Abstract

We demonstrate large circular dichroism (CD) in the visible range resulting from electromagnetic couplings in three-dimensional Ag staircase nanostructures. Analytical calculations using effective constitutive parameters show that the CD originates from chiral resonances of the staircase in which the induced magnetic dipole moment has components parallel or antiparallel to the induced electric dipole moment. The strength of the coupling as well as the CD can be tuned by varying the configuration (e.g. the strip width) of staircase nanostructure. More importantly we are able to realize such chiral resonances with large CD in the visible range in topologically similar chiral nanostructures fabricated using a simple shadowing vapor deposition method. Our simple staircase model demonstrates the effect of couplings between electric and magnetic dipole moments in producing large chiral responses in 3D nanostructures and can enhance the understanding of hybrid chiral optical systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Giant circular dichroism induced by tunable resonance in twisted Z-shaped nanostructure

Yu Qu, Lishun Huang, Li Wang, and Zhongyue Zhang
Opt. Express 25(5) 5480-5487 (2017)

Giant circular dichroism enhancement and chiroptical illusion in hybrid molecule-plasmonic nanostructures

Yineng Liu, Rongyao Wang, and Xiangdong Zhang
Opt. Express 22(4) 4357-4370 (2014)

Multiband circular dichroism from bilayer rotational F4 nanostructure arrays

Jianxia Qi, Mingdi Zhang, Yunguang Zhang, Qingyan Han, Wei Gao, Yongkai Wang, Runcai Miao, and Jun Dong
Appl. Opt. 58(2) 479-484 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. D. Fasman, ed., Circular Dichroism and the Conformational Analysis of Biomolecules (Plenum, 1996).
  2. L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2004).
  3. I. Agranat, H. Caner, and J. Caldwell, “Putting chirality to work: the strategy of chiral switches,” Nat. Rev. Drug Discov. 1(10), 753–768 (2002).
    [Crossref] [PubMed]
  4. I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
    [Crossref] [PubMed]
  5. A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
    [Crossref] [PubMed]
  6. J.-M. Ha, A. Solovyov, and A. Katz, “Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: origin of chiral surface plasmon resonance,” Langmuir 25(1), 153–158 (2009).
    [Crossref] [PubMed]
  7. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
    [Crossref] [PubMed]
  8. Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
    [Crossref] [PubMed]
  9. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
    [Crossref] [PubMed]
  10. M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
    [Crossref]
  11. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
    [Crossref] [PubMed]
  12. Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
    [Crossref] [PubMed]
  13. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
    [Crossref] [PubMed]
  14. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
    [Crossref] [PubMed]
  15. C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
    [Crossref] [PubMed]
  16. A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42(16), 7028–7041 (2013).
    [Crossref] [PubMed]
  17. B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
    [Crossref] [PubMed]
  18. S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
    [Crossref] [PubMed]
  19. S. S. Oh, A. Demetriadou, S. Wuestner, and O. Hess, “On the origin of chirality in nanoplasmonic gyroid metamaterials,” Adv. Mater. 25(4), 612–617 (2013).
    [Crossref] [PubMed]
  20. P. Messina, A. Dmitriev, N. Lin, H. Spillmann, M. Abel, J. V. Barth, and K. Kern, “Direct observation of chiral metal-organic complexes assembled on a Cu(100) surface,” J. Am. Chem. Soc. 124(47), 14000–14001 (2002).
    [Crossref] [PubMed]
  21. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
    [Crossref] [PubMed]
  22. W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
    [Crossref]
  23. A. Di Falco, “Chiral plasmonic nanostructures: Twisted by DNA,” Nat. Mater. 13(9), 846–848 (2014).
    [Crossref] [PubMed]
  24. N. Liu and H. Giessen, “Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling,” Opt. Express 16(26), 21233–21238 (2008).
    [Crossref] [PubMed]
  25. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
    [Crossref] [PubMed]
  26. W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19(13), 12837–12842 (2011).
    [Crossref] [PubMed]
  27. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
    [Crossref] [PubMed]
  28. P. C. Wu, W. L. Hsu, W. T. Chen, Y. W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5(9726), 9726 (2015).
    [Crossref] [PubMed]
  29. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
    [Crossref]
  30. Y. Cheng, Y. Nie, L. Wu, and R. Gong, “Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators,” Prog. Electromagnetics Res. 138, 421–432 (2013).
    [Crossref]
  31. Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
    [Crossref]
  32. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  33. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
    [Crossref] [PubMed]
  34. Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(3752), 3752 (2014).
    [PubMed]
  35. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  36. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  37. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
    [Crossref] [PubMed]
  38. M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photonics 1(6), 530–537 (2014).
    [Crossref]
  39. W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials,” Nano Lett. 9(5), 2153–2159 (2009).
    [Crossref] [PubMed]
  40. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
    [Crossref]
  41. N. Berova, K. Nakanishi, and R. W. Woody, eds., Circular Dichroism: Principles and Applications, 2nd ed. (Wiley-VCH, 2000).
  42. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [Crossref] [PubMed]
  43. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  44. H. Haken and H. C. Wolf, Molecular Physics and Elements of Quantum Chemistry (Springer, 2003).
  45. C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapour deposition,” J. Opt. 15(7), 072101 (2013).
    [Crossref]
  46. C. Han and W. Y. Tam, “Chirality from shadowing deposited metallic nanostructure,” Phot. Nano. Fund. Appl. 13, 50–57 (2015).
    [Crossref]
  47. T. Feng, F. Liu, W. Y. Tam, and J. Li, “Effective parameters retrieval for complex metamaterials with low symmetries,” Europhys. Lett. 102(1), 18003 (2013).
    [Crossref]
  48. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
    [Crossref]
  49. D. Lipkin, “Existence of a new conservation law in electromagnetic theory,” J. Math. Phys. 5(5), 696–700 (1964).
    [Crossref]
  50. H. M. Leung, C. Han, Y. Li, C. T. Chan, and W. Y. Tam, “Modeling quasi-3D chiral metamaterials fabricated by shadowing vapor deposition,” J. Opt. 16(1), 015102 (2014).
    [Crossref]

