Abstract

Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum cascade lasers with integrated plasmonic antenna-array collimators

Nanfang Yu, Romain Blanchard, Jonathan Fan, Qi Jie Wang, Christian Pflügl, Laurent Diehl, Tadataka Edamura, Masamichi Yamanishi, Hirofumi Kan, and Federico Capasso
Opt. Express 16(24) 19447-19461 (2008)

Wavefront engineering for mid-infrared and terahertz quantum cascade lasers [Invited]

Nanfang Yu and Federico Capasso
J. Opt. Soc. Am. B 27(11) B18-B35 (2010)

Mid-infrared external-cavity quantum-cascade laser

G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Müller
Opt. Lett. 27(20) 1788-1790 (2002)

References

  • View by:
  • |
  • |
  • |

  1. A. Kosterev and F. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
    [Crossref]
  2. Y. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2005).
    [Crossref]
  3. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
    [Crossref]
  4. R. M. Briggs, C. Frez, C. E. Borgentum, M. Bagheri, S. Forouhar, and R. D. May, “Five-channel infrared laser absorption spectrometer for combustion product monitoring aboard manned spacecraft,” (44th International Conference on Environmental Systems, 2014).
  5. P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
    [Crossref]
  6. M. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573 (2007).
    [Crossref]
  7. A. A. Danylov, J. Waldman, T. M. Goyette, A. J. Gatesman, R. H. Giles, K. J. Linden, W. R. Neal, W. E. Nixon, M. C. Wanke, and J. L. Reno, “Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide,” Appl. Opt. 46, 5051 (2007).
    [Crossref] [PubMed]
  8. R. Degl’Innocenti, Y. D. Shah, D. S. Jessop, Y. Ren, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “Hollow metallic waveguides integrated with terahertz quantum cascade lasers,” Opt. Express 22, 24439–24449 (2014).
    [Crossref]
  9. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15, 13272–13281 (2007).
    [Crossref] [PubMed]
  10. N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447 (2008).
    [Crossref] [PubMed]
  11. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
    [Crossref]
  12. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
    [Crossref]
  13. J. Fonollosa, R. Rubio, S. Hartwig, S. Marco, J. Santander, L. Fonseca, J. Wollenstein, and M. Moreno, “Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications,” Sens. Actuator B-Chem. 132, 498–507 (2008).
    [Crossref]
  14. E. Logean, L. Hvozdara, J. Di-Francesco, H. P. Herzig, R. Voelkel, M. Eisner, P.-Y. Baroni, M. Rochat, and A. Müller, “High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques,” in “SPIE Optical Systems Design,” L. Mazuray, R. Wartmann, A. P. Wood, M. C. de la Fuente, J.-L. M. Tissot, J. M. Raynor, T. E. Kidger, S. David, P. Benítez, D. G. Smith, F. Wyrowski, and A. Erdmann, eds. (International Society for Optics and Photonics, 2012), p. 85500Q.
    [Crossref]
  15. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science,  339, 1232009 (2013).
    [Crossref] [PubMed]
  16. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref] [PubMed]
  17. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
    [Crossref]
  18. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
    [Crossref] [PubMed]
  19. A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, G. Huyet, L. O’Faolain, T. F. Krauss, and L. O. Faolain, “Experimental high numerical aperture focusing with high contrast gratings,” Opt. Lett. 38, 3410–3413 (2013).
    [Crossref] [PubMed]
  20. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
    [Crossref] [PubMed]
  21. A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the Phase Front of Optical Fiber Beams using High Contrast Metastructures - OSA Technical Digest (online),” in “CLEO: 2014,” (Optical Society of America, San Jose, California, 2014), p. STu3M.4.
  22. S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, R. G. Beausoleil, and M. Fiorentino, “Sub-wavelength Grating Lenses with a Twist,” IEEE Photon. Technol. Lett. 26, 1375–1378 (2014).
    [Crossref]
  23. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
    [Crossref] [PubMed]
  24. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Efficient high NA flat micro-lenses realized using high contrast transmitarrays,” in “SPIE OPTO,”, C. J. Chang-Hasnain, D. Fattal, F. Koyama, and W. Zhou, eds. (International Society for Optics and Photonics, 2015), p. 93720P.
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).
  26. R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1 W,” Appl. Phys. Lett. 105, 141117 (2014).
    [Crossref]
  27. V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
    [Crossref]
  28. F. T. Chen and H. G. Craighead, “Diffractive phase elements based on two-dimensional artificial dielectrics,” Opt. Lett. 20, 121–123 (1995).
    [Crossref] [PubMed]
  29. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16, 1143–1156 (1999).
    [Crossref]
  30. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge university press, 1999).
    [Crossref]
  31. CVI Melles Griot Optics Guide, available at: http://mellesgriot.com/Frontend/PDFs/TechGuide.pdf accessed Oct. 2015.

