5820 (2014).
[Crossref] [PubMed]

Peres, N. M. R.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Ponomarenko, L. A.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Preciado, E.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Rahman, T. S.

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Rao, Y.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13, 3329–3333 (2013).
[Crossref] [PubMed]

Reichman, D. R.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Reider, G. A.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

Ren, P. Y.

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Ribeiro, R. M.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

Rigosi, A.

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

Ross, J. S.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

Ruzicka, B. A.

B. A. Ruzicka, N. Kumar, S. Wang, K. P. Loh, and H. Zhao, “Two-probe study of hot carriers in reduced graphene oxide,” J. Appl. Phys. 109, 084322 (2011).
[Crossref]

Ryu, G. H.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Sakurada, R.

S. Yoshida, Y. Kobayashi, R. Sakurada, S. Mori, Y. Miyata, H. Mogi, T. Koyama, O. Takeuchi, and H. Shigekawa, “Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction,” Sci. Rep. 5, 14808 (2015).
[Crossref]

Schedin, F.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Schmitt-Rink, S.

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32, 6601–6609 (1985).
[Crossref]

Shan, J.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trion in monolayer MoS2,” Nat. Mater. 12, 207–211 (2013).
[Crossref]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012).
[Crossref] [PubMed]

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Shen, Z. X.

S. J. Zheng, L. F. Sun, T. T. Yin, A. M. Dubrovkin, F. C. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Shigekawa, H.

S. Yoshida, Y. Kobayashi, R. Sakurada, S. Mori, Y. Miyata, H. Mogi, T. Koyama, O. Takeuchi, and H. Shigekawa, “Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction,” Sci. Rep. 5, 14808 (2015).
[Crossref]

Shuai, Z. G.

Y. F. Chen, J. Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. G. Shuai, Y. S. Huang, and L. M. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano 7, 4610 (2013).
[Crossref] [PubMed]

Sim, S.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Song, J. G.

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

Song, J. L. Q.

W. T. Zhang, X. D. Li, T. T. Jiang, J. L. Q. Song, Y. Lin, L. X. Zhu, and X. L. Xu, “CVD synthesis of Mo1−xWxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide,” Nanoscale 7, 13554–13560 (2015).
[Crossref] [PubMed]

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref] [PubMed]

Su, S. H.

S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, and L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy,” Small 10, 2589–2594 (2014).
[Crossref] [PubMed]

Suenaga, K.

Y. F. Chen, J. Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. G. Shuai, Y. S. Huang, and L. M. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano 7, 4610 (2013).
[Crossref] [PubMed]

D. O. Dumcenco, H. Kobayashi, Z. Liu, Y. S. Huang, and K. Suenaga, “Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers,” Nat. Commun. 4, 1351 (2013).
[Crossref]

Sumpter, B. G.

B. Huang, M. Yoon, B. G. Sumpter, S. H. Wei, and F. Liu, “Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides,” Phys. Rev. Lett. 115, 126806 (2015).
[Crossref] [PubMed]

Sun, D.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

Sun, D. Z.

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Sun, L.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Sun, L. F.

S. J. Zheng, L. F. Sun, T. T. Yin, A. M. Dubrovkin, F. C. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Takeuchi, O.

S. Yoshida, Y. Kobayashi, R. Sakurada, S. Mori, Y. Miyata, H. Mogi, T. Koyama, O. Takeuchi, and H. Shigekawa, “Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction,” Sci. Rep. 5, 14808 (2015).
[Crossref]

Talin, A. A.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

Tan, P. H.

Y. F. Chen, D. O. Dumcenco, Y. M. Zhu, X. Zhang, N. N. Mao, Q. L. Feng, M. Zhang, J. Zhang, P. H. Tan, Y. S. Huang, and L. M. Xie, “Composition-dependent raman modes of Mo1−xWxS2 monolayer alloys,” Nanoscale 6, 2833 (2014).
[Crossref] [PubMed]

Tran, T.

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Triplett, M.

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

Wang, C.

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

Wang, C. M.

Q. L. Feng, N. N. Mao, J. X. Wu, H. Xu, C. M. Wang, J. Zhang, and L. M. Xie, “Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition,” ACS Nano 9, 7450–7455 (2015).
[Crossref] [PubMed]

Wang, D.