2015 (2)

P. C. Wu, W. L. Hsu, W. T. Chen, Y. W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5(9726), 9726 (2015).
[Crossref] [PubMed]

C. Han and W. Y. Tam, “Chirality from shadowing deposited metallic nanostructure,” Phot. Nano. Fund. Appl. 13, 50–57 (2015).
[Crossref]

2014 (4)

H. M. Leung, C. Han, Y. Li, C. T. Chan, and W. Y. Tam, “Modeling quasi-3D chiral metamaterials fabricated by shadowing vapor deposition,” J. Opt. 16(1), 015102 (2014).
[Crossref]

A. Di Falco, “Chiral plasmonic nanostructures: Twisted by DNA,” Nat. Mater. 13(9), 846–848 (2014).
[Crossref] [PubMed]

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(3752), 3752 (2014).
[PubMed]

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

2013 (9)

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapour deposition,” J. Opt. 15(7), 072101 (2013).
[Crossref]

Y. Cheng, Y. Nie, L. Wu, and R. Gong, “Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators,” Prog. Electromagnetics Res. 138, 421–432 (2013).
[Crossref]

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42(16), 7028–7041 (2013).
[Crossref] [PubMed]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

S. S. Oh, A. Demetriadou, S. Wuestner, and O. Hess, “On the origin of chirality in nanoplasmonic gyroid metamaterials,” Adv. Mater. 25(4), 612–617 (2013).
[Crossref] [PubMed]

T. Feng, F. Liu, W. Y. Tam, and J. Li, “Effective parameters retrieval for complex metamaterials with low symmetries,” Europhys. Lett. 102(1), 18003 (2013).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

2012 (5)

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

2011 (5)

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19(13), 12837–12842 (2011).
[Crossref] [PubMed]

2010 (6)

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

2009 (6)

J.-M. Ha, A. Solovyov, and A. Katz, “Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: origin of chiral surface plasmon resonance,” Langmuir 25(1), 153–158 (2009).
[Crossref] [PubMed]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

2008 (3)

N. Liu and H. Giessen, “Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling,” Opt. Express 16(26), 21233–21238 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
[Crossref] [PubMed]

2005 (1)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

2004 (1)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

2002 (2)

I. Agranat, H. Caner, and J. Caldwell, “Putting chirality to work: the strategy of chiral switches,” Nat. Rev. Drug Discov. 1(10), 753–768 (2002).
[Crossref] [PubMed]

P. Messina, A. Dmitriev, N. Lin, H. Spillmann, M. Abel, J. V. Barth, and K. Kern, “Direct observation of chiral metal-organic complexes assembled on a Cu(100) surface,” J. Am. Chem. Soc. 124(47), 14000–14001 (2002).
[Crossref] [PubMed]

1964 (1)

D. Lipkin, “Existence of a new conservation law in electromagnetic theory,” J. Math. Phys. 5(5), 696–700 (1964).
[Crossref]

Abel, M.

