Abstract

Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr4+:YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr4+:YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COVPmax) and of indicated mean effective pressure (COVIMEP) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COVPmax and COVPmax and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition

Nicolaie Pavel, Masaki Tsunekane, and Takunori Taira
Opt. Express 19(10) 9378-9384 (2011)

High-peak-power passively Q-switched Nd:YAG/Cr4+:YAG composite laser with multiple-beam output

T. Dascalu, G. Croitoru, O. Grigore, and N. Pavel
Photon. Res. 4(6) 267-271 (2016)

Laser induced spark ignition of coaxial methane/oxygen/nitrogen diffusion flames

Xiaohui Li, Yang Yu, Xin Yu, Chang Liu, Rongwei Fan, and Deying Chen
Opt. Express 22(3) 3447-3457 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. D. Rooney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
    [Crossref]
  2. J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
    [Crossref]
  3. G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21(S6Suppl 6), A1113–A1125 (2013).
    [Crossref] [PubMed]
  4. P. D. Maker, R. W. Terhune, and C. M. Savage, “Optical third harmonic generation,” 3rd Int. Conf. Quant. Elect., Paris, 2, 1559–1572 (1963).
  5. J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
    [Crossref]
  6. T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
    [Crossref]
  7. T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4–6), 419–423 (2000).
    [Crossref]
  8. T.-W. Lee, V. Jain, and S. Kozola, “Measurements of minimum ignition energy by using laser sparks for Hydrocarbon fuels in air: Propane, Dodecane, and Jet-a Fuel,” Combust. Flame 125(4), 1320–1328 (2001).
    [Crossref]
  9. J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” SAE International, Paper. 780329, 780329 (1978), doi:.
    [Crossref]
  10. J. D. Dale and P. R. Smy, “The First Laser Ignition Engine Experiment (c.a. 1976),” presented at the 3rd Laser Ignition Conference (LIC’15), Argonne National Laboratory, USA, April 27–30, 2015; paper T3A.1.
    [Crossref]
  11. J. Mullett, P. Dickinson, A. Shenton, G. Dearden, and K. G. Watkins, “Multi-Cylinder Laser and Spark Ignition in an IC Gasoline Automotive Engine: A Comparative Study,” SAE International, paper 2008–01–0470 (2008).
    [Crossref]
  12. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
    [Crossref]
  13. G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
    [Crossref]
  14. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [Crossref] [PubMed]
  15. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  16. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  17. T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” presented at the 1st Laser Ignition Conference (LIC’13), Yokohama, Japan, April 23–25, 2013; paper LIC3–1.
  18. P. Wörner, H. Ridderbusch, J. Ostrinsky, and U. Meingast, “History of laser ignition for large gas engines at Robert Bosch GmbH,“ presented at the 2nd Laser Ignition Conference (LIC’14), Yokohama, Japan, April 22-24, 2014; paper LIC3-2.