Y. F. Chen, J. Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. G. Shuai, Y. S. Huang, and L. M. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano 7, 4610 (2013).
[Crossref] [PubMed]

Wang, F.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref] [PubMed]

Wang, S.

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13, 3329–3333 (2013).
[Crossref] [PubMed]

B. A. Ruzicka, N. Kumar, S. Wang, K. P. Loh, and H. Zhao, “Two-probe study of hot carriers in reduced graphene oxide,” J. Appl. Phys. 109, 084322 (2011).
[Crossref]

Wang, W. H.

Q. Fu, L. Yang, W. H. Wang, A. Han, J. Huang, P. W. Du, Z. Y. Fan, J. Y. Zhang, and B. Xiang, “Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(10x)Se2x with a tunable band gap,” Adv. Mater. 27, 4732–4738 (2015).
[Crossref] [PubMed]

L. Yang, Q. Fu, W. H. Wang, J. Huang, J. L. Huang, J. Y. Zhang, and B. Xiang, “Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity,” Nanoscale 7, 10490–10497 (2015).
[Crossref] [PubMed]

Wang, X. X.

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Wang, Y.

J. He, D. He, Y. Wang, Q. Cui, F. Ceballos, and H. Zhao, “Spatiotemporal dynamics of excitons in monolayer and bulk ws2,” Nanoscale 7, 9526 (2015).
[Crossref] [PubMed]

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy,” J. of Appl. Phys. 113, 133702 (2013).
[Crossref]

Wang, Z.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

Wei, S. H.

B. Huang, M. Yoon, B. G. Sumpter, S. H. Wei, and F. Liu, “Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides,” Phys. Rev. Lett. 115, 126806 (2015).
[Crossref] [PubMed]

Wu, J.

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

Wu, J. X.

Q. L. Feng, N. N. Mao, J. X. Wu, H. Xu, C. M. Wang, J. Zhang, and L. M. Xie, “Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition,” ACS Nano 9, 7450–7455 (2015).
[Crossref] [PubMed]

Wu, S.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

Wu, X. P.

H. L. Li, Q. L. Zhang, X. D. Duan, X. P. Wu, X. P. Fan, X. L. Zhu, X. J. Zhuang, W. Hu, H. Zhou, A. L. Pan, and X. F. Duan, “Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets,” J. Am. Chem. Soc. 137, 5284–5287 (2015).
[Crossref] [PubMed]

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Wurch, M.

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Xi, J. Y.

Y. F. Chen, J. Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. G. Shuai, Y. S. Huang, and L. M. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano 7, 4610 (2013).
[Crossref] [PubMed]

Xiang, B.

L. Yang, Q. Fu, W. H. Wang, J. Huang, J. L. Huang, J. Y. Zhang, and B. Xiang, “Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity,” Nanoscale 7, 10490–10497 (2015).
[Crossref] [PubMed]

Q. Fu, L. Yang, W. H. Wang, A. Han, J. Huang, P. W. Du, Z. Y. Fan, J. Y. Zhang, and B. Xiang, “Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(10x)Se2x with a tunable band gap,” Adv. Mater. 27, 4732–4738 (2015).
[Crossref] [PubMed]

Xiao, D.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref] [PubMed]

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
[Crossref]

Xie, L.

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3, 1608 (2013).
[Crossref] [PubMed]

Xie, L. M.

Q. L. Feng, N. N. Mao, J. X. Wu, H. Xu, C. M. Wang, J. Zhang, and L. M. Xie, “Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition,” ACS Nano 9, 7450–7455 (2015).
[Crossref] [PubMed]

Y. F. Chen, D. O. Dumcenco, Y. M. Zhu, X. Zhang, N. N. Mao, Q. L. Feng, M. Zhang, J. Zhang, P. H. Tan, Y. S. Huang, and L. M. Xie, “Composition-dependent raman modes of Mo1−xWxS2 monolayer alloys,” Nanoscale 6, 2833 (2014).
[Crossref] [PubMed]

Y. F. Chen, J. Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. G. Shuai, Y. S. Huang, and L. M. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano 7, 4610 (2013).
[Crossref] [PubMed]

Xu, H.