P. Messina, A. Dmitriev, N. Lin, H. Spillmann, M. Abel, J. V. Barth, and K. Kern, “Direct observation of chiral metal-organic complexes assembled on a Cu(100) surface,” J. Am. Chem. Soc. 124(47), 14000–14001 (2002).
[Crossref] [PubMed]

Agarwal, A.

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Agranat, I.

I. Agranat, H. Caner, and J. Caldwell, “Putting chirality to work: the strategy of chiral switches,” Nat. Rev. Drug Discov. 1(10), 753–768 (2002).
[Crossref] [PubMed]

Alici, K. B.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

Amrania, H.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Baets, R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Barron, L. D.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Barth, J. V.

P. Messina, A. Dmitriev, N. Lin, H. Spillmann, M. Abel, J. V. Barth, and K. Kern, “Direct observation of chiral metal-organic complexes assembled on a Cu(100) surface,” J. Am. Chem. Soc. 124(47), 14000–14001 (2002).
[Crossref] [PubMed]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Baumberg, J. J.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

Ben-Moshe, A.

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42(16), 7028–7041 (2013).
[Crossref] [PubMed]

Bian, A.

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Braun, P. V.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Caglayan, H.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Caldwell, J.

I. Agranat, H. Caner, and J. Caldwell, “Putting chirality to work: the strategy of chiral switches,” Nat. Rev. Drug Discov. 1(10), 753–768 (2002).
[Crossref] [PubMed]

Caner, H.

I. Agranat, H. Caner, and J. Caldwell, “Putting chirality to work: the strategy of chiral switches,” Nat. Rev. Drug Discov. 1(10), 753–768 (2002).
[Crossref] [PubMed]

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Chan, C. T.

H. M. Leung, C. Han, Y. Li, C. T. Chan, and W. Y. Tam, “Modeling quasi-3D chiral metamaterials fabricated by shadowing vapor deposition,” J. Opt. 16(1), 015102 (2014).
[Crossref]

Chang, W. S.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Chen, C. J.

Chen, W.

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Chen, W. T.

P. C. Wu, W. L. Hsu, W. T. Chen, Y. W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5(9726), 9726 (2015).
[Crossref] [PubMed]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19(13), 12837–12842 (2011).
[Crossref] [PubMed]

Cheng, Y.

Y. Cheng, Y. Nie, L. Wu, and R. Gong, “Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators,” Prog. Electromagnetics Res. 138, 421–432 (2013).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Cohen, A. E.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

Colak, E.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Cunha, P. S.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Decker, M.

Demetriadou, A.

S. S. Oh, A. Demetriadou, S. Wuestner, and O. Hess, “On the origin of chirality in nanoplasmonic gyroid metamaterials,” Adv. Mater. 25(4), 612–617 (2013).
[Crossref] [PubMed]

Di Falco, A.

A. Di Falco, “Chiral plasmonic nanostructures: Twisted by DNA,” Nat. Mater. 13(9), 846–848 (2014).
[Crossref] [PubMed]

Dmitriev, A.

P. Messina, A. Dmitriev, N. Lin, H. Spillmann, M. Abel, J. V. Barth, and K. Kern, “Direct observation of chiral metal-organic complexes assembled on a Cu(100) surface,” J. Am. Chem. Soc. 124(47), 14000–14001 (2002).
[Crossref] [PubMed]

Doerr, C. R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Dong, J.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

Dregely, D.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Eich, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Engheta, N.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Falkner, M.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Fan, S.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Fan, Z.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Feng, T.

T. Feng, F. Liu, W. Y. Tam, and J. Li, “Effective parameters retrieval for complex metamaterials with low symmetries,” Europhys. Lett. 102(1), 18003 (2013).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Francescato, Y.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Frank, B.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Freude, W.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Fried, T.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
[Crossref] [PubMed]

Gadegaard, N.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giannini, V.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Giessen, H.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

N. Liu and H. Giessen, “Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling,” Opt. Express 16(26), 21233–21238 (2008).
[Crossref] [PubMed]

Gong, Q.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(3752), 3752 (2014).
[PubMed]

Gong, R.

