Abstract

A novel distributed fiber vibration sensing technique based on phase extraction from time-gated digital optical frequency domain reflectometry (TGD-OFDR) which can achieve quantitative vibration measurement with high spatial resolution and long measurement range is proposed. A 90 degree optical hybrid is used to extract phase information. By increasing frequency sweeping speed, the influence of environmental phase disturbance on TGD-OFDR is mitigated significantly, which makes phase extraction in our new scheme more reliable than that in conventional OFDR-based method, leading to the realization of long distance quantitative vibration measurement. By using the proposed technique, a distributed vibration sensor that has a measurement range of 40 km, a spatial resolution of 3.5 m, a measurable vibration frequency up to 600 Hz, and a minimal measurable vibration acceleration of 0.08g is demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR

Dian Chen, Qingwen Liu, and Zuyuan He
Opt. Express 25(7) 8315-8325 (2017)

Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range

Qingwen Liu, Xinyu Fan, and Zuyuan He
Opt. Express 23(20) 25988-25995 (2015)

High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution

Dian Chen, Qingwen Liu, and Zuyuan He
Opt. Express 26(13) 16138-16146 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazao, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
    [Crossref]
  2. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
    [Crossref]
  3. T. Zhu, Q. He, X. Xiao, and X. Bao, “Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution,” Opt. Express 21(3), 2953–2963 (2013).
    [Crossref] [PubMed]
  4. Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system,” Opt. Express 16(14), 10240–10247 (2008).
    [Crossref] [PubMed]
  5. Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, and H. Chen, “Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals,” Opt. Express 20(27), 28319–28329 (2012).
    [Crossref] [PubMed]
  6. D.-P. Zhou, Z. Qin, W. Li, L. Chen, and X. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20(12), 13138–13145 (2012).
    [Crossref] [PubMed]
  7. Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” in Asia Communications and Photonics Conference and Exhibition, (Optical Society of America, 2011), 83110S.
  8. D. Arbel and A. Eyal, “Dynamic optical frequency domain reflectometry,” Opt. Express 22(8), 8823–8830 (2014).
    [Crossref] [PubMed]
  9. Q. Liu, X. Fan, and Z. He, “Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range,” Opt. Express 23(20), 25988–25995 (2015).
    [Crossref] [PubMed]
  10. C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
    [Crossref]
  11. X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency-domain reflectometry,” IEEE J. Quantum Electron. 45(6), 594–602 (2009).
    [Crossref]
  12. H. Gabai, Y. Botsev, M. Hahami, and A. Eyal, “Optical frequency domain reflectometry at maximum update rate using I/Q detection,” Opt. Lett. 40(8), 1725–1728 (2015).
    [Crossref] [PubMed]
  13. K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers - Part I,” IEEE J. Quantum Electron. 19(6), 1096–1101 (1983).
    [Crossref]
  14. L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
    [Crossref]
  15. S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol. 11(10), 1694–1700 (1993).
    [Crossref]
  16. D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3(5), 971–977 (1985).
    [Crossref]
  17. P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).
    [Crossref]
  18. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
    [Crossref]

2015 (2)

2014 (1)

2013 (2)

2012 (2)

2009 (1)

X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency-domain reflectometry,” IEEE J. Quantum Electron. 45(6), 594–602 (2009).
[Crossref]

2008 (1)

2005 (1)

2003 (1)

C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

1993 (1)

S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol. 11(10), 1694–1700 (1993).
[Crossref]

1992 (1)

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

1986 (1)

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

1985 (1)

D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3(5), 971–977 (1985).
[Crossref]

1984 (1)

P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).
[Crossref]

1983 (1)

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers - Part I,” IEEE J. Quantum Electron. 19(6), 1096–1101 (1983).
[Crossref]

Arbel, D.

Bao, X.

Botsev, Y.

Chen, H.

Chen, L.

Choi, K. N.

Corredera, P.

Culshaw, B.

D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3(5), 971–977 (1985).
[Crossref]

Ding, Z.

Dorrer, C.

C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

Du, Y.

Eyal, A.

Fan, X.

Q. Liu, X. Fan, and Z. He, “Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range,” Opt. Express 23(20), 25988–25995 (2015).
[Crossref] [PubMed]

X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency-domain reflectometry,” IEEE J. Quantum Electron. 45(6), 594–602 (2009).
[Crossref]

Filograno, M. L.

Frazao, O.

Gabai, H.

González-Herráez, M.

Hahami, M.

Han, Q.

He, Q.

He, Z.

Healey, P.

P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).
[Crossref]

Horiguchi, T.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

Ito, F.

X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency-domain reflectometry,” IEEE J. Quantum Electron. 45(6), 594–602 (2009).
[Crossref]

Juarez, J. C.

Kilper, D.

C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

Koshikiya, Y.

X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency-domain reflectometry,” IEEE J. Quantum Electron. 45(6), 594–602 (2009).
[Crossref]

Koyamada, Y.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

Kruger, M.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Li, W.

Liu, K.

Liu, Q.

Liu, T.

Maier, E. W.

Mandelberg, H.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Martin-Lopez, S.

Martins, H.