Q. L. Feng, N. N. Mao, J. X. Wu, H. Xu, C. M. Wang, J. Zhang, and L. M. Xie, “Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition,” ACS Nano 9, 7450–7455 (2015).
[Crossref] [PubMed]

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

Xu, J. Y.

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Xu, S.

H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3, 1608 (2013).
[Crossref] [PubMed]

Xu, X.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
[Crossref]

Xu, X. L.

W. T. Zhang, X. D. Li, T. T. Jiang, J. L. Q. Song, Y. Lin, L. X. Zhu, and X. L. Xu, “CVD synthesis of Mo1−xWxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide,” Nanoscale 7, 13554–13560 (2015).
[Crossref] [PubMed]

Yakobson, B. I.

A. Kutana, E. S. Penev, and B. I. Yakobson, “Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying,” Nanoscale 6, 5820 (2014).
[Crossref] [PubMed]

Yamaguchi, K.

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Yan, J.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

Yan, Y.

H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3, 1608 (2013).
[Crossref] [PubMed]

Yang, L.

L. Yang, Q. Fu, W. H. Wang, J. Huang, J. L. Huang, J. Y. Zhang, and B. Xiang, “Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity,” Nanoscale 7, 10490–10497 (2015).
[Crossref] [PubMed]

Q. Fu, L. Yang, W. H. Wang, A. Han, J. Huang, P. W. Du, Z. Y. Fan, J. Y. Zhang, and B. Xiang, “Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(10x)Se2x with a tunable band gap,” Adv. Mater. 27, 4732–4738 (2015).
[Crossref] [PubMed]

Yang, Y.

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

Yao, W.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3, 1608 (2013).
[Crossref] [PubMed]

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
[Crossref]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref] [PubMed]

Yin, T. T.

S. J. Zheng, L. F. Sun, T. T. Yin, A. M. Dubrovkin, F. C. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Yoon, M.

B. Huang, M. Yoon, B. G. Sumpter, S. H. Wei, and F. Liu, “Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides,” Phys. Rev. Lett. 115, 126806 (2015).
[Crossref] [PubMed]

Yoshida, S.

S. Yoshida, Y. Kobayashi, R. Sakurada, S. Mori, Y. Miyata, H. Mogi, T. Koyama, O. Takeuchi, and H. Shigekawa, “Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction,” Sci. Rep. 5, 14808 (2015).
[Crossref]

You, Y.

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13, 3329–3333 (2013).
[Crossref] [PubMed]

Yu, H.

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

Zeng, H.

H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3, 1608 (2013).
[Crossref] [PubMed]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref] [PubMed]

Zhang, J.

Q. L. Feng, N. N. Mao, J. X. Wu, H. Xu, C. M. Wang, J. Zhang, and L. M. Xie, “Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition,” ACS Nano 9, 7450–7455 (2015).
[Crossref] [PubMed]

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

Y. F. Chen, D. O. Dumcenco, Y. M. Zhu, X. Zhang, N. N. Mao, Q. L. Feng, M. Zhang, J. Zhang, P. H. Tan, Y. S. Huang, and L. M. Xie, “Composition-dependent raman modes of Mo1−xWxS2 monolayer alloys,” Nanoscale 6, 2833 (2014).
[Crossref] [PubMed]

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

Zhang, J. Y.

Q. Fu, L. Yang, W. H. Wang, A. Han, J. Huang, P. W. Du, Z. Y. Fan, J. Y. Zhang, and B. Xiang, “Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(10x)Se2x with a tunable band gap,” Adv. Mater. 27, 4732–4738 (2015).
[Crossref] [PubMed]

L. Yang, Q. Fu, W. H. Wang, J. Huang, J. L. Huang, J. Y. Zhang, and B. Xiang, “Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity,” Nanoscale 7, 10490–10497 (2015).
[Crossref] [PubMed]

Zhang, M.

Y. F. Chen, D. O. Dumcenco, Y. M. Zhu, X. Zhang, N. N. Mao, Q. L. Feng, M. Zhang, J. Zhang, P. H. Tan, Y. S. Huang, and L. M. Xie, “Composition-dependent raman modes of Mo1−xWxS2 monolayer alloys,” Nanoscale 6, 2833 (2014).
[Crossref] [PubMed]

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

Zhang, Q. L.