Y. Cheng, Y. Nie, L. Wu, and R. Gong, “Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators,” Prog. Electromagnetics Res. 138, 421–432 (2013).
[Crossref]

Govorov, A. O.

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42(16), 7028–7041 (2013).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Guldin, S.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Guo, G. Y.

Ha, J.-M.

J.-M. Ha, A. Solovyov, and A. Katz, “Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: origin of chiral surface plasmon resonance,” Langmuir 25(1), 153–158 (2009).
[Crossref] [PubMed]

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Han, C.

C. Han and W. Y. Tam, “Chirality from shadowing deposited metallic nanostructure,” Phot. Nano. Fund. Appl. 13, 50–57 (2015).
[Crossref]

H. M. Leung, C. Han, Y. Li, C. T. Chan, and W. Y. Tam, “Modeling quasi-3D chiral metamaterials fabricated by shadowing vapor deposition,” J. Opt. 16(1), 015102 (2014).
[Crossref]

C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapour deposition,” J. Opt. 15(7), 072101 (2013).
[Crossref]

Hein, S. M.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Helgert, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Hendry, E.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Hentschel, M.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

Hernandez, P.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Hess, O.

S. S. Oh, A. Demetriadou, S. Wuestner, and O. Hess, “On the origin of chirality in nanoplasmonic gyroid metamaterials,” Adv. Mater. 25(4), 612–617 (2013).
[Crossref] [PubMed]

Högele, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Hsiao, C. T.

Hsu, W. L.

P. C. Wu, W. L. Hsu, W. T. Chen, Y. W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5(9726), 9726 (2015).
[Crossref] [PubMed]

Hu, X.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(3752), 3752 (2014).
[PubMed]

Huang, Y. W.

P. C. Wu, W. L. Hsu, W. T. Chen, Y. W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5(9726), 9726 (2015).
[Crossref] [PubMed]

Hur, K.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Jalas, D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Joannopoulos, J. D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kadodwala, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kafesaki, M.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Katz, A.

J.-M. Ha, A. Solovyov, and A. Katz, “Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: origin of chiral surface plasmon resonance,” Langmuir 25(1), 153–158 (2009).
[Crossref] [PubMed]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Kern, K.

P. Messina, A. Dmitriev, N. Lin, H. Spillmann, M. Abel, J. V. Barth, and K. Kern, “Direct observation of chiral metal-organic complexes assembled on a Cu(100) surface,” J. Am. Chem. Soc. 124(47), 14000–14001 (2002).
[Crossref] [PubMed]

Kley, E.-B.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Koschny, T.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Kosower, E. M.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
[Crossref] [PubMed]

Kotov, N. A.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Kriegler, C. E.

Kuang, H.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

Kuzyk, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Lederer, F.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Leung, H. M.

H. M. Leung, C. Han, Y. Li, C. T. Chan, and W. Y. Tam, “Modeling quasi-3D chiral metamaterials fabricated by shadowing vapor deposition,” J. Opt. 16(1), 015102 (2014).
[Crossref]

C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapour deposition,” J. Opt. 15(7), 072101 (2013).
[Crossref]

Li, J.

T. Feng, F. Liu, W. Y. Tam, and J. Li, “Effective parameters retrieval for complex metamaterials with low symmetries,” Europhys. Lett. 102(1), 18003 (2013).
[Crossref]

Li, Y.

H. M. Leung, C. Han, Y. Li, C. T. Chan, and W. Y. Tam, “Modeling quasi-3D chiral metamaterials fabricated by shadowing vapor deposition,” J. Opt. 16(1), 015102 (2014).
[Crossref]

Li, Z.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Liao, C. Y.

P. C. Wu, W. L. Hsu, W. T. Chen, Y. W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5(9726), 9726 (2015).
[Crossref] [PubMed]

Lieberman, I.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
[Crossref] [PubMed]

Liedl, T.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Lin, N.

P. Messina, A. Dmitriev, N. Lin, H. Spillmann, M. Abel, J. V. Barth, and K. Kern, “Direct observation of chiral metal-organic complexes assembled on a Cu(100) surface,” J. Am. Chem. Soc. 124(47), 14000–14001 (2002).
[Crossref] [PubMed]

Linden, S.

