Abstract

We report on a compact sensor by integrating a Mach-Zehnder interference and a cladding Bragg grating in a same section of all-solid photonic bandgap fiber. Theoretical investigation reveals that the Bragg grating resonance stems from the coupling of counter-propagating cladding LP01-like supermodes and the Mach-Zehnder interference works between a LP01-like supermode and LP01 core mode. Compared with the interference fringe, such supermode grating dip responses to axial strain in a more sensitive and opposite-direction manner. Whereas, the interference fringe shows a higher temperature sensitivity than the supermode grating dip. By means of these different responses, this device finds a useful application in the discrimination of temperature and axial strain.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination

Xuan Zhan, Yinping Liu, Ming Tang, Lin Ma, Ruoxu Wang, Li Duan, Lin Gan, Chen Yang, Weijun Tong, Songnian Fu, Deming Liu, and Zuyuan He
Opt. Express 26(12) 15332-15342 (2018)

Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry–Perot interferometer

Yajun Jiang, Dexing Yang, Yuan Yuan, Jian Xu, Dong Li, and Jianlin Zhao
Appl. Opt. 55(23) 6341-6345 (2016)

Up-taper-based Mach–Zehnder interferometer for temperature and strain simultaneous measurement

Zexin Kang, Xiaodong Wen, Chao Li, Jiang Sun, Jing Wang, and Shuisheng Jian
Appl. Opt. 53(12) 2691-2695 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, P. St, and J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004).
    [Crossref] [PubMed]
  2. A. Argyros, T. A. Birks, S. Leon-Saval, C. M. B. Cordeiro, P. St, and J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13(7), 2503–2511 (2005).
    [Crossref] [PubMed]
  3. G. Ren, P. P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32(9), 1023–1025 (2007).
    [Crossref] [PubMed]
  4. P. St and J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref]
  5. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
    [Crossref] [PubMed]
  6. L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8W,” Sci. Rep. 5, 8490 (2015).
    [Crossref]
  7. F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).
  8. Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt. 50(4), 468–472 (2011).
    [Crossref] [PubMed]
  9. Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Mode-beating-enabled stopband narrowing in all-solid photonic bandgap fiber and sensing applications,” Opt. Express 19(9), 8167–8172 (2011).
    [Crossref] [PubMed]
  10. W. Ding and Y. Jiang, “All-solid photonic band gap fiber based distributed fiber optic pressure sensor,” Opt. Express 20(13), 14054–14063 (2012).
    [Crossref] [PubMed]
  11. L. Jin, Z. Wang, Q. Fang, Y. Liu, B. Liu, G. Kai, and X. Dong, “Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers,” Opt. Express 15(23), 15555–15565 (2007).
    [Crossref] [PubMed]
  12. B. Tai, Z. Wang, Y. Liu, J. Xu, B. Liu, H. Wei, and W. Tong, “High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers,” Opt. Express 18(15), 15361–15370 (2010).
    [Crossref] [PubMed]
  13. M. Yang, D. N. Wang, Y. Wang, and C. Liao, “Long period fiber grating formed by periodically structured microholes in all-solid photonic bandgap fiber,” Opt. Express 18(3), 2183–2189 (2010).
    [Crossref] [PubMed]
  14. Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. P. Shum, and X. Q. Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
    [Crossref]
  15. Y. Zhou, W. Zhou, C. C. Chan, W. C. Wong, L.-Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
    [Crossref]
  16. D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
    [Crossref] [PubMed]
  17. J. Xu, Y. Liu, Z. Wang, and B. Tai, “Simultaneous force and temperature measurement using long-period grating written on the joint of a microstructured optical fiber and a single mode fiber,” Appl. Opt. 49(3), 492–496 (2010).
    [Crossref] [PubMed]
  18. T. Han, Y. Liu, Z. Wang, Z. Wu, S. Wang, and S. Li, “Simultaneous temperature and force measurement using Fabry-Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber,” Opt. Express 20(12), 13320–13325 (2012).
    [Crossref] [PubMed]
  19. T. Li, X. Dong, C. C. Chan, L. Hu, and W. Qian, “Simultaneous strain and temperature measurement based on a photonic crystal fiber modal-interference interacting with a long period fiber grating,” Opt. Commun. 285, 4874–4877 (2012).
    [Crossref]
  20. S. Zhang, X. Dong, T. Li, C. C. Chan, and P. P. Shum, “Simultaneous measurement of relative humidity and temperature with PCF-MZI cascaded by fiber Bragg grating,” Opt. Commun. 303, 42–45 (2013).
    [Crossref]
  21. Z. Wu, Y. Liu, Z. Wang, M. Jiang, W. Ji, T. Han, S. Li, X. Shao, X. Q. Dinh, S. C. Tjin, and P. P. Shum, “Simultaneous measurement of curvature and strain based on fiber Bragg grating in two-dimensional waveguide array fiber,” Opt. Lett. 38(20), 4070–4073 (2013).
    [Crossref] [PubMed]
  22. X. Dong, L. Su, P. P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
    [Crossref]
  23. C.-L. Chen, Foundations for Guided-Wave Optics (John Wiley & Sons, 2007), Ch. 9
  24. B. Guan, H.-Y. Tam, X.-M. Tao, and X. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
    [Crossref]

