Abstract

We investigate guidance of Terahertz (THz) radiation in metallic and 3D-printed dielectric helical waveguides in the frequency range from 0.2 to 1 THz. Our experimental results obtained from THz time-domain spectroscopy (THz-TDS) measurements are in very good agreement with finite-difference time-domain (FDTD) simulations. We observe single-mode, low loss and low dispersive propagation of THz radiation in metallic helical waveguides over a broad bandwidth. The 3D-printed dielectric helical waveguides have substantially extended the bandwidth of a low loss dielectric tube waveguide as observed from the experimental and simulation results. The high flexibility of the helical design allows an easy incorporation into bench top THz devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
THz propagation in kagome hollow-core microstructured fibers

Jessienta Anthony, Rainer Leonhardt, Sergio G. Leon-Saval, and Alexander Argyros
Opt. Express 19(19) 18470-18478 (2011)

Hybrid hollow core fibers with embedded wires as THz waveguides

Jessienta Anthony, Rainer Leonhardt, and Alexander Argyros
Opt. Express 21(3) 2903-2912 (2013)

Terahertz dielectric waveguides

Shaghik Atakaramians, Shahraam Afshar V., Tanya M. Monro, and Derek Abbott
Adv. Opt. Photon. 5(2) 169-215 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. Masayoshi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  2. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  3. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
    [Crossref]
  4. S. Atakaramians, S. Afshar V., T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. in Opt. and Photon. 5(2), 169–215 (2013).
    [Crossref]
  5. S. R. Andrews, “Microstructured terahertz waveguides,” J. Phys. D: Appl. Phys. 47(37), 374004 (2014).
    [Crossref]
  6. O. Mitrofanov, R. James, F. Fernandez, T. Mavrogordatos, and J. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Technol. 1(1), 124–132 (2011).
    [Crossref]
  7. A. Markov, H. Guerboukha, and M. Skorobogatiy, “Hybrid metal wiredielectric terahertz waveguides: challenges and opportunities,” J. Opt. Soc. Am. B 31(11), 2587–2600 (2014).
    [Crossref]
  8. H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
    [Crossref] [PubMed]
  9. http://www.3dsystems.com
  10. http://www.menlosystems.com
  11. E. Hecht, Optics (Addison Wesley, 2002).
  12. J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow core fibers with embedded wires as THz waveguides,” Opt. Express 21(3), 2903–2912 (2013).
    [Crossref] [PubMed]
  13. Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express 16(20), 15991–15998 (2008).
    [Crossref] [PubMed]
  14. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  15. J. Anthony, “Characterization of novel designs of terahertz fibers,” Ph.D. thesis, The University of Auckland (2013).
  16. E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems (Prentice-Hall, 1968).
  17. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [Crossref] [PubMed]

2015 (1)

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (2)

S. Atakaramians, S. Afshar V., T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. in Opt. and Photon. 5(2), 169–215 (2013).
[Crossref]

J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow core fibers with embedded wires as THz waveguides,” Opt. Express 21(3), 2903–2912 (2013).
[Crossref] [PubMed]

2011 (1)

O. Mitrofanov, R. James, F. Fernandez, T. Mavrogordatos, and J. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Technol. 1(1), 124–132 (2011).
[Crossref]

2010 (3)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[Crossref] [PubMed]

2008 (1)

2007 (1)

T. Masayoshi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Abbott, D.

S. Atakaramians, S. Afshar V., T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. in Opt. and Photon. 5(2), 169–215 (2013).
[Crossref]

Afshar V., S.

S. Atakaramians, S. Afshar V., T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. in Opt. and Photon. 5(2), 169–215 (2013).
[Crossref]

Andrews, S. R.

S. R. Andrews, “Microstructured terahertz waveguides,” J. Phys. D: Appl. Phys. 47(37), 374004 (2014).
[Crossref]

Anthony, J.

J. Anthony, R. Leonhardt, and A. Argyros, “Hybrid hollow core fibers with embedded wires as THz waveguides,” Opt. Express 21(3), 2903–2912 (2013).
[Crossref] [PubMed]

J. Anthony, “Characterization of novel designs of terahertz fibers,” Ph.D. thesis, The University of Auckland (2013).

Argyros, A.

Atakaramians, S.

S. Atakaramians, S. Afshar V., T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. in Opt. and Photon. 5(2), 169–215 (2013).
[Crossref]

Balmain, K. G.

E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems (Prentice-Hall, 1968).

Bang, O.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

Bao, H.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Chang, H.-C.

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Fernandez, F.

O. Mitrofanov, R. James, F. Fernandez, T. Mavrogordatos, and J. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Technol. 1(1), 124–132 (2011).
[Crossref]

Guerboukha, H.

Harrington, J.

O. Mitrofanov, R. James, F. Fernandez, T. Mavrogordatos, and J. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Technol. 1(1), 124–132 (2011).
[Crossref]

Hecht, E.

E. Hecht, Optics (Addison Wesley, 2002).

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

James, R.

O. Mitrofanov, R. James, F. Fernandez, T. Mavrogordatos, and J. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Technol. 1(1), 124–132 (2011).
[Crossref]

Jepsen, P. U.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Jordan, E. C.

E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems (Prentice-Hall, 1968).

Lai, C.-H.

Lee, Y.-S.

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Leonhardt, R.

Liu, T.-A.

Lo, Y. H.

Lu, J.-Y.

Markov, A.

Masayoshi, T.

T. Masayoshi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Mavrogordatos, T.

O. Mitrofanov, R. James, F. Fernandez, T. Mavrogordatos, and J. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Technol. 1(1), 124–132 (2011).
[Crossref]

Mitrofanov, O.