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Link, S.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Lipkin, D.

D. Lipkin, “Existence of a new conservation law in electromagnetic theory,” J. Math. Phys. 5(5), 696–700 (1964).
[Crossref]

Liu, A. Q.

P. C. Wu, W. L. Hsu, W. T. Chen, Y. W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5(9726), 9726 (2015).
[Crossref] [PubMed]

Liu, F.

T. Feng, F. Liu, W. Y. Tam, and J. Li, “Effective parameters retrieval for complex metamaterials with low symmetries,” Europhys. Lett. 102(1), 18003 (2013).
[Crossref]

Liu, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Liu, L.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

N. Liu and H. Giessen, “Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling,” Opt. Express 16(26), 21233–21238 (2008).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Ma, W.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

Maier, S. A.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maoz, B. M.

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42(16), 7028–7041 (2013).
[Crossref] [PubMed]

Markovich, G.

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42(16), 7028–7041 (2013).
[Crossref] [PubMed]

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
[Crossref] [PubMed]

Melloni, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Menzel, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Messina, P.

P. Messina, A. Dmitriev, N. Lin, H. Spillmann, M. Abel, J. V. Barth, and K. Kern, “Direct observation of chiral metal-organic complexes assembled on a Cu(100) surface,” J. Am. Chem. Soc. 124(47), 14000–14001 (2002).
[Crossref] [PubMed]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Naik, R. R.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Nie, Y.

Y. Cheng, Y. Nie, L. Wu, and R. Gong, “Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators,” Prog. Electromagnetics Res. 138, 421–432 (2013).
[Crossref]

Nordlander, P.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Oh, S. S.

S. S. Oh, A. Demetriadou, S. Wuestner, and O. Hess, “On the origin of chirality in nanoplasmonic gyroid metamaterials,” Adv. Mater. 25(4), 612–617 (2013).
[Crossref] [PubMed]

Ozbay, E.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Padilla, W. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Pertsch, T.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Petrov, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Phillips, C. C.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Popovic, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Pshenay-Severin, E.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Renner, H.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Rockstuhl, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Roller, E. M.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Rushkin, I.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Ruther, M.

Schäferling, M.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Schreiber, R.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Shemer, G.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
[Crossref] [PubMed]

Shen, H.

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Sibilia, C.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Slocik, J. M.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Solovyov, A.

J.-M. Ha, A. Solovyov, and A. Katz, “Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: origin of chiral surface plasmon resonance,” Langmuir 25(1), 153–158 (2009).
[Crossref] [PubMed]

Soukoulis, C. M.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Spillmann, H.

P. Messina, A. Dmitriev, N. Lin, H. Spillmann, M. Abel, J. V. Barth, and K. Kern, “Direct observation of chiral metal-organic complexes assembled on a Cu(100) surface,” J. Am. Chem. Soc. 124(47), 14000–14001 (2002).
[Crossref] [PubMed]

Stefik, M.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Steiner, U.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Sun, G.

P. C. Wu, W. L. Hsu, W. T. Chen, Y. W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5(9726), 9726 (2015).
[Crossref] [PubMed]

Sun, M.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

Sun, S.

Tam, W. Y.

C. Han and W. Y. Tam, “Chirality from shadowing deposited metallic nanostructure,” Phot. Nano. Fund. Appl. 13, 50–57 (2015).
[Crossref]

H. M. Leung, C. Han, Y. Li, C. T. Chan, and W. Y. Tam, “Modeling quasi-3D chiral metamaterials fabricated by shadowing vapor deposition,” J. Opt. 16(1), 015102 (2014).
[Crossref]

T. Feng, F. Liu, W. Y. Tam, and J. Li, “Effective parameters retrieval for complex metamaterials with low symmetries,” Europhys. Lett. 102(1), 18003 (2013).
[Crossref]

C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapour deposition,” J. Opt. 15(7), 072101 (2013).
[Crossref]

Tang, Y.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

Tsai, D. P.

P. C. Wu, W. L. Hsu, W. T. Chen, Y. W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5(9726), 9726 (2015).
[Crossref] [PubMed]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19(13), 12837–12842 (2011).
[Crossref] [PubMed]

Tünnermann, A.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

Valev, V. K.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Vanwolleghem, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Verbiest, T.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Vignolini, S.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Wang, B.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

Wang, L.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wegener, M.