  19. S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
    [Crossref] [PubMed]
  20. C. Manfletti and G. Kroupa, “Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser,” Opt. Express 21(S6Suppl 6), A1126–A1139 (2013).
    [Crossref] [PubMed]
  21. S. B. Gupta, B. Bihari, and R. Sekar, “Performance of a 6-cylinder natural gas engine on laser ignition,” presented at the 2nd Laser Ignition Conference (LIC’14), Yokohama, Japan, April 22–25, 2014; paper LIC6–3.
  22. B. Bihari, M. Biruduganti, and S. Gupta, “Natural gas engine performance ignited by a passively Q-switched microlaser,” presented at the 3rd Laser Ignition Conference (LIC’15), Argonne National Laboratory, USA, April 27–30, 2015; paper T5A–5.
    [Crossref]
  23. Y. Ma, X. Li, X. Yu, R. Fan, R. Yan, J. Peng, X. Xu, R. Sun, and D. Chen, “A novel miniaturized passively Q-switched pulse-burst laser for engine ignition,” Opt. Express 22(20), 24655–24665 (2014).
    [Crossref] [PubMed]
  24. Y. Ma, Y. He, X. Yu, X. Li, J. Li, R. Yan, J. Peng, X. Zhang, R. Sun, Y. Pan, and D. Chen, “Multiple-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser under micro-lens array pumping,” Opt. Express 23(19), 24955–24961 (2015).
    [Crossref] [PubMed]
  25. N. Pavel, T. Dascalu, M. Dinca, G. Salamu, N. Boicea, and A. Birtas, “Automobile Engine Ignition by a Passively Q-switched Nd:YAG/Cr4+:YAG Laser,” presented at CLEO Europe - EQEC 2015 Conference, 21–25 June 2015, Munich, Germany, paper CA-5b.2.
  26. T. Dascalu and N. Pavel, “High-temperature operation of a diode-pumped passively Q-switched Nd:YAG/Cr4+:YAG laser,” Laser Phys. 19(11), 2090–2095 (2009).
    [Crossref]
  27. G. Salamu, O. Sandu, F. Voicu, M. Dejanu, D. Popa, S. Parlac, C. Ticos, N. Pavel, and T. Dascalu, “Study of flame development in 12% methane-air mixture ignited by laser,” Optoelectronics and Advanced Materials Rapid Communications. 5(11), 1166–1169 (2011).
  28. T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
    [Crossref]
  29. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
    [Crossref]
  30. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(1), 1253–1259 (2001).
    [Crossref]
  31. C. Y. Cho, H. P. Cheng, Y. C. Chang, C. Y. Tang, and Y. F. Chen, “An energy adjustable linearly polarized passively Q-switched bulk laser with a wedged diffusion-bonded Nd:YAG/Cr⁴⁺:YAG crystal,” Opt. Express 23(6), 8162–8169 (2015).
    [Crossref] [PubMed]
  32. H. Chen, V. Page, Z. Kuang, E. Lyon, G. Dearden, and T. Shenton, “Multiple Pulse Laser Ignition Control Application in GDI Lean Combustion,” presented at the 3rd Laser Ignition Conference (LIC’15), Argonne National Laboratory, USA, April 27–30, 2015; paper W2A.2.
  33. A. Birtas, I. Voicu, C. Petcu, R. Chiriac, and N. Apostolescu, “The effect of HRG gas addition on diesel engine combustion characteristics and exhaust emissions,” Int. J. Hydrogen Energy 36(18), 12007–12014 (2011).
    [Crossref]
  34. H. Ranner, P. K. Tewari, H. Koefler, M. Lackner, E. Wintner, A. K. Agarwal, and F. Wintner, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
    [Crossref]
  35. S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
    [Crossref]