O. Mitrofanov, R. James, F. Fernandez, T. Mavrogordatos, and J. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Technol. 1(1), 124–132 (2011).
[Crossref]

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Monro, T. M.

S. Atakaramians, S. Afshar V., T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. in Opt. and Photon. 5(2), 169–215 (2013).
[Crossref]

Nielsen, K.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Peng, J.-L.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Skorobogatiy, M.

Sun, C.-K.

You, B.

Adv. in Opt. and Photon. (1)

S. Atakaramians, S. Afshar V., T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. in Opt. and Photon. 5(2), 169–215 (2013).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

IEEE Trans. THz Sci. Technol. (1)

O. Mitrofanov, R. James, F. Fernandez, T. Mavrogordatos, and J. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Technol. 1(1), 124–132 (2011).
[Crossref]

J. Appl. Phys. (1)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

S. R. Andrews, “Microstructured terahertz waveguides,” J. Phys. D: Appl. Phys. 47(37), 374004 (2014).
[Crossref]

Nat. Photonics (1)

T. Masayoshi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Opt. Express (3)

Sci. Rep. (1)

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref] [PubMed]

Other (6)

http://www.3dsystems.com

http://www.menlosystems.com

E. Hecht, Optics (Addison Wesley, 2002).

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

J. Anthony, “Characterization of novel designs of terahertz fibers,” Ph.D. thesis, The University of Auckland (2013).

E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems (Prentice-Hall, 1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Picture of 3D-printed dielectric helical waveguides with pitches of 0.9 mm (top) and 1.2 mm (bottom) and (b) Picture of the metallic helical waveguides presented in this work (from left to right: pitch of 0.3, 0.6 and 1.2 mm) and (c) Typical helical structure implemented in the 3D FDTD simulations performed in this work. The dark green color shows a surface with a constant electric permittivity.

Fig. 2
Fig. 2

(a) Material absorption and (b) refractive index in the frequency range from 0.2 THz to 1 THz of the polymer used for the 3D-printing fabrication. The data extracted from the THz-TDS measurement is shown with blue crosses. The red solid line represents the dielectric function implemented in the simulations for the dielectric helical waveguide. The fit is based on a classical Lorentz-model.

Fig. 3
Fig. 3

(a)–(c) show from top to bottom the measured temporal scans for a metallic quasi-corrugated waveguide and both metallic helical waveguides with pitches of 0.9 mm and 1.2 mm. Each temporal profile is normalized to its corresponding reference scan and (d)–(f) show the normalized spatial distribution of the simulated electric field energy density in the vicinity of the waveguide’s circumference vertically aligned to the corresponding waveform in (a)–(c). The density distributions are plotted on a logarithmic scale and shown at the same instant. Each subfigure is normalized separately. The origin is arbitrarily defined at the lower left corner of each subfigure, while the THz pulses are propagating in the positive z-direction. The metallic structure of each waveguide is depicted in grey circles.

Fig. 4
Fig. 4

Measured (line-dot) and simulated (line) attenuation curves on linear scale for a quasi-corrugated metal waveguide (a) and both metallic helical waveguides with pitches of 0.6 mm (b) and 1.2 mm (c) in the frequency range from 0.2 THz to 1.0 THz.

Fig. 5
Fig. 5

(a)–(c) show the measured effective phase refractive indices (crosses) for a quasi-corrugated metallic tube and metallic helical waveguides with a pitch of 0.6 mm and 1.2 mm, respectively, in the frequency range from 0.2 to 1 THz. The fit (solid) is based on the frequency dependence of the effective phase refractive index of an ideal cylindrical metal waveguide [16] extended with a small quadratic correction term and d) –f) shows the calculated group velocity dispersion parameter β2. The GVD of the tube and both helical waveguides is shown below the corresponding subfigure (a)–(c).

Fig. 6
Fig. 6

Experimentally obtained spectrograms of (a) a dielectric tube waveguide and helical waveguides with a pitch of (b) 0.9 mm and (c) 1.2 mm. Each subfigure is normalized separately. The corresponding time profiles at the end of the 10 cm long waveguides are shown above each spectrogram. Zero time delay is defined at the amplitude peak value of the reference scan and (d)–(f) Normalized spatial distribution of the simulated electric field energy density in the vicinity of the cladding of (d) a dielectric tube waveguide and helical waveguides with a pitch of (e) 0.9 mm and (f) 1.2 mm on logarithmic scale. The THz pulse is propagating in positive z-direction and is depicted in all subfigures at the same time delay. An overlay of the corresponding lossy dielectric material is shown for each waveguide. The origin is arbitrarily defined at the lower left corner of each subfigure.

Fig. 7
Fig. 7

(a) Measured (dots) and simulated (solid) attenuation curves in logarithmic scale for a dielectric tube [red, (a) in Fig. 6] and helical waveguides with a pitch of 0.9 mm [blue, (b) in Fig. 6] and 1.2 mm [green, (c) in Fig. 6]. The continuous black line shows the attenuation of a dielectric tube waveguide with an infinite cladding thickness and (b) Simulated confinement loss curves on a logarithmic scale for a dielectric tube (red) and helical waveguides with a pitch of 0.9 mm (blue) and 1.2 mm (green). The material absorption, i.e. the imaginary part of the dielectric function of the waveguide material, is omitted. Furthermore, a frequency independent material refractive index of about 1.65 was used in the simulations. The continuous black line shows the attenuation of a dielectric tube waveguide with an infinite cladding thickness.

Fig. 8
Fig. 8

(a)–(c) show the measured effective phase refractive indices for a dielectric tube waveguide and dielectric helical waveguides with a pitch of 0.9 mm and 1.2 mm, respectively. The calculated group velocity dispersion is shown in subfigures (d)–(f) below the corresponding effective phase refractive index.

Metrics