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Weiss, T.

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wiesner, U.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Wu, L.

Y. Cheng, Y. Nie, L. Wu, and R. Gong, “Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators,” Prog. Electromagnetics Res. 138, 421–432 (2013).
[Crossref]

Wu, P. C.

P. C. Wu, W. L. Hsu, W. T. Chen, Y. W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5(9726), 9726 (2015).
[Crossref] [PubMed]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19(13), 12837–12842 (2011).
[Crossref] [PubMed]

Wuestner, S.

S. S. Oh, A. Demetriadou, S. Wuestner, and O. Hess, “On the origin of chirality in nanoplasmonic gyroid metamaterials,” Adv. Mater. 25(4), 612–617 (2013).
[Crossref] [PubMed]

Xu, C.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Xu, L.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

Yang, H.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(3752), 3752 (2014).
[PubMed]

Yang, K. Y.

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Yin, X.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Yu, Z.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Yufa, N. A.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

Zhang, H.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Zhao, J.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Zhao, R.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Zhao, Y.

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

P. C. Wu, W. L. Hsu, W. T. Chen, Y. W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5(9726), 9726 (2015).
[Crossref] [PubMed]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19(13), 12837–12842 (2011).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Zhou, L.

Zhu, S.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

Zhu, Y.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(3752), 3752 (2014).
[PubMed]

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

ACS Nano (1)

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, “Helical plasmonic nanostructures as prototypical chiral near-field sources,” ACS Photonics 1(6), 530–537 (2014).
[Crossref]

Adv. Mater. (3)

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref] [PubMed]

S. S. Oh, A. Demetriadou, S. Wuestner, and O. Hess, “On the origin of chirality in nanoplasmonic gyroid metamaterials,” Adv. Mater. 25(4), 612–617 (2013).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. Engl. 47(26), 4855–4857 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010).
[Crossref]

Chem. Rev. (1)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42(16), 7028–7041 (2013).
[Crossref] [PubMed]

Europhys. Lett. (1)

T. Feng, F. Liu, W. Y. Tam, and J. Li, “Effective parameters retrieval for complex metamaterials with low symmetries,” Europhys. Lett. 102(1), 18003 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

P. Messina, A. Dmitriev, N. Lin, H. Spillmann, M. Abel, J. V. Barth, and K. Kern, “Direct observation of chiral metal-organic complexes assembled on a Cu(100) surface,” J. Am. Chem. Soc. 124(47), 14000–14001 (2002).
[Crossref] [PubMed]

J. Math. Phys. (1)

D. Lipkin, “Existence of a new conservation law in electromagnetic theory,” J. Math. Phys. 5(5), 696–700 (1964).
[Crossref]

J. Opt. (2)

H. M. Leung, C. Han, Y. Li, C. T. Chan, and W. Y. Tam, “Modeling quasi-3D chiral metamaterials fabricated by shadowing vapor deposition,” J. Opt. 16(1), 015102 (2014).
[Crossref]

C. Han, H. M. Leung, and W. Y. Tam, “Chiral metamaterials by shadowing vapour deposition,” J. Opt. 15(7), 072101 (2013).
[Crossref]

Langmuir (1)

J.-M. Ha, A. Solovyov, and A. Katz, “Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: origin of chiral surface plasmon resonance,” Langmuir 25(1), 153–158 (2009).
[Crossref] [PubMed]

Nano Lett. (6)

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10(4), 1374–1382 (2010).
[Crossref] [PubMed]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12(5), 2542–2547 (2012).
[Crossref] [PubMed]

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett. 11(10), 4400–4404 (2011).
[Crossref] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett. 11(7), 2835–2840 (2011).
[Crossref] [PubMed]

W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, and N. A. Kotov, “Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials,” Nano Lett. 9(5), 2153–2159 (2009).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(870), 870 (2012).
[Crossref] [PubMed]

Nat. Mater. (3)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

A. Di Falco, “Chiral plasmonic nanostructures: Twisted by DNA,” Nat. Mater. 13(9), 846–848 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is — and what is not — an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Nat. Rev. Drug Discov. (1)