2016 (1)

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

2015 (4)

2014 (1)

2013 (2)

2011 (3)

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

G. Salamu, O. Sandu, F. Voicu, M. Dejanu, D. Popa, S. Parlac, C. Ticos, N. Pavel, and T. Dascalu, “Study of flame development in 12% methane-air mixture ignited by laser,” Optoelectronics and Advanced Materials Rapid Communications. 5(11), 1166–1169 (2011).

A. Birtas, I. Voicu, C. Petcu, R. Chiriac, and N. Apostolescu, “The effect of HRG gas addition on diesel engine combustion characteristics and exhaust emissions,” Int. J. Hydrogen Energy 36(18), 12007–12014 (2011).
[Crossref]

2010 (2)

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

2009 (2)

T. Dascalu and N. Pavel, “High-temperature operation of a diode-pumped passively Q-switched Nd:YAG/Cr4+:YAG laser,” Laser Phys. 19(11), 2090–2095 (2009).
[Crossref]

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

2008 (1)

2007 (2)

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

H. Ranner, P. K. Tewari, H. Koefler, M. Lackner, E. Wintner, A. K. Agarwal, and F. Wintner, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[Crossref]

2001 (2)

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(1), 1253–1259 (2001).
[Crossref]

T.-W. Lee, V. Jain, and S. Kozola, “Measurements of minimum ignition energy by using laser sparks for Hydrocarbon fuels in air: Propane, Dodecane, and Jet-a Fuel,” Combust. Flame 125(4), 1320–1328 (2001).
[Crossref]

2000 (1)

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4–6), 419–423 (2000).
[Crossref]

1999 (1)

T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
[Crossref]

1998 (1)

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

1995 (1)

J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

1994 (1)

P. D. Rooney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
[Crossref]

1978 (1)

J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” SAE International, Paper. 780329, 780329 (1978), doi:.
[Crossref]

Agarwal, A. K.

H. Ranner, P. K. Tewari, H. Koefler, M. Lackner, E. Wintner, A. K. Agarwal, and F. Wintner, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[Crossref]

Alexander, D. R.

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Apostolescu, N.

A. Birtas, I. Voicu, C. Petcu, R. Chiriac, and N. Apostolescu, “The effect of HRG gas addition on diesel engine combustion characteristics and exhaust emissions,” Int. J. Hydrogen Energy 36(18), 12007–12014 (2011).
[Crossref]

Bärwinkel, M.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
[Crossref] [PubMed]

Birtas, A.

A. Birtas, I. Voicu, C. Petcu, R. Chiriac, and N. Apostolescu, “The effect of HRG gas addition on diesel engine combustion characteristics and exhaust emissions,” Int. J. Hydrogen Energy 36(18), 12007–12014 (2011).
[Crossref]

Brüggemann, D.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
[Crossref] [PubMed]

Chang, Y. C.

Chen, D.

Chen, Y. F.

Cheng, H. P.

Chiriac, R.

A. Birtas, I. Voicu, C. Petcu, R. Chiriac, and N. Apostolescu, “The effect of HRG gas addition on diesel engine combustion characteristics and exhaust emissions,” Int. J. Hydrogen Energy 36(18), 12007–12014 (2011).
[Crossref]

Cho, C. Y.

Clements, R. M.

J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” SAE International, Paper. 780329, 780329 (1978), doi:.
[Crossref]

Dale, J. D.

J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” SAE International, Paper. 780329, 780329 (1978), doi:.
[Crossref]

Dascalu, T.

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
[Crossref]

G. Salamu, O. Sandu, F. Voicu, M. Dejanu, D. Popa, S. Parlac, C. Ticos, N. Pavel, and T. Dascalu, “Study of flame development in 12% methane-air mixture ignited by laser,” Optoelectronics and Advanced Materials Rapid Communications. 5(11), 1166–1169 (2011).

T. Dascalu and N. Pavel, “High-temperature operation of a diode-pumped passively Q-switched Nd:YAG/Cr4+:YAG laser,” Laser Phys. 19(11), 2090–2095 (2009).
[Crossref]

Dearden, G.

Degnan, J.

J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

Dejanu, M.

G. Salamu, O. Sandu, F. Voicu, M. Dejanu, D. Popa, S. Parlac, C. Ticos, N. Pavel, and T. Dascalu, “Study of flame development in 12% methane-air mixture ignited by laser,” Optoelectronics and Advanced Materials Rapid Communications. 5(11), 1166–1169 (2011).

Dinca, M.

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
[Crossref]

Fan, R.

Franz, G.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

He, Y.

Heinz, P.

Herdin, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Iskra, K.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Jain, V.

T.-W. Lee, V. Jain, and S. Kozola, “Measurements of minimum ignition energy by using laser sparks for Hydrocarbon fuels in air: Propane, Dodecane, and Jet-a Fuel,” Combust. Flame 125(4), 1320–1328 (2001).
[Crossref]

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Klausner, J.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Koefler, H.

H. Ranner, P. K. Tewari, H. Koefler, M. Lackner, E. Wintner, A. K. Agarwal, and F. Wintner, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[Crossref]

Kofler, H.

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Kozola, S.