McGrath, P.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Meng, Z.

Qin, Z.

Raybon, G.

C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

Raymer, M.

C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

Richter, L.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Shimizu, K.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

Sorin, W. V.

S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol. 11(10), 1694–1700 (1993).
[Crossref]

Stuart, H.

C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

Taylor, H. F.

Uttam, D.

D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3(5), 971–977 (1985).
[Crossref]

Vahala, K.

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers - Part I,” IEEE J. Quantum Electron. 19(6), 1096–1101 (1983).
[Crossref]

Venkatesh, S.

S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol. 11(10), 1694–1700 (1993).
[Crossref]

Xiao, X.

Yao, X. S.

Yariv, A.

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers - Part I,” IEEE J. Quantum Electron. 19(6), 1096–1101 (1983).
[Crossref]

Zhang, Z.

Zhou, D.-P.

Zhu, T.

Electron. Lett. (1)

P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20(1), 30–32 (1984).
[Crossref]

IEEE J. Quantum Electron. (3)

K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers - Part I,” IEEE J. Quantum Electron. 19(6), 1096–1101 (1983).
[Crossref]

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency-domain reflectometry,” IEEE J. Quantum Electron. 45(6), 594–602 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Dorrer, D. Kilper, H. Stuart, G. Raybon, and M. Raymer, “Linear optical sampling,” IEEE Photon. Technol. Lett. 15(12), 1746–1748 (2003).
[Crossref]

J. Lightwave Technol. (5)

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components,” J. Lightwave Technol. 10(7), 982–987 (1992).
[Crossref]

S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol. 11(10), 1694–1700 (1993).
[Crossref]

D. Uttam and B. Culshaw, “Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique,” J. Lightwave Technol. 3(5), 971–977 (1985).
[Crossref]

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol. 23(6), 2081–2087 (2005).
[Crossref]

H. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazao, and M. González-Herráez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Other (1)

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” in Asia Communications and Photonics Conference and Exhibition, (Optical Society of America, 2011), 83110S.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Power spectrum of the beat signal of (a) OFDR and (b) TGD-OFDR.
Fig. 2
Fig. 2 Experimental setup of distributed vibration sensing system based on TGD-OFDR. FL: fiber laser; EDFA: erbium-doped optical fiber amplifier; BPD: balanced photodetector; AWG: arbitrary waveform generator; ADC: analog-digital card; PC: personal computer.
Fig. 3
Fig. 3 (a) Reflection intensity profile of the whole trace of 40 km fiber (50 consecutive traces); (b) Reflection intensity profile of an APC connector showing a spatial resolution of 3.5 m; (c) Measured intensity traces of backscattered lightwave from FUT (50 consecutive traces); (d) Unwrapped phase traces of backscattered lightwave from FUT (50 consecutive traces); (e) Differential phase traces of adjacent backscattered lightwave (50 consecutive traces).
Fig. 4
Fig. 4 Experimental results with a 200 Hz sinusoidal excitation at z = 40.02 km. (a) Distance-time mapping trace of the phase term of backscattering; (b) Extracted phase-time curve of the vibration; (c) Distance-time mapping of the intensity term of backscattering; (d) Extracted intensity-time curve of the vibration.
Fig. 5
Fig. 5 Experimental results with an 600Hz sinusoidal excitation at z = 40.02 km. (a) Distance-time mapping trace of the phase term of backscattering; (b) Extracted phase-time curve of the vibration. (c) The power spectrum of extracted phase signal.
Fig. 6
Fig. 6 (a) Extracted phase-time curves of vibration at different vibration acceleration. (b) The amplitude of phase-time curves versus vibration acceleration.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S( f )= e (2 t d / τ c ) 2R( t d )sin[ (f f b ) τ p ] π(f f b ) + 2R( t d ) τ c  1+ [ π τ c (f f b ) ] 2 { 1 e (2 t d / τ c ) [ cos[ π( f f b ) ]+ sin[π( f f b ) t d ] π τ c ( f f b ) ] }
S( f )= 2R( t d ) τ c 1+ [ π τ c (f f b ) ] 2 {1 e (2 t d / τ c ) [ cos[ π( f f b ) ]+π τ c ( f f b )sin[π( f f b ) τ p ] ]}
E s ( t )=A( t d )exp[ j ω 0 ( t t d )jπγ ( t t d ) 2 jθ( t t d )+j φ rayleigh ( t d ) ]rect[ t t d τ p ]
E L ( t )= E LO exp[ j ω 0 t+jθ( t ) ]
s beat ( t )=A( t d )exp[jπ (t t d ) 2 j ω 0 t d +j φ scatter +jθ( t t d )jθ( t )]rect[ t t d τ p ]
s digital ( t )= E 0 exp( j2π f m tjπγ ( t t d ) 2 +j φ 0 )rect[ t t d τ p ]
s( t )= E 0 A( t d )exp[ j2π f m t+jθ( t )jθ( t t d )+jφ ]rect[ t t d τ p ]
S( f )= 0 τ p s( t )dt=R( t d ) sin[π(f f m ) τ p ] π(f f m ) exp[( f )]
Δz= c 2nγ τ p

Metrics