2015 (1)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

2014 (6)

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1 W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, R. G. Beausoleil, and M. Fiorentino, “Sub-wavelength Grating Lenses with a Twist,” IEEE Photon. Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref] [PubMed]

R. Degl’Innocenti, Y. D. Shah, D. S. Jessop, Y. Ren, O. Mitrofanov, H. E. Beere, and D. A. Ritchie, “Hollow metallic waveguides integrated with terahertz quantum cascade lasers,” Opt. Express 22, 24439–24449 (2014).
[Crossref]

2013 (2)

2012 (1)

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

2010 (2)

2009 (1)

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[Crossref]

2008 (3)

J. Fonollosa, R. Rubio, S. Hartwig, S. Marco, J. Santander, L. Fonseca, J. Wollenstein, and M. Moreno, “Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications,” Sens. Actuator B-Chem. 132, 498–507 (2008).
[Crossref]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447 (2008).
[Crossref] [PubMed]

2007 (4)

2005 (1)

Y. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2005).
[Crossref]

2002 (1)

A. Kosterev and F. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[Crossref]

1999 (1)

1995 (1)

Amanti, M.

M. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573 (2007).
[Crossref]

Amanti, M. I.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the Phase Front of Optical Fiber Beams using High Contrast Metastructures - OSA Technical Digest (online),” in “CLEO: 2014,” (Optical Society of America, San Jose, California, 2014), p. STu3M.4.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Efficient high NA flat micro-lenses realized using high contrast transmitarrays,” in “SPIE OPTO,”, C. J. Chang-Hasnain, D. Fattal, F. Koyama, and W. Zhou, eds. (International Society for Optics and Photonics, 2015), p. 93720P.

Astilean, S.

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the Phase Front of Optical Fiber Beams using High Contrast Metastructures - OSA Technical Digest (online),” in “CLEO: 2014,” (Optical Society of America, San Jose, California, 2014), p. STu3M.4.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Efficient high NA flat micro-lenses realized using high contrast transmitarrays,” in “SPIE OPTO,”, C. J. Chang-Hasnain, D. Fattal, F. Koyama, and W. Zhou, eds. (International Society for Optics and Photonics, 2015), p. 93720P.

R. M. Briggs, C. Frez, C. E. Borgentum, M. Bagheri, S. Forouhar, and R. D. May, “Five-channel infrared laser absorption spectrometer for combustion product monitoring aboard manned spacecraft,” (44th International Conference on Environmental Systems, 2014).

Bakhirkin, Y.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[Crossref]

Y. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2005).
[Crossref]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the Phase Front of Optical Fiber Beams using High Contrast Metastructures - OSA Technical Digest (online),” in “CLEO: 2014,” (Optical Society of America, San Jose, California, 2014), p. STu3M.4.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Efficient high NA flat micro-lenses realized using high contrast transmitarrays,” in “SPIE OPTO,”, C. J. Chang-Hasnain, D. Fattal, F. Koyama, and W. Zhou, eds. (International Society for Optics and Photonics, 2015), p. 93720P.