T.-W. Lee, V. Jain, and S. Kozola, “Measurements of minimum ignition energy by using laser sparks for Hydrocarbon fuels in air: Propane, Dodecane, and Jet-a Fuel,” Combust. Flame 125(4), 1320–1328 (2001).
[Crossref]

Kroupa, G.

C. Manfletti and G. Kroupa, “Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser,” Opt. Express 21(S6Suppl 6), A1126–A1139 (2013).
[Crossref] [PubMed]

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Kurimura, S.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(1), 1253–1259 (2001).
[Crossref]

Lackner, M.

H. Ranner, P. K. Tewari, H. Koefler, M. Lackner, E. Wintner, A. K. Agarwal, and F. Wintner, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[Crossref]

Lee, T.-W.

T.-W. Lee, V. Jain, and S. Kozola, “Measurements of minimum ignition energy by using laser sparks for Hydrocarbon fuels in air: Propane, Dodecane, and Jet-a Fuel,” Combust. Flame 125(4), 1320–1328 (2001).
[Crossref]

Lehmann, S.

Li, J.

Li, X.

Lorenz, S.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
[Crossref] [PubMed]

Ma, J. X.

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

Ma, Y.

Maker, P. D.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Optical third harmonic generation,” 3rd Int. Conf. Quant. Elect., Paris, 2, 1559–1572 (1963).

Manfletti, C.

Mühlbauer, W.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
[Crossref] [PubMed]

Pan, Y.

Parlac, S.

G. Salamu, O. Sandu, F. Voicu, M. Dejanu, D. Popa, S. Parlac, C. Ticos, N. Pavel, and T. Dascalu, “Study of flame development in 12% methane-air mixture ignited by laser,” Optoelectronics and Advanced Materials Rapid Communications. 5(11), 1166–1169 (2011).

Pavel, N.

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
[Crossref]

G. Salamu, O. Sandu, F. Voicu, M. Dejanu, D. Popa, S. Parlac, C. Ticos, N. Pavel, and T. Dascalu, “Study of flame development in 12% methane-air mixture ignited by laser,” Optoelectronics and Advanced Materials Rapid Communications. 5(11), 1166–1169 (2011).

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

T. Dascalu and N. Pavel, “High-temperature operation of a diode-pumped passively Q-switched Nd:YAG/Cr4+:YAG laser,” Laser Phys. 19(11), 2090–2095 (2009).
[Crossref]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(1), 1253–1259 (2001).
[Crossref]

Peng, J.

Petcu, C.

A. Birtas, I. Voicu, C. Petcu, R. Chiriac, and N. Apostolescu, “The effect of HRG gas addition on diesel engine combustion characteristics and exhaust emissions,” Int. J. Hydrogen Energy 36(18), 12007–12014 (2011).
[Crossref]

Phuoc, T. X.

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4–6), 419–423 (2000).
[Crossref]

T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
[Crossref]

Popa, D.

G. Salamu, O. Sandu, F. Voicu, M. Dejanu, D. Popa, S. Parlac, C. Ticos, N. Pavel, and T. Dascalu, “Study of flame development in 12% methane-air mixture ignited by laser,” Optoelectronics and Advanced Materials Rapid Communications. 5(11), 1166–1169 (2011).

Poulain, D. E.

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

Ranner, H.

H. Ranner, P. K. Tewari, H. Koefler, M. Lackner, E. Wintner, A. K. Agarwal, and F. Wintner, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[Crossref]

Rooney, P. D.

P. D. Rooney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
[Crossref]

Saikawa, J.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(1), 1253–1259 (2001).
[Crossref]

Sakai, H.

Salamu, G.

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
[Crossref]

G. Salamu, O. Sandu, F. Voicu, M. Dejanu, D. Popa, S. Parlac, C. Ticos, N. Pavel, and T. Dascalu, “Study of flame development in 12% methane-air mixture ignited by laser,” Optoelectronics and Advanced Materials Rapid Communications. 5(11), 1166–1169 (2011).

Sandu, O.