H. L. Li, Q. L. Zhang, X. D. Duan, X. P. Wu, X. P. Fan, X. L. Zhu, X. J. Zhuang, W. Hu, H. Zhou, A. L. Pan, and X. F. Duan, “Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets,” J. Am. Chem. Soc. 137, 5284–5287 (2015).
[Crossref] [PubMed]

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Zhang, W. T.

W. T. Zhang, X. D. Li, T. T. Jiang, J. L. Q. Song, Y. Lin, L. X. Zhu, and X. L. Xu, “CVD synthesis of Mo1−xWxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide,” Nanoscale 7, 13554–13560 (2015).
[Crossref] [PubMed]

Zhang, X.

Y. F. Chen, D. O. Dumcenco, Y. M. Zhu, X. Zhang, N. N. Mao, Q. L. Feng, M. Zhang, J. Zhang, P. H. Tan, Y. S. Huang, and L. M. Xie, “Composition-dependent raman modes of Mo1−xWxS2 monolayer alloys,” Nanoscale 6, 2833 (2014).
[Crossref] [PubMed]

Zhang, Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Zhao, H.

J. He, D. He, Y. Wang, Q. Cui, F. Ceballos, and H. Zhao, “Spatiotemporal dynamics of excitons in monolayer and bulk ws2,” Nanoscale 7, 9526 (2015).
[Crossref] [PubMed]

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
[Crossref]

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy,” J. of Appl. Phys. 113, 133702 (2013).
[Crossref]

B. A. Ruzicka, N. Kumar, S. Wang, K. P. Loh, and H. Zhao, “Two-probe study of hot carriers in reduced graphene oxide,” J. Appl. Phys. 109, 084322 (2011).
[Crossref]

Zhao, L.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

Zheng, S. J.

S. J. Zheng, L. F. Sun, T. T. Yin, A. M. Dubrovkin, F. C. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

Zhou, H.

H. L. Li, Q. L. Zhang, X. D. Duan, X. P. Wu, X. P. Fan, X. L. Zhu, X. J. Zhuang, W. Hu, H. Zhou, A. L. Pan, and X. F. Duan, “Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets,” J. Am. Chem. Soc. 137, 5284–5287 (2015).
[Crossref] [PubMed]

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Zhu, B.

H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3, 1608 (2013).
[Crossref] [PubMed]

Zhu, L. X.

W. T. Zhang, X. D. Li, T. T. Jiang, J. L. Q. Song, Y. Lin, L. X. Zhu, and X. L. Xu, “CVD synthesis of Mo1−xWxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide,” Nanoscale 7, 13554–13560 (2015).
[Crossref] [PubMed]

Zhu, X. L.

H. L. Li, Q. L. Zhang, X. D. Duan, X. P. Wu, X. P. Fan, X. L. Zhu, X. J. Zhuang, W. Hu, H. Zhou, A. L. Pan, and X. F. Duan, “Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets,” J. Am. Chem. Soc. 137, 5284–5287 (2015).
[Crossref] [PubMed]

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

Zhu, Y.

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

Zhu, Y. M.

Y. F. Chen, D. O. Dumcenco, Y. M. Zhu, X. Zhang, N. N. Mao, Q. L. Feng, M. Zhang, J. Zhang, P. H. Tan, Y. S. Huang, and L. M. Xie, “Composition-dependent raman modes of Mo1−xWxS2 monolayer alloys,” Nanoscale 6, 2833 (2014).
[Crossref] [PubMed]

Zhuang, X. J.

H. L. Li, Q. L. Zhang, X. D. Duan, X. P. Wu, X. P. Fan, X. L. Zhu, X. J. Zhuang, W. Hu, H. Zhou, A. L. Pan, and X. F. Duan, “Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets,” J. Am. Chem. Soc. 137, 5284–5287 (2015).
[Crossref] [PubMed]

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

ACS Nano (3)

Y. F. Chen, J. Y. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. G. Shuai, Y. S. Huang, and L. M. Xie, “Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys,” ACS Nano 7, 4610 (2013).
[Crossref] [PubMed]

Q. L. Feng, N. N. Mao, J. X. Wu, H. Xu, C. M. Wang, J. Zhang, and L. M. Xie, “Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition,” ACS Nano 9, 7450–7455 (2015).
[Crossref] [PubMed]