2015 (2)

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8W,” Sci. Rep. 5, 8490 (2015).
[Crossref]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

2013 (2)

S. Zhang, X. Dong, T. Li, C. C. Chan, and P. P. Shum, “Simultaneous measurement of relative humidity and temperature with PCF-MZI cascaded by fiber Bragg grating,” Opt. Commun. 303, 42–45 (2013).
[Crossref]

Z. Wu, Y. Liu, Z. Wang, M. Jiang, W. Ji, T. Han, S. Li, X. Shao, X. Q. Dinh, S. C. Tjin, and P. P. Shum, “Simultaneous measurement of curvature and strain based on fiber Bragg grating in two-dimensional waveguide array fiber,” Opt. Lett. 38(20), 4070–4073 (2013).
[Crossref] [PubMed]

2012 (6)

T. Han, Y. Liu, Z. Wang, Z. Wu, S. Wang, and S. Li, “Simultaneous temperature and force measurement using Fabry-Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber,” Opt. Express 20(12), 13320–13325 (2012).
[Crossref] [PubMed]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
[Crossref] [PubMed]

W. Ding and Y. Jiang, “All-solid photonic band gap fiber based distributed fiber optic pressure sensor,” Opt. Express 20(13), 14054–14063 (2012).
[Crossref] [PubMed]

M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
[Crossref] [PubMed]

T. Li, X. Dong, C. C. Chan, L. Hu, and W. Qian, “Simultaneous strain and temperature measurement based on a photonic crystal fiber modal-interference interacting with a long period fiber grating,” Opt. Commun. 285, 4874–4877 (2012).
[Crossref]

Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. P. Shum, and X. Q. Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
[Crossref]

2011 (3)

2010 (3)

2007 (2)

2006 (1)

X. Dong, L. Su, P. P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
[Crossref]

2005 (1)

2004 (1)

2003 (1)

P. St and J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

2000 (1)

B. Guan, H.-Y. Tam, X.-M. Tao, and X. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Argyros, A.

Bird, D. M.

Birks, T. A.

Chan, C. C.

S. Zhang, X. Dong, T. Li, C. C. Chan, and P. P. Shum, “Simultaneous measurement of relative humidity and temperature with PCF-MZI cascaded by fiber Bragg grating,” Opt. Commun. 303, 42–45 (2013).
[Crossref]

T. Li, X. Dong, C. C. Chan, L. Hu, and W. Qian, “Simultaneous strain and temperature measurement based on a photonic crystal fiber modal-interference interacting with a long period fiber grating,” Opt. Commun. 285, 4874–4877 (2012).
[Crossref]

Y. Zhou, W. Zhou, C. C. Chan, W. C. Wong, L.-Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
[Crossref]

X. Dong, L. Su, P. P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
[Crossref]

Chen, C.-L.