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
[Crossref]

G. Salamu, O. Sandu, F. Voicu, M. Dejanu, D. Popa, S. Parlac, C. Ticos, N. Pavel, and T. Dascalu, “Study of flame development in 12% methane-air mixture ignited by laser,” Optoelectronics and Advanced Materials Rapid Communications. 5(11), 1166–1169 (2011).

Savage, C. M.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Optical third harmonic generation,” 3rd Int. Conf. Quant. Elect., Paris, 2, 1559–1572 (1963).

Shenton, T.

Smy, P. R.

J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” SAE International, Paper. 780329, 780329 (1978), doi:.
[Crossref]

Stäglich, R.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

Sun, R.

Taira, T.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref] [PubMed]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(1), 1253–1259 (2001).
[Crossref]

Tang, C. Y.

Tartar, G.

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Tauer, J.

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Terhune, R. W.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Optical third harmonic generation,” 3rd Int. Conf. Quant. Elect., Paris, 2, 1559–1572 (1963).

Tewari, P. K.

H. Ranner, P. K. Tewari, H. Koefler, M. Lackner, E. Wintner, A. K. Agarwal, and F. Wintner, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[Crossref]

Ticos, C.

G. Salamu, O. Sandu, F. Voicu, M. Dejanu, D. Popa, S. Parlac, C. Ticos, N. Pavel, and T. Dascalu, “Study of flame development in 12% methane-air mixture ignited by laser,” Optoelectronics and Advanced Materials Rapid Communications. 5(11), 1166–1169 (2011).

Tsunekane, M.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Voicu, F.

G. Salamu, O. Sandu, F. Voicu, M. Dejanu, D. Popa, S. Parlac, C. Ticos, N. Pavel, and T. Dascalu, “Study of flame development in 12% methane-air mixture ignited by laser,” Optoelectronics and Advanced Materials Rapid Communications. 5(11), 1166–1169 (2011).

Voicu, I.

A. Birtas, I. Voicu, C. Petcu, R. Chiriac, and N. Apostolescu, “The effect of HRG gas addition on diesel engine combustion characteristics and exhaust emissions,” Int. J. Hydrogen Energy 36(18), 12007–12014 (2011).
[Crossref]

White, F. P.

T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
[Crossref]

Winkelhofer, E.

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

Wintner, E.

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

H. Ranner, P. K. Tewari, H. Koefler, M. Lackner, E. Wintner, A. K. Agarwal, and F. Wintner, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[Crossref]

Wintner, F.

H. Ranner, P. K. Tewari, H. Koefler, M. Lackner, E. Wintner, A. K. Agarwal, and F. Wintner, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[Crossref]

Xu, X.

Yan, R.

Yu, X.

Zhang, X.

Combust. Flame (3)

T.-W. Lee, V. Jain, and S. Kozola, “Measurements of minimum ignition energy by using laser sparks for Hydrocarbon fuels in air: Propane, Dodecane, and Jet-a Fuel,” Combust. Flame 125(4), 1320–1328 (2001).
[Crossref]

J. X. Ma, D. R. Alexander, and D. E. Poulain, “Laser spark ignition and combustion characteristics of methane-air mixtures,” Combust. Flame 112(4), 492–506 (1998).
[Crossref]

T. X. Phuoc and F. P. White, “Laser-induced spark ignition of CH4/air mixtures,” Combust. Flame 119(3), 203–216 (1999).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

Int. J. Engine Res. (1)

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, “Pulse train ignition with passively Q-switched laser spark plugs,” Int. J. Engine Res. 17(1), 139–150 (2016).
[Crossref]

Int. J. Hydrogen Energy (1)

A. Birtas, I. Voicu, C. Petcu, R. Chiriac, and N. Apostolescu, “The effect of HRG gas addition on diesel engine combustion characteristics and exhaust emissions,” Int. J. Hydrogen Energy 36(18), 12007–12014 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(1), 1253–1259 (2001).
[Crossref]

Laser Photonics Rev. (1)