Baroni, P.-Y.

E. Logean, L. Hvozdara, J. Di-Francesco, H. P. Herzig, R. Voelkel, M. Eisner, P.-Y. Baroni, M. Rochat, and A. Müller, “High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques,” in “SPIE Optical Systems Design,” L. Mazuray, R. Wartmann, A. P. Wood, M. C. de la Fuente, J.-L. M. Tissot, J. M. Raynor, T. E. Kidger, S. David, P. Benítez, D. G. Smith, F. Wyrowski, and A. Erdmann, eds. (International Society for Optics and Photonics, 2012), p. 85500Q.
[Crossref]

Beausoleil, R. G.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, R. G. Beausoleil, and M. Fiorentino, “Sub-wavelength Grating Lenses with a Twist,” IEEE Photon. Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Beck, M.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[Crossref]

Beere, H. E.

Blanchard, R.

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science,  339, 1232009 (2013).
[Crossref] [PubMed]

Borgentum, C. E.

R. M. Briggs, C. Frez, C. E. Borgentum, M. Bagheri, S. Forouhar, and R. D. May, “Five-channel infrared laser absorption spectrometer for combustion product monitoring aboard manned spacecraft,” (44th International Conference on Environmental Systems, 2014).

Borgentun, C. E.

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1 W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge university press, 1999).
[Crossref]

Bour, D.

Briggs, R. M.

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1 W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

R. M. Briggs, C. Frez, C. E. Borgentum, M. Bagheri, S. Forouhar, and R. D. May, “Five-channel infrared laser absorption spectrometer for combustion product monitoring aboard manned spacecraft,” (44th International Conference on Environmental Systems, 2014).

Brongersma, M. L.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

Cambril, E.

Capasso, F.

Chang, Y.-C.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Chang-Hasnain, C. J.

Chase, C.

Chavel, P.

Chen, F. T.

Corzine, S.

Craighead, H. G.

Crozier, K. B.

Cubukcu, E.

Curl, R.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[Crossref]

Y. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2005).
[Crossref]

Danylov, A. A.

de Rooij, N. F.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Degl’Innocenti, R.

Diehl, L.

Di-Francesco, J.

E. Logean, L. Hvozdara, J. Di-Francesco, H. P. Herzig, R. Voelkel, M. Eisner, P.-Y. Baroni, M. Rochat, and A. Müller, “High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques,” in “SPIE Optical Systems Design,” L. Mazuray, R. Wartmann, A. P. Wood, M. C. de la Fuente, J.-L. M. Tissot, J. M. Raynor, T. E. Kidger, S. David, P. Benítez, D. G. Smith, F. Wyrowski, and A. Erdmann, eds. (International Society for Optics and Photonics, 2012), p. 85500Q.
[Crossref]

Edamura, T.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447 (2008).
[Crossref] [PubMed]

Eisner, M.

E. Logean, L. Hvozdara, J. Di-Francesco, H. P. Herzig, R. Voelkel, M. Eisner, P.-Y. Baroni, M. Rochat, and A. Müller, “High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques,” in “SPIE Optical Systems Design,” L. Mazuray, R. Wartmann, A. P. Wood, M. C. de la Fuente, J.-L. M. Tissot, J. M. Raynor, T. E. Kidger, S. David, P. Benítez, D. G. Smith, F. Wyrowski, and A. Erdmann, eds. (International Society for Optics and Photonics, 2012), p. 85500Q.
[Crossref]

Emmenegger, L.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Faist, J.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[Crossref]

M. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573 (2007).
[Crossref]

Y. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2005).
[Crossref]

Fan, J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447 (2008).
[Crossref] [PubMed]

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

Fan, S.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Faolain, L. O.