C.-L. Chen, Foundations for Guided-Wave Optics (John Wiley & Sons, 2007), Ch. 9

Chen, D.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8W,” Sci. Rep. 5, 8490 (2015).
[Crossref]

Cheng, J.

Y. Zhou, W. Zhou, C. C. Chan, W. C. Wong, L.-Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
[Crossref]

Cheung, E.

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

Chung, Y.

X. Dong, L. Su, P. P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
[Crossref]

Cordeiro, C. M. B.

Dajani, I.

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

Deng, Y.

Ding, W.

Dinh, X. Q.

Z. Wu, Y. Liu, Z. Wang, M. Jiang, W. Ji, T. Han, S. Li, X. Shao, X. Q. Dinh, S. C. Tjin, and P. P. Shum, “Simultaneous measurement of curvature and strain based on fiber Bragg grating in two-dimensional waveguide array fiber,” Opt. Lett. 38(20), 4070–4073 (2013).
[Crossref] [PubMed]

Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. P. Shum, and X. Q. Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
[Crossref]

Dong, L.

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

Dong, X.

S. Zhang, X. Dong, T. Li, C. C. Chan, and P. P. Shum, “Simultaneous measurement of relative humidity and temperature with PCF-MZI cascaded by fiber Bragg grating,” Opt. Commun. 303, 42–45 (2013).
[Crossref]

T. Li, X. Dong, C. C. Chan, L. Hu, and W. Qian, “Simultaneous strain and temperature measurement based on a photonic crystal fiber modal-interference interacting with a long period fiber grating,” Opt. Commun. 285, 4874–4877 (2012).
[Crossref]

Y. Zhou, W. Zhou, C. C. Chan, W. C. Wong, L.-Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
[Crossref]

L. Jin, Z. Wang, Q. Fang, Y. Liu, B. Liu, G. Kai, and X. Dong, “Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers,” Opt. Express 15(23), 15555–15565 (2007).
[Crossref] [PubMed]

X. Dong, L. Su, P. P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
[Crossref]

B. Guan, H.-Y. Tam, X.-M. Tao, and X. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Dunn, C.

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

Fang, Q.

Feng, S.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8W,” Sci. Rep. 5, 8490 (2015).
[Crossref]

Fujimaki, M.

Geng, Y.

George, A. K.

Gu, G.

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

Guan, B.

B. Guan, H.-Y. Tam, X.-M. Tao, and X. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Han, T.

Hawkins, T. W.

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

He, D.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8W,” Sci. Rep. 5, 8490 (2015).
[Crossref]

Hedley, T. D.

Hu, D. J. J.

Hu, L.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8W,” Sci. Rep. 5, 8490 (2015).
[Crossref]

T. Li, X. Dong, C. C. Chan, L. Hu, and W. Qian, “Simultaneous strain and temperature measurement based on a photonic crystal fiber modal-interference interacting with a long period fiber grating,” Opt. Commun. 285, 4874–4877 (2012).
[Crossref]

Ji, W.

Jiang, M.

Jiang, Y.

Jin, L.

Jones, M.

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

Kai, G.

Kalichevsky-Dong, M. T.

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

Kashiwagi, M.

Knight, J. C.

Kong, F.

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

Leon-Saval, S.

Li, S.

Li, T.