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

Laser Phys. (1)

T. Dascalu and N. Pavel, “High-temperature operation of a diode-pumped passively Q-switched Nd:YAG/Cr4+:YAG laser,” Laser Phys. 19(11), 2090–2095 (2009).
[Crossref]

Laser Phys. Lett. (1)

H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett. 4(4), 322–327 (2007).
[Crossref]

Opt. Commun. (1)

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175(4–6), 419–423 (2000).
[Crossref]

Opt. Eng. (3)

G. Kroupa, G. Franz, and E. Winkelhofer, “Novel miniaturized high-energy Nd:YAG laser for spark ignition in internal combustion engines,” Opt. Eng. 48(1), 014202 (2009).
[Crossref]

P. D. Rooney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
[Crossref]

H. Ranner, P. K. Tewari, H. Koefler, M. Lackner, E. Wintner, A. K. Agarwal, and F. Wintner, “Laser cleaning of optical windows in internal combustion engines,” Opt. Eng. 46(10), 104301 (2007).
[Crossref]

Opt. Express (8)

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref] [PubMed]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21(S6Suppl 6), A1113–A1125 (2013).
[Crossref] [PubMed]

C. Manfletti and G. Kroupa, “Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser,” Opt. Express 21(S6Suppl 6), A1126–A1139 (2013).
[Crossref] [PubMed]

Y. Ma, X. Li, X. Yu, R. Fan, R. Yan, J. Peng, X. Xu, R. Sun, and D. Chen, “A novel miniaturized passively Q-switched pulse-burst laser for engine ignition,” Opt. Express 22(20), 24655–24665 (2014).
[Crossref] [PubMed]

S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
[Crossref] [PubMed]

C. Y. Cho, H. P. Cheng, Y. C. Chang, C. Y. Tang, and Y. F. Chen, “An energy adjustable linearly polarized passively Q-switched bulk laser with a wedged diffusion-bonded Nd:YAG/Cr⁴⁺:YAG crystal,” Opt. Express 23(6), 8162–8169 (2015).
[Crossref] [PubMed]

Y. Ma, Y. He, X. Yu, X. Li, J. Li, R. Yan, J. Peng, X. Zhang, R. Sun, Y. Pan, and D. Chen, “Multiple-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser under micro-lens array pumping,” Opt. Express 23(19), 24955–24961 (2015).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

T. Dascalu, G. Salamu, O. Sandu, M. Dinca, and N. Pavel, “Scaling and passively Q-switch operation of a Nd:YAG laser pumped laterally through a YAG prism,” Opt. Laser Technol. 67, 164–168 (2015).
[Crossref]

Optoelectronics and Advanced Materials Rapid Communications. (1)

G. Salamu, O. Sandu, F. Voicu, M. Dejanu, D. Popa, S. Parlac, C. Ticos, N. Pavel, and T. Dascalu, “Study of flame development in 12% methane-air mixture ignited by laser,” Optoelectronics and Advanced Materials Rapid Communications. 5(11), 1166–1169 (2011).

SAE International, Paper. (1)

J. D. Dale, P. R. Smy, and R. M. Clements, “Laser ignited internal combustion engine: An experimental study,” SAE International, Paper. 780329, 780329 (1978), doi:.
[Crossref]

Other (9)

J. D. Dale and P. R. Smy, “The First Laser Ignition Engine Experiment (c.a. 1976),” presented at the 3rd Laser Ignition Conference (LIC’15), Argonne National Laboratory, USA, April 27–30, 2015; paper T3A.1.
[Crossref]

J. Mullett, P. Dickinson, A. Shenton, G. Dearden, and K. G. Watkins, “Multi-Cylinder Laser and Spark Ignition in an IC Gasoline Automotive Engine: A Comparative Study,” SAE International, paper 2008–01–0470 (2008).
[Crossref]

P. D. Maker, R. W. Terhune, and C. M. Savage, “Optical third harmonic generation,” 3rd Int. Conf. Quant. Elect., Paris, 2, 1559–1572 (1963).