Faraon, A.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the Phase Front of Optical Fiber Beams using High Contrast Metastructures - OSA Technical Digest (online),” in “CLEO: 2014,” (Optical Society of America, San Jose, California, 2014), p. STu3M.4.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Efficient high NA flat micro-lenses realized using high contrast transmitarrays,” in “SPIE OPTO,”, C. J. Chang-Hasnain, D. Fattal, F. Koyama, and W. Zhou, eds. (International Society for Optics and Photonics, 2015), p. 93720P.

Fattal, D.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, R. G. Beausoleil, and M. Fiorentino, “Sub-wavelength Grating Lenses with a Twist,” IEEE Photon. Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the Phase Front of Optical Fiber Beams using High Contrast Metastructures - OSA Technical Digest (online),” in “CLEO: 2014,” (Optical Society of America, San Jose, California, 2014), p. STu3M.4.

Fiorentino, M.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, R. G. Beausoleil, and M. Fiorentino, “Sub-wavelength Grating Lenses with a Twist,” IEEE Photon. Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Fischer, M.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[Crossref]

M. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573 (2007).
[Crossref]

Fonollosa, J.

J. Fonollosa, R. Rubio, S. Hartwig, S. Marco, J. Santander, L. Fonseca, J. Wollenstein, and M. Moreno, “Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications,” Sens. Actuator B-Chem. 132, 498–507 (2008).
[Crossref]

Fonseca, L.

J. Fonollosa, R. Rubio, S. Hartwig, S. Marco, J. Santander, L. Fonseca, J. Wollenstein, and M. Moreno, “Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications,” Sens. Actuator B-Chem. 132, 498–507 (2008).
[Crossref]

Forouhar, S.

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1 W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

R. M. Briggs, C. Frez, C. E. Borgentum, M. Bagheri, S. Forouhar, and R. D. May, “Five-channel infrared laser absorption spectrometer for combustion product monitoring aboard manned spacecraft,” (44th International Conference on Environmental Systems, 2014).

Fraser, M.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[Crossref]

Frez, C.

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1 W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

R. M. Briggs, C. Frez, C. E. Borgentum, M. Bagheri, S. Forouhar, and R. D. May, “Five-channel infrared laser absorption spectrometer for combustion product monitoring aboard manned spacecraft,” (44th International Conference on Environmental Systems, 2014).

Gatesman, A. J.

Giles, R. H.

Giovannini, M.

Y. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2005).
[Crossref]

Goyette, T. M.

Hartwig, S.

J. Fonollosa, R. Rubio, S. Hartwig, S. Marco, J. Santander, L. Fonseca, J. Wollenstein, and M. Moreno, “Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications,” Sens. Actuator B-Chem. 132, 498–507 (2008).
[Crossref]

Hasman, E.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

Herzig, H. P.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

E. Logean, L. Hvozdara, J. Di-Francesco, H. P. Herzig, R. Voelkel, M. Eisner, P.-Y. Baroni, M. Rochat, and A. Müller, “High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques,” in “SPIE Optical Systems Design,” L. Mazuray, R. Wartmann, A. P. Wood, M. C. de la Fuente, J.-L. M. Tissot, J. M. Raynor, T. E. Kidger, S. David, P. Benítez, D. G. Smith, F. Wyrowski, and A. Erdmann, eds. (International Society for Optics and Photonics, 2012), p. 85500Q.
[Crossref]

Hofstetter, D.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Homsy, A.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the Phase Front of Optical Fiber Beams using High Contrast Metastructures - OSA Technical Digest (online),” in “CLEO: 2014,” (Optical Society of America, San Jose, California, 2014), p. STu3M.4.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Efficient high NA flat micro-lenses realized using high contrast transmitarrays,” in “SPIE OPTO,”, C. J. Chang-Hasnain, D. Fattal, F. Koyama, and W. Zhou, eds. (International Society for Optics and Photonics, 2015), p. 93720P.

Huyet, G.