I. Agranat, H. Caner, and J. Caldwell, “Putting chirality to work: the strategy of chiral switches,” Nat. Rev. Drug Discov. 1(10), 753–768 (2002).
[Crossref] [PubMed]

Nature (1)

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phot. Nano. Fund. Appl. (1)

C. Han and W. Y. Tam, “Chirality from shadowing deposited metallic nanostructure,” Phot. Nano. Fund. Appl. 13, 50–57 (2015).
[Crossref]

Phys. Rev. B (1)

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009).
[Crossref]

Phys. Rev. Lett. (3)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
[Crossref]

Prog. Electromagnetics Res. (1)

Y. Cheng, Y. Nie, L. Wu, and R. Gong, “Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators,” Prog. Electromagnetics Res. 138, 421–432 (2013).
[Crossref]

Sci. Rep. (3)

P. C. Wu, W. L. Hsu, W. T. Chen, Y. W. Huang, C. Y. Liao, A. Q. Liu, N. I. Zheludev, G. Sun, and D. P. Tsai, “Plasmon coupling in vertical split-ring resonator metamolecules,” Sci. Rep. 5(9726), 9726 (2015).
[Crossref] [PubMed]

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(3752), 3752 (2014).
[PubMed]

W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimmers,” Sci. Rep. 3, 1–6 (2013).
[Crossref]

Science (3)

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Other (4)

H. Haken and H. C. Wolf, Molecular Physics and Elements of Quantum Chemistry (Springer, 2003).

N. Berova, K. Nakanishi, and R. W. Woody, eds., Circular Dichroism: Principles and Applications, 2nd ed. (Wiley-VCH, 2000).