S. B. Gupta, B. Bihari, and R. Sekar, “Performance of a 6-cylinder natural gas engine on laser ignition,” presented at the 2nd Laser Ignition Conference (LIC’14), Yokohama, Japan, April 22–25, 2014; paper LIC6–3.

B. Bihari, M. Biruduganti, and S. Gupta, “Natural gas engine performance ignited by a passively Q-switched microlaser,” presented at the 3rd Laser Ignition Conference (LIC’15), Argonne National Laboratory, USA, April 27–30, 2015; paper T5A–5.
[Crossref]

N. Pavel, T. Dascalu, M. Dinca, G. Salamu, N. Boicea, and A. Birtas, “Automobile Engine Ignition by a Passively Q-switched Nd:YAG/Cr4+:YAG Laser,” presented at CLEO Europe - EQEC 2015 Conference, 21–25 June 2015, Munich, Germany, paper CA-5b.2.

T. Taira, S. Morishima, K. Kanehara, N. Taguchi, A. Sugiura, and M. Tsunekane, “World first laser ignited gasoline engine vehicle,” presented at the 1st Laser Ignition Conference (LIC’13), Yokohama, Japan, April 23–25, 2013; paper LIC3–1.

P. Wörner, H. Ridderbusch, J. Ostrinsky, and U. Meingast, “History of laser ignition for large gas engines at Robert Bosch GmbH,“ presented at the 2nd Laser Ignition Conference (LIC’14), Yokohama, Japan, April 22-24, 2014; paper LIC3-2.

H. Chen, V. Page, Z. Kuang, E. Lyon, G. Dearden, and T. Shenton, “Multiple Pulse Laser Ignition Control Application in GDI Lean Combustion,” presented at the 3rd Laser Ignition Conference (LIC’15), Argonne National Laboratory, USA, April 27–30, 2015; paper W2A.2.

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (4513 KB)      A short movie, .mp4 format, associated to Fig. 6c.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A laser-spark prototype realized in 2011 in our laboratory.
Fig. 2
Fig. 2 (a) A laser spark plug based on monolithic, diffusion-bonded Nd:YAG/Cr4+:YAG medium is presented in comparison with a classical spark plug. The plasma induced by optical breakdown of air is visible. (b) Sectional view of the laser device is shown.
Fig. 3
Fig. 3 (a) Laser pulse energy Ep and (b) corresponding pump pulse energy Epump measured function of distance d1 (between the fiber end and the lens) and d2 (between the lens and the laser medium), pump line with a single lens of focal length f.
Fig. 4
Fig. 4 (a) Laser pulse energy Ep and (b) pump pulse energy Epump and efficiency η0 = Ep/Epump versus distance d between the focusing lens (L2) and the laser medium, pump line made of two lenses (L1 and L2).
Fig. 5
Fig. 5 Modeling of laser pulse energy versus pump beam radius, wp and laser beam radius, wg; a is the ratio a = wp/wg.
Fig. 6
Fig. 6 (a) The four laser-spark system is shown before installation on the engine. (b) A discharge of a classical spark plug and plasma air breakdown initiated by a laser spark are presented. (c) The Renault engine is shown while running with laser-spark devices (see Visualization 1).
Fig. 7
Fig. 7 The peak pressure in a cylinder for 500 consecutive cycles at 1.500-rpm speed and 880-mbar load, ignition by electrical spark plugs and ignition by laser sparks.

Tables (1)

Tables Icon

Table 1 Engine stability and emisions. Sign minus and plus indicates a decrease (which corresponds to an improvement), respectively an increase of the parameter in comparison with ignition by electrical spark plugs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E p = hν 2 γ g σ g A g ×ln( 1 R OCM )×ln( n gf n gi )
( 1 r n )+( 1+ (1δ)×ln T i 2 β )×ln r n + 1 α × (1δ)×ln T i 2 β ×( 1 r n α )=0

Metrics