S. Zhang, X. Dong, T. Li, C. C. Chan, and P. P. Shum, “Simultaneous measurement of relative humidity and temperature with PCF-MZI cascaded by fiber Bragg grating,” Opt. Commun. 303, 42–45 (2013).
[Crossref]

T. Li, X. Dong, C. C. Chan, L. Hu, and W. Qian, “Simultaneous strain and temperature measurement based on a photonic crystal fiber modal-interference interacting with a long period fiber grating,” Opt. Commun. 285, 4874–4877 (2012).
[Crossref]

Li, X.

Liao, C.

Lim, J. L.

Liu, B.

Liu, Y.

Z. Wu, Y. Liu, Z. Wang, M. Jiang, W. Ji, T. Han, S. Li, X. Shao, X. Q. Dinh, S. C. Tjin, and P. P. Shum, “Simultaneous measurement of curvature and strain based on fiber Bragg grating in two-dimensional waveguide array fiber,” Opt. Lett. 38(20), 4070–4073 (2013).
[Crossref] [PubMed]

T. Han, Y. Liu, Z. Wang, Z. Wu, S. Wang, and S. Li, “Simultaneous temperature and force measurement using Fabry-Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber,” Opt. Express 20(12), 13320–13325 (2012).
[Crossref] [PubMed]

Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. P. Shum, and X. Q. Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
[Crossref]

J. Xu, Y. Liu, Z. Wang, and B. Tai, “Simultaneous force and temperature measurement using long-period grating written on the joint of a microstructured optical fiber and a single mode fiber,” Appl. Opt. 49(3), 492–496 (2010).
[Crossref] [PubMed]

B. Tai, Z. Wang, Y. Liu, J. Xu, B. Liu, H. Wei, and W. Tong, “High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers,” Opt. Express 18(15), 15361–15370 (2010).
[Crossref] [PubMed]

L. Jin, Z. Wang, Q. Fang, Y. Liu, B. Liu, G. Kai, and X. Dong, “Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers,” Opt. Express 15(23), 15555–15565 (2007).
[Crossref] [PubMed]

Luan, F.

Luo, J.

Matsuo, S.

Palese, S. P.

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

Parsons, J.

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

Pearce, G. J.

Pulford, B.

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

Qian, W.

T. Li, X. Dong, C. C. Chan, L. Hu, and W. Qian, “Simultaneous strain and temperature measurement based on a photonic crystal fiber modal-interference interacting with a long period fiber grating,” Opt. Commun. 285, 4874–4877 (2012).
[Crossref]

Qiu, J.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8W,” Sci. Rep. 5, 8490 (2015).
[Crossref]

Ren, G.

Russell, J.

Saitoh, K.

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
[Crossref] [PubMed]

Shao, L.-Y.

Y. Zhou, W. Zhou, C. C. Chan, W. C. Wong, L.-Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
[Crossref]

Shao, X.

Shum, P. P.

Z. Wu, Y. Liu, Z. Wang, M. Jiang, W. Ji, T. Han, S. Li, X. Shao, X. Q. Dinh, S. C. Tjin, and P. P. Shum, “Simultaneous measurement of curvature and strain based on fiber Bragg grating in two-dimensional waveguide array fiber,” Opt. Lett. 38(20), 4070–4073 (2013).
[Crossref] [PubMed]

S. Zhang, X. Dong, T. Li, C. C. Chan, and P. P. Shum, “Simultaneous measurement of relative humidity and temperature with PCF-MZI cascaded by fiber Bragg grating,” Opt. Commun. 303, 42–45 (2013).
[Crossref]

Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. P. Shum, and X. Q. Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
[Crossref]

D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
[Crossref] [PubMed]

G. Ren, P. P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32(9), 1023–1025 (2007).
[Crossref] [PubMed]

X. Dong, L. Su, P. P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
[Crossref]

St, P.

Su, L.

X. Dong, L. Su, P. P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
[Crossref]

Tai, B.

Takenaga, K.

Tam, H.-Y.

B. Guan, H.-Y. Tam, X.-M. Tao, and X. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Tan, X.

Tanigawa, S.

Tao, X.-M.