G. D. Fasman, ed., Circular Dichroism and the Conformational Analysis of Biomolecules (Plenum, 1996).

L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) 3D schematic of Ag staircase. (b-c) Geometrical parameters of the staircase: a = 65 nm, b = 70 nm, d = 200 nm, l = 110 nm, w = 45 nm, h = 77 nm, t = 11 nm and θ = 48°. Bottom Ag strip (orange) in (b) has the same dimensions as the top Ag strip (yellow). Blue arrows indicate the directions of incident light.
Fig. 2
Fig. 2 (a, b) Simulated transmission and reflection of Ag staircase shown in Fig. 1 for forward/backward (solid line/symbol) LCP (red) and RCP (blue) incident light, respectively. (c) Transmission (blue) and absorption (red) difference of LCP and RCP incident light.
Fig. 3
Fig. 3 (a-c) Retrieved effective parameters ε, μ and ξ of the Ag staircase for x- (blue) and y- (red) polarization incident light, respectively for the Ag strip width w = 45 nm. (d) Forward transmission coefficient from CST (lines) and calculation using the retrieved effective parameters (symbols). (e) CD (Transmission difference, T RCP –T LCP) by CST (blue line), retrieved effective parameters using Eq. (8) (green dots) and Eq. (17) (red line). The resonances obtained from the extrema of Re[ξ] in (c) are labelled as I (398 THz), II (456THz), and III (530 THz), guided by vertical gray lines in (d) and (e). Bottom insets: Current distributions calculated by CST at resonances as labelled. Arrows are: black for current, blue for magnetic field, and red for electric field. The color scale on the right is for the current density.
Fig. 4
Fig. 4 Induced electric (a-b) and magnetic (c-d) dipole moments of the Ag staircase for x- (left column) and y- (right column) polarization incidence. The vertical thin black lines mark the mode I, II, and III as labeled. (e-f) The dot-product of electric and magnetic dipole moments.
Fig. 5
Fig. 5 CST simulated Δ T contour map as a function of the slanted Ag strip width w. The solid symbols are resonance frequencies determined by the extrema of Re[ξyy ] (inverted triangles mode I and red triangles mode III) and Re[ξxx ] (blue dots mode II) as shown in Fig. 3(c). The sizes of the symbols are scaled to the amplitudes of the extrema of ξ. The dashed lines correspond to maximum CD for different chiral modes.
Fig. 6
Fig. 6 Retrieved parameters: Im[ε] (top), Im[μ] (middle), and Re[ξ] (bottom) for different width (top labels) of the slanted Ag strip. Vertical glide solid lines are for mode I (red), mode II (blue solid), mode III (green solid), and grey dashed lines are electric or magnetic resonance alone.
Fig. 7
Fig. 7 (a) Schematic for shadowing vapor deposition. Orange arrow indicates the deposition direction, θ = 45°. (b) AFM profile of the sample nanostructure array.
Fig. 8
Fig. 8 Left column is for experimental results: (a) SEM image of Ag sample staircase by shadowing vapor deposition: bottom Ag strip (orange), connecting Ag strip (dark red), and top Ag strip (yellow). (b-c) Normal transmittance of circularly polarized light for forward and backward incidence, respectively. (d) Transmission difference (T RCP -T LCP). Right column: corresponding simulation results. Black scale bars in (a) and (e) are 100 nm. Parameters for the experiment and model are: a (65), h (95), w (70), l (130), t (11 nm). (e) Corresponding model and (f-h) simulation results.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Δ T = T RCP T LCP ,
Δ A = A RCP A LCP ,
( t f ) = ( t b ) .
( t + + f t + f t + f t f ) = ( t + + b t + b t + b t b ) = ( t + + f t + f t + f t f ) ,
t + f = t + f .
( t + + t + t + t ) = 1 2 ( ( t x x + t y y ) + i ( t x y t y x ) ( t x x t y y ) i ( t x y + t y x ) ( t x x t y y ) + i ( t x y + t y x ) ( t x x + t y y ) i ( t x y t y x ) ) ,
t x y = t y x ,
CD = Δ T = | t + + | 2 + | t + | 2 | t | 2 | t + | 2 = | t + + | 2 | t | 2 = 2 Im [ t x y * ( t x x + t y y ) ] .
( D x D y B x B y ) = ( ε x x ε x y ξ x x ξ x y ε y x ε y y ξ y x ξ y y ζ x x ζ x y μ x x μ x y ζ y x ζ y y μ y x μ y y ) ( E x E y H x H y ) = [ C ] ( E x E y H x H y ) ,
( 1 0 r x x r y x ) = [ B ] 1 [ e i k h [ D ] . [ C ] ] 1 [ B ] ( t x x t y x 0 0 ) ,
( 0 1 r x y r y y ) = [ B ] 1 [ e i k h [ D ] . [ C ] ] 1 [ B ] ( t x y t y y 0 0 ) ,
[ D ] = ( 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 ) ,
[ B ] = ( 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 ) .
( D x D y B x B y ) = ( ε x x 0 ξ x x 0 0 ε y y 0 ξ y y ξ x x 0 μ x x 0 0 ξ y y 0 μ y y ) ( E x E y H x H y ) .
t x y = 2 i k h ( ξ x x 4 + 2 i k h ( ε x x + μ x x ) + k 2 h 2 ( ε x x μ x x + ξ x x 2 ) + ξ y y 4 + 2 i k h ( ε y y + μ y y ) + k 2 h 2 ( ε y y μ y y + ξ y y 2 ) ) ,
t y x = 2 i k h ( ξ x x 4 + 2 i k h ( ε x x + μ x x ) + k 2 h 2 ( ε x x μ x x + ξ x x 2 ) + ξ y y 4 + 2 i k h ( ε y y + μ y y ) + k 2 h 2 ( ε y y μ y y + ξ y y 2 ) ) ,
t x x = k h ( ε x x ( 2 i + k t μ x x ) + k t ξ x x 2 ) 4 + 2 i k h ( ε x x + μ x x ) + k 2 h 2 ( ε x x μ x x + ξ x x 2 ) + 4 + 2 i k h ε y y 4 + 2 i k h ( ε y y + μ y y ) + k 2 h 2 ( ε y y μ y y + ξ y y 2 ) ,
t y y = k h ( μ x x ( 2 i + k h ε x x ) + k h ξ x x 2 ) 4 + 2 i k h ( ε x x + μ x x ) + k 2 h 2 ( ε x x μ x x + ξ x x 2 ) + 4 + 2 i k h μ y y 4 + 2 i k h ( ε y y + μ y y ) + k 2 h 2 ( ε y y μ y y + ξ y y 2 ) .
CD = 2 Im [ t x y * ( t x x + t y y ) ] 2 k h Re [ ξ x x + ξ y y ] 1 + k h Im [ ε x x + ε y y + μ x x + μ y y ] .
p i = 1 i ω J i d V '
m i = 1 2 ( r ' × J ) i d V ' ,

Metrics