Hvozdara, L.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Y. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2005).
[Crossref]

E. Logean, L. Hvozdara, J. Di-Francesco, H. P. Herzig, R. Voelkel, M. Eisner, P.-Y. Baroni, M. Rochat, and A. Müller, “High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques,” in “SPIE Optical Systems Design,” L. Mazuray, R. Wartmann, A. P. Wood, M. C. de la Fuente, J.-L. M. Tissot, J. M. Raynor, T. E. Kidger, S. David, P. Benítez, D. G. Smith, F. Wyrowski, and A. Erdmann, eds. (International Society for Optics and Photonics, 2012), p. 85500Q.
[Crossref]

Jessop, D. S.

Jouy, P.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Kan, H.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447 (2008).
[Crossref] [PubMed]

Karagodsky, V.

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science,  339, 1232009 (2013).
[Crossref] [PubMed]

Klemm, A. B.

Kosterev, A.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[Crossref]

Y. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2005).
[Crossref]

A. Kosterev and F. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[Crossref]

Krauss, T. F.

Lalanne, P.

Launois, H.

Lewicki, R.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[Crossref]

Lewis, L.

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

Linden, K. J.

Liu, V.

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Logean, E.

E. Logean, L. Hvozdara, J. Di-Francesco, H. P. Herzig, R. Voelkel, M. Eisner, P.-Y. Baroni, M. Rochat, and A. Müller, “High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques,” in “SPIE Optical Systems Design,” L. Mazuray, R. Wartmann, A. P. Wood, M. C. de la Fuente, J.-L. M. Tissot, J. M. Raynor, T. E. Kidger, S. David, P. Benítez, D. G. Smith, F. Wyrowski, and A. Erdmann, eds. (International Society for Optics and Photonics, 2012), p. 85500Q.
[Crossref]

Looser, H.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Lu, F.

Mangold, M.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Marco, S.

J. Fonollosa, R. Rubio, S. Hartwig, S. Marco, J. Santander, L. Fonseca, J. Wollenstein, and M. Moreno, “Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications,” Sens. Actuator B-Chem. 132, 498–507 (2008).
[Crossref]

Martins, E. R.

May, R. D.

R. M. Briggs, C. Frez, C. E. Borgentum, M. Bagheri, S. Forouhar, and R. D. May, “Five-channel infrared laser absorption spectrometer for combustion product monitoring aboard manned spacecraft,” (44th International Conference on Environmental Systems, 2014).

Mitrofanov, O.

Moreno, M.

J. Fonollosa, R. Rubio, S. Hartwig, S. Marco, J. Santander, L. Fonseca, J. Wollenstein, and M. Moreno, “Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications,” Sens. Actuator B-Chem. 132, 498–507 (2008).
[Crossref]

Müller, A.

E. Logean, L. Hvozdara, J. Di-Francesco, H. P. Herzig, R. Voelkel, M. Eisner, P.-Y. Baroni, M. Rochat, and A. Müller, “High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques,” in “SPIE Optical Systems Design,” L. Mazuray, R. Wartmann, A. P. Wood, M. C. de la Fuente, J.-L. M. Tissot, J. M. Raynor, T. E. Kidger, S. David, P. Benítez, D. G. Smith, F. Wyrowski, and A. Erdmann, eds. (International Society for Optics and Photonics, 2012), p. 85500Q.
[Crossref]

Neal, W. R.

Nixon, W. E.

O’Faolain, L.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).

Peng, Z.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, R. G. Beausoleil, and M. Fiorentino, “Sub-wavelength Grating Lenses with a Twist,” IEEE Photon. Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

Pflügl, C.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447 (2008).
[Crossref] [PubMed]

Ren, Y.

Reno, J. L.

Ritchie, D. A.

Rochat, M.

E. Logean, L. Hvozdara, J. Di-Francesco, H. P. Herzig, R. Voelkel, M. Eisner, P.-Y. Baroni, M. Rochat, and A. Müller, “High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques,” in “SPIE Optical Systems Design,” L. Mazuray, R. Wartmann, A. P. Wood, M. C. de la Fuente, J.-L. M. Tissot, J. M. Raynor, T. E. Kidger, S. David, P. Benítez, D. G. Smith, F. Wyrowski, and A. Erdmann, eds. (International Society for Optics and Photonics, 2012), p. 85500Q.
[Crossref]

Rubio, R.