B. Guan, H.-Y. Tam, X.-M. Tao, and X. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Tjin, S. C.

Tong, W.

Wang, D. N.

Wang, L.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8W,” Sci. Rep. 5, 8490 (2015).
[Crossref]

Wang, S.

Wang, Y.

Wang, Z.

Z. Wu, Y. Liu, Z. Wang, M. Jiang, W. Ji, T. Han, S. Li, X. Shao, X. Q. Dinh, S. C. Tjin, and P. P. Shum, “Simultaneous measurement of curvature and strain based on fiber Bragg grating in two-dimensional waveguide array fiber,” Opt. Lett. 38(20), 4070–4073 (2013).
[Crossref] [PubMed]

T. Han, Y. Liu, Z. Wang, Z. Wu, S. Wang, and S. Li, “Simultaneous temperature and force measurement using Fabry-Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber,” Opt. Express 20(12), 13320–13325 (2012).
[Crossref] [PubMed]

Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. P. Shum, and X. Q. Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
[Crossref]

B. Tai, Z. Wang, Y. Liu, J. Xu, B. Liu, H. Wei, and W. Tong, “High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers,” Opt. Express 18(15), 15361–15370 (2010).
[Crossref] [PubMed]

J. Xu, Y. Liu, Z. Wang, and B. Tai, “Simultaneous force and temperature measurement using long-period grating written on the joint of a microstructured optical fiber and a single mode fiber,” Appl. Opt. 49(3), 492–496 (2010).
[Crossref] [PubMed]

L. Jin, Z. Wang, Q. Fang, Y. Liu, B. Liu, G. Kai, and X. Dong, “Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers,” Opt. Express 15(23), 15555–15565 (2007).
[Crossref] [PubMed]

Wei, H.

Wong, W. C.

Y. Zhou, W. Zhou, C. C. Chan, W. C. Wong, L.-Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
[Crossref]

Wu, Z.

Xu, J.

Yang, M.

Yu, C.

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8W,” Sci. Rep. 5, 8490 (2015).
[Crossref]

Yu, X.

Yu, Y.

Zhang, L.

Zhang, S.

S. Zhang, X. Dong, T. Li, C. C. Chan, and P. P. Shum, “Simultaneous measurement of relative humidity and temperature with PCF-MZI cascaded by fiber Bragg grating,” Opt. Commun. 303, 42–45 (2013).
[Crossref]

Zhou, W.

Y. Zhou, W. Zhou, C. C. Chan, W. C. Wong, L.-Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
[Crossref]

Zhou, Y.

Y. Zhou, W. Zhou, C. C. Chan, W. C. Wong, L.-Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Z. Wu, Y. Liu, Z. Wang, T. Han, S. Li, M. Jiang, P. P. Shum, and X. Q. Dinh, “In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber,” Appl. Phys. Lett. 101(14), 141106 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Guan, H.-Y. Tam, X.-M. Tao, and X. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber bragg grating,” IEEE Photonics Technol. Lett. 12(6), 675–677 (2000).
[Crossref]

Opt. Commun. (4)

X. Dong, L. Su, P. P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
[Crossref]

Y. Zhou, W. Zhou, C. C. Chan, W. C. Wong, L.-Y. Shao, J. Cheng, and X. Dong, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
[Crossref]

T. Li, X. Dong, C. C. Chan, L. Hu, and W. Qian, “Simultaneous strain and temperature measurement based on a photonic crystal fiber modal-interference interacting with a long period fiber grating,” Opt. Commun. 285, 4874–4877 (2012).
[Crossref]

S. Zhang, X. Dong, T. Li, C. C. Chan, and P. P. Shum, “Simultaneous measurement of relative humidity and temperature with PCF-MZI cascaded by fiber Bragg grating,” Opt. Commun. 303, 42–45 (2013).
[Crossref]

Opt. Express (9)

T. Han, Y. Liu, Z. Wang, Z. Wu, S. Wang, and S. Li, “Simultaneous temperature and force measurement using Fabry-Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber,” Opt. Express 20(12), 13320–13325 (2012).
[Crossref] [PubMed]

F. Kong, G. Gu, T. W. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, B. Pulford, I. Dajani, K. Saitoh, S. P. Palese, E. Cheung, and L. Dong, “Polarizing ytterbium-doped all-solid photonic bandgap fiber with ∼ 1150 μ m2 effective mode area,” Opt. Express 23(4), 1811–1816 (2015).