M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y. S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, raman scattering, and electrical transport,” ACS Nano 8, 7130–7137 (2014).
[Crossref] [PubMed]

Adv. Mater. (3)

J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. V. Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Z. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, “2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers,” Adv. Mater. 26, 1399 (2014).
[Crossref]

Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, “Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys,” Adv. Mater. 26, 2648 (2014).
[Crossref]

Q. Fu, L. Yang, W. H. Wang, A. Han, J. Huang, P. W. Du, Z. Y. Fan, J. Y. Zhang, and B. Xiang, “Synthesis and enhanced electrochemical catalytic performance of monolayer WS2(10x)Se2x with a tunable band gap,” Adv. Mater. 27, 4732–4738 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. J. Zheng, L. F. Sun, T. T. Yin, A. M. Dubrovkin, F. C. Liu, Z. Liu, Z. X. Shen, and H. J. Fan, “Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations,” Appl. Phys. Lett. 106, 063113 (2015).
[Crossref]

J. Am. Chem. Soc. (2)

H. L. Li, X. D. Duan, X. P. Wu, X. J. Zhuang, H. Zhou, Q. L. Zhang, X. L. Zhu, W. Hu, P. Y. Ren, P. F. Guo, L. Ma, X. P. Fan, X. X. Wang, J. Y. Xu, A. L. Pan, and X. F. Duan, “Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties,” J. Am. Chem. Soc. 136, 3756 (2014).
[Crossref] [PubMed]

H. L. Li, Q. L. Zhang, X. D. Duan, X. P. Wu, X. P. Fan, X. L. Zhu, X. J. Zhuang, W. Hu, H. Zhou, A. L. Pan, and X. F. Duan, “Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets,” J. Am. Chem. Soc. 137, 5284–5287 (2015).
[Crossref] [PubMed]

J. Appl. Phys. (1)

B. A. Ruzicka, N. Kumar, S. Wang, K. P. Loh, and H. Zhao, “Two-probe study of hot carriers in reduced graphene oxide,” J. Appl. Phys. 109, 084322 (2011).
[Crossref]

J. of Appl. Phys. (1)

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2 crystal studied by transient absorption microscopy,” J. of Appl. Phys. 113, 133702 (2013).
[Crossref]

J. Phys. C (1)

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers-Kronig analysis of reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C 9, 2449 (1976).
[Crossref]

J. Phys. Chem. (1)

K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group-vi transition-metal dichalcogenides,” J. Phys. Chem. 86, 463 (1982).
[Crossref]

Nano Lett. (4)

V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels, and F. Leonard, and U. S. A., “Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1−x)Se2x alloy devices,” Nano Lett. 15, 2612–2619 (2015).
[Crossref] [PubMed]

D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brezin, A. R. Harutyunyan, and T. F. Heinz, “Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide,” Nano Lett. 14, 5625–5629 (2014).
[Crossref] [PubMed]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref] [PubMed]

Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, “Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation,” Nano Lett. 13, 3329–3333 (2013).
[Crossref] [PubMed]

Nanoscale (6)

L. Yang, Q. Fu, W. H. Wang, J. Huang, J. L. Huang, J. Y. Zhang, and B. Xiang, “Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity,” Nanoscale 7, 10490–10497 (2015).
[Crossref] [PubMed]

W. T. Zhang, X. D. Li, T. T. Jiang, J. L. Q. Song, Y. Lin, L. X. Zhu, and X. L. Xu, “CVD synthesis of Mo1−xWxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide,” Nanoscale 7, 13554–13560 (2015).
[Crossref] [PubMed]

H. F. Liu, K. K. A. Antwi, S. Chua, and D. Z. Chi, “Vapor-phase growth and characterization of Mo1−xWxS2 atomic layers on 2-inch sapphire substrates,” Nanoscale 6, 624 (2014).
[Crossref]

Y. F. Chen, D. O. Dumcenco, Y. M. Zhu, X. Zhang, N. N. Mao, Q. L. Feng, M. Zhang, J. Zhang, P. H. Tan, Y. S. Huang, and L. M. Xie, “Composition-dependent raman modes of Mo1−xWxS2 monolayer alloys,” Nanoscale 6, 2833 (2014).
[Crossref] [PubMed]