J. Fonollosa, R. Rubio, S. Hartwig, S. Marco, J. Santander, L. Fonseca, J. Wollenstein, and M. Moreno, “Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications,” Sens. Actuator B-Chem. 132, 498–507 (2008).
[Crossref]

Santander, J.

J. Fonollosa, R. Rubio, S. Hartwig, S. Marco, J. Santander, L. Fonseca, J. Wollenstein, and M. Moreno, “Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications,” Sens. Actuator B-Chem. 132, 498–507 (2008).
[Crossref]

Scalari, G.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[Crossref]

M. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573 (2007).
[Crossref]

Sedgwick, F. G.

Shah, Y. D.

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science,  339, 1232009 (2013).
[Crossref] [PubMed]

So, S.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[Crossref]

Sorin, W. V.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, R. G. Beausoleil, and M. Fiorentino, “Sub-wavelength Grating Lenses with a Twist,” IEEE Photon. Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

Stellinga, D.

Tittel, F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[Crossref]

Y. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2005).
[Crossref]

A. Kosterev and F. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[Crossref]

Tran, T.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, R. G. Beausoleil, and M. Fiorentino, “Sub-wavelength Grating Lenses with a Twist,” IEEE Photon. Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

Tuzson, B.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Vo, S.

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, R. G. Beausoleil, and M. Fiorentino, “Sub-wavelength Grating Lenses with a Twist,” IEEE Photon. Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

Voelkel, R.

E. Logean, L. Hvozdara, J. Di-Francesco, H. P. Herzig, R. Voelkel, M. Eisner, P.-Y. Baroni, M. Rochat, and A. Müller, “High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques,” in “SPIE Optical Systems Design,” L. Mazuray, R. Wartmann, A. P. Wood, M. C. de la Fuente, J.-L. M. Tissot, J. M. Raynor, T. E. Kidger, S. David, P. Benítez, D. G. Smith, F. Wyrowski, and A. Erdmann, eds. (International Society for Optics and Photonics, 2012), p. 85500Q.
[Crossref]

Wagli, P.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Waldman, J.

Walther, C.

M. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573 (2007).
[Crossref]

Wang, Q. J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447 (2008).
[Crossref] [PubMed]

Wanke, M. C.

Wirthmueller, A.

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge university press, 1999).
[Crossref]

Wollenstein, J.

J. Fonollosa, R. Rubio, S. Hartwig, S. Marco, J. Santander, L. Fonseca, J. Wollenstein, and M. Moreno, “Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications,” Sens. Actuator B-Chem. 132, 498–507 (2008).
[Crossref]

Wysocki, G.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[Crossref]

Yamanishi, M.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447 (2008).
[Crossref] [PubMed]

Yarekha, D.

Y. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2005).
[Crossref]

Yu, N.

Zhu, J.

Analyst (1)

P. Jouy, M. Mangold, B. Tuzson, L. Emmenegger, Y.-C. Chang, L. Hvozdara, H. P. Herzig, P. Wagli, A. Homsy, N. F. de Rooij, A. Wirthmueller, D. Hofstetter, H. Looser, and J. Faist, “Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies,” Analyst 139, 2039–2046 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

Y. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, “Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154 (2005).
[Crossref]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2007).
[Crossref]

Appl. Phys. Lett. (1)

R. M. Briggs, C. Frez, C. E. Borgentun, and S. Forouhar, “Regrowth-free single-mode quantum cascade lasers with power consumption below 1 W,” Appl. Phys. Lett. 105, 141117 (2014).
[Crossref]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4 : A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun. 183, 2233–2244 (2012).
[Crossref]

Electron. Lett. (1)

M. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Kosterev and F. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. Vo, D. Fattal, W. V. Sorin, Z. Peng, T. Tran, R. G. Beausoleil, and M. Fiorentino, “Sub-wavelength Grating Lenses with a Twist,” IEEE Photon. Technol. Lett. 26, 1375–1378 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010).
[Crossref]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[Crossref]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Science (2)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science,  339, 1232009 (2013).
[Crossref] [PubMed]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref] [PubMed]

Sens. Actuator B-Chem. (1)

J. Fonollosa, R. Rubio, S. Hartwig, S. Marco, J. Santander, L. Fonseca, J. Wollenstein, and M. Moreno, “Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications,” Sens. Actuator B-Chem. 132, 498–507 (2008).
[Crossref]

Other (7)

E. Logean, L. Hvozdara, J. Di-Francesco, H. P. Herzig, R. Voelkel, M. Eisner, P.-Y. Baroni, M. Rochat, and A. Müller, “High numerical aperture silicon collimating lens for mid-infrared quantum cascade lasers manufactured using wafer-level techniques,” in “SPIE Optical Systems Design,” L. Mazuray, R. Wartmann, A. P. Wood, M. C. de la Fuente, J.-L. M. Tissot, J. M. Raynor, T. E. Kidger, S. David, P. Benítez, D. G. Smith, F. Wyrowski, and A. Erdmann, eds. (International Society for Optics and Photonics, 2012), p. 85500Q.
[Crossref]

R. M. Briggs, C. Frez, C. E. Borgentum, M. Bagheri, S. Forouhar, and R. D. May, “Five-channel infrared laser absorption spectrometer for combustion product monitoring aboard manned spacecraft,” (44th International Conference on Environmental Systems, 2014).

A. Arbabi, M. Bagheri, A. J. Ball, Y. Horie, D. Fattal, and A. Faraon, “Controlling the Phase Front of Optical Fiber Beams using High Contrast Metastructures - OSA Technical Digest (online),” in “CLEO: 2014,” (Optical Society of America, San Jose, California, 2014), p. STu3M.4.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Efficient high NA flat micro-lenses realized using high contrast transmitarrays,” in “SPIE OPTO,”, C. J. Chang-Hasnain, D. Fattal, F. Koyama, and W. Zhou, eds. (International Society for Optics and Photonics, 2015), p. 93720P.

E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge university press, 1999).
[Crossref]

CVI Melles Griot Optics Guide, available at: http://mellesgriot.com/Frontend/PDFs/TechGuide.pdf accessed Oct. 2015.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scanning electron micrograph of the laser ridge waveguide and facet of a distributed-feedback QCL. The inset shows the simulated amplitude of the electric field of the lasing mode. (b) Simulated far-field emission pattern of the QCL shown in (a). (c) Schematic illustration of the QCL collimation using a metasurface lens. The inset shows the laser intensity and phase distributions at the lens plane.

Fig. 2
Fig. 2

(a) Schematic drawing of the top and side views of an array of circular posts which is used as a basis for implementation of the metasurface lens. The inset shows a unit cell of the array. (b) Intensity transmission coefficient and phase of the transmission coefficient for the array shown in (a) as functions of the post diameter. (c) One to one post diameter versus desired phase relation used in the design of the metasurface lens. The corresponding transmission values for different phases are also presented. (d) Schematic top view of the metasurface collimating lens.

Fig. 3
Fig. 3

(a) Scanning electron micrograph showing tilted and (b) top views of a fabricated metasurface lens. (c) Optical microscope image of the center part of a metasurface lens. (d) A 5×5 array of metasurface lenses.

Fig. 4
Fig. 4

(a) Measured transverse plane intensity profiles of the beam collimated by a metasurface lens at three different axial distances. (b) x and (c) y-cut intensity profiles and the corresponding best Gaussian fits at z = 7.5 cm. 1/e2 beam diameters are also shown. (d) Measured beam radius of the collimated beam as a function of axial distance and best theoretical fit to the data.

Metrics