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Mode-beating-enabled stopband narrowing in all-solid photonic bandgap fiber and sensing applications,” Opt. Express 19(9), 8167–8172 (2011).
[Crossref] [PubMed]

W. Ding and Y. Jiang, “All-solid photonic band gap fiber based distributed fiber optic pressure sensor,” Opt. Express 20(13), 14054–14063 (2012).
[Crossref] [PubMed]

L. Jin, Z. Wang, Q. Fang, Y. Liu, B. Liu, G. Kai, and X. Dong, “Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers,” Opt. Express 15(23), 15555–15565 (2007).
[Crossref] [PubMed]

B. Tai, Z. Wang, Y. Liu, J. Xu, B. Liu, H. Wei, and W. Tong, “High order resonances between core mode and cladding supermodes in long period fiber gratings inscribed in photonic bandgap fibers,” Opt. Express 18(15), 15361–15370 (2010).
[Crossref] [PubMed]

M. Yang, D. N. Wang, Y. Wang, and C. Liao, “Long period fiber grating formed by periodically structured microholes in all-solid photonic bandgap fiber,” Opt. Express 18(3), 2183–2189 (2010).
[Crossref] [PubMed]

A. Argyros, T. A. Birks, S. Leon-Saval, C. M. B. Cordeiro, P. St, and J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13(7), 2503–2511 (2005).
[Crossref] [PubMed]

M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express 20(14), 15061–15070 (2012).
[Crossref] [PubMed]

Opt. Lett. (4)

Sci. Rep. (1)

L. Wang, D. He, S. Feng, C. Yu, L. Hu, J. Qiu, and D. Chen, “Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8W,” Sci. Rep. 5, 8490 (2015).
[Crossref]

Science (1)

P. St and J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

Other (1)

C.-L. Chen, Foundations for Guided-Wave Optics (John Wiley & Sons, 2007), Ch. 9

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) SEM image of the ASPBGF cross section; (b) refractive index profile and structural diagram (inset) of the high-index-rod preform; (c) the proposed sensor configuration.
Fig. 2
Fig. 2 (a) Reflective spectra of the ASPBGF with grating under different splicing conditions; (b) transmission spectrum of the proposed sensor.
Fig. 3
Fig. 3 Electric field distributions of typical guided modes in the ASPBGF: (a)–(b) LP01 and LP11 core modes; (c)–(i) LP01-, LP11-, LP21-, LP02-, LP31-, LP12-, and LP03-like cladding supermodes. (j) Grating pitches against wavelength for different mode couplings. (k) Group refractive index difference between LP01 core mode and cladding LP01-like supermode and the corresponding theoretical MZI fringe spacing against wavelength.
Fig. 4
Fig. 4 Spectral shifts of Dip A and supermode grating dip with varying axial strain (a) and temperature (c); responses of Dip A and supermode grating dip to axial strain (b) and temperature (d).

Tables (1)

Tables Icon

Table 1 Resonant wavelengths of different mode couplings.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ Δ ε Δ T ] = [ S ε , MZI S T , MZI S ε , FBG S T , FBG ] 1 [ Δ λ MZI Δ λ FBG ] = [ 2.968 × 10 4 5.094 × 10 3 9.023 × 10 4 1.256 × 10 3 ] 1 [ Δ λ MZI Δ λ FBG ] ,

Metrics