A. Kutana, E. S. Penev, and B. I. Yakobson, “Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying,” Nanoscale 6, 5820 (2014).
[Crossref] [PubMed]

J. He, D. He, Y. Wang, Q. Cui, F. Ceballos, and H. Zhao, “Spatiotemporal dynamics of excitons in monolayer and bulk ws2,” Nanoscale 7, 9526 (2015).
[Crossref] [PubMed]

Nat. Commun. (3)

D. O. Dumcenco, H. Kobayashi, Z. Liu, Y. S. Huang, and K. Suenaga, “Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers,” Nat. Commun. 4, 1351 (2013).
[Crossref]

J. G. Song, G. H. Ryu, S. J. Lee, S. Sim, C. W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J. M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim, “Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer,” Nat. Commun. 6, 7817 (2015).
[Crossref] [PubMed]

J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 4, 1474 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, “Tightly bound trion in monolayer MoS2,” Nat. Mater. 12, 207–211 (2013).
[Crossref]

Nat. Nanotechnol. (3)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref] [PubMed]

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol. 7, 490–493 (2012).
[Crossref] [PubMed]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7, 494–498 (2012).
[Crossref] [PubMed]

Nature (1)

A. K. Geim and I. V. Grigorieva, “Van der waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref] [PubMed]

Phys. Rev. B (5)

N. Kumar, S. Najmaei, Q. Cui, F. Ceballos, P. M. Ajayan, J. Lou, and H. Zhao, “Second harmonic microscopy of monolayer MoS2,” Phys. Rev. B 87, 161403 (2013).
[Crossref]

L. M. Malard, T. V. Alencar, A. P. M. Barboza, K. F. Mak, and A. M. de Paula, “Observation of intense second harmonic generation from MoS2 atomic crystals,” Phys. Rev. B 87, 201401 (2013).
[Crossref]

H.-P. Komsa and A. V. Krasheninnikov, “Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles,” Phys. Rev. B 86, 241201 (2012).
[Crossref]

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, “Exciton-exciton annihilation in MoSe2 monolayers,” Phys. Rev. B 89, 125427 (2014).
[Crossref]

S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures,” Phys. Rev. B 32, 6601–6609 (1985).
[Crossref]

Phys. Rev. Lett. (5)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett. 108, 196802 (2012).
[Crossref]

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. L. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
[Crossref]

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

B. Huang, M. Yoon, B. G. Sumpter, S. H. Wei, and F. Liu, “Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides,” Phys. Rev. Lett. 115, 126806 (2015).
[Crossref] [PubMed]

Sci. Rep. (2)

S. Yoshida, Y. Kobayashi, R. Sakurada, S. Mori, Y. Miyata, H. Mogi, T. Koyama, O. Takeuchi, and H. Shigekawa, “Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction,” Sci. Rep. 5, 14808 (2015).
[Crossref]

H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep. 3, 1608 (2013).
[Crossref] [PubMed]

Science (2)

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref] [PubMed]

Small (1)

S. H. Su, Y. T. Hsu, Y. H. Chang, M. H. Chiu, C. L. Hsu, W. T. Hsu, W. H. Chang, J. H. He, and L. J. Li, “Band gap-tunable molybdenum sulfide selenide monolayer alloy,” Small 10, 2589–2594 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transient absorption setup.

Fig. 2
Fig. 2

Differential reflection signal over short (left panel) and long (right panel) time scales, with different values of the pump fluence as labeled. The solid red lines are fits to the data.

Fig. 3
Fig. 3

(a) The rising times of the differential reflection signal deduced from fits shown in Fig. 2 (left panel). The red line indicates an average value of 0.68 ps. (b) The peak value of differential reflection. The red line shows a fit to the data, corresponding to a saturation fluence of 32 μJ cm−2. (c) Decay times of the differential reflection signal. (d) The values of the residual differential reflection signal at long probe delays.

Fig. 4
Fig. 4

Differential reflection signal over short (left panel) and long (right panel) time scales measured from MoS2 (black squares), WS2 (blue circles), and Mo0.5W0.5S2 (purple triangles). The red lines are single exponential fits.

Metrics