Abstract

Enhancing the spontaneous emission of single emitters has been an important subject in nano optics in the past decades. For this purpose, plasmonic nanoantennas have been proposed with enhancement factors typically larger than those achievable with optical cavities. However, the intrinsic ohmic losses of plasmonic structures also introduce an additional nonradiative decay channel, reducing the quantum yield. Here we report on experimental studies of a weakly coupled dielectric substrate and a plasmonic nanoantenna for enhancing the radiative decay rate of single terrylene molecules embedded in an ultrathin organic film. We systematically investigate how the refractive index of the dielectric substrate affects the lifetime and the quantum efficiency and show that the coupled structure could moderately enhance the radiative decay rate while maintaining a high quantum efficiency.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence

Vincenzo Giannini, José A. Sánchez-Gil, Otto L. Muskens, and Jaime Gómez Rivas
J. Opt. Soc. Am. B 26(8) 1569-1577 (2009)

Light emission rate enhancement from InP MQW by plasmon nano-antenna arrays

David Arbel, Nikolai Berkovitch, Amir Nevet, Andrea Peer, Shimon Cohen, Dan Ritter, and Meir Orenstein
Opt. Express 19(10) 9807-9813 (2011)

Broadband spontaneous emission rate enhancement through the design of plasmonic nanoantennas

Renaud A. L. Vallée, Mélanie Ferrié, Hassan Saadaoui, and Serge Ravaine
Opt. Mater. Express 2(5) 566-577 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt. 120, 164–232 (1974).
  2. P. R. Berman, Cavity Quantum Electrodynamics (Academic Press, 1994).
  3. R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, 1996).
  4. H. Yokoyama and K. Ujihara, eds., Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, 1995).
  5. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
    [Crossref] [PubMed]
  6. J.-J. Greffet, “Applied physics. Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
    [Crossref] [PubMed]
  7. M. Agio and A. Alù, Optical Antennas (Cambridge University Press, Cambridge, 2013).
  8. X. W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett. 108(23), 233001 (2012).
    [Crossref] [PubMed]
  9. M. Frimmer and A. F. Koenderink, “Spontaneous emission control in a tunable hybrid photonic system,” Phys. Rev. Lett. 110(21), 217405 (2013).
    [Crossref] [PubMed]
  10. F. Bigourdan, F. Marquier, J.-P. Hugonin, and J.-J. Greffet, “Design of highly efficient metallo-dielectric patch antennas for single-photon emission,” Opt. Express 22(3), 2337–2347 (2014).
    [Crossref] [PubMed]
  11. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
    [Crossref] [PubMed]
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  13. R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett. 387(4-6), 490–495 (2004).
    [Crossref]
  14. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [Crossref] [PubMed]
  15. H. Eghlidi, K. G. Lee, X. W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
    [Crossref] [PubMed]
  16. M. Kreiter, M. Prummer, B. Hecht, and U. P. Wild, “Orientation dependence of fluorescence lifetimes near an interface,” J. Chem. Phys. 117(20), 9430–9433 (2002).
    [Crossref]
  17. S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008).
    [Crossref]
  18. H. Cang, Y. Liu, Y. Wang, X. Yin, and X. Zhang, “Giant suppression of photobleaching for single molecule detection via the Purcell effect,” Nano Lett. 13(12), 5949–5953 (2013).
    [Crossref] [PubMed]
  19. B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, “Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror,” Phys. Rev. Lett. 95(6), 063003 (2005).
    [Crossref] [PubMed]
  20. X. W. Chen, W. C. H. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3(2), 110–117 (2007).
    [Crossref]
  21. K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection effieciency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75(12), 1667–1669 (1999).
    [Crossref]

2014 (1)

2013 (2)

M. Frimmer and A. F. Koenderink, “Spontaneous emission control in a tunable hybrid photonic system,” Phys. Rev. Lett. 110(21), 217405 (2013).
[Crossref] [PubMed]

H. Cang, Y. Liu, Y. Wang, X. Yin, and X. Zhang, “Giant suppression of photobleaching for single molecule detection via the Purcell effect,” Nano Lett. 13(12), 5949–5953 (2013).
[Crossref] [PubMed]

2012 (1)

X. W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett. 108(23), 233001 (2012).
[Crossref] [PubMed]

2009 (1)

H. Eghlidi, K. G. Lee, X. W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
[Crossref] [PubMed]

2008 (1)

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008).
[Crossref]

2007 (2)

X. W. Chen, W. C. H. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3(2), 110–117 (2007).
[Crossref]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

2006 (1)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

2005 (2)

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, “Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror,” Phys. Rev. Lett. 95(6), 063003 (2005).
[Crossref] [PubMed]

J.-J. Greffet, “Applied physics. Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
[Crossref] [PubMed]

2004 (1)

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett. 387(4-6), 490–495 (2004).
[Crossref]

2002 (1)

M. Kreiter, M. Prummer, B. Hecht, and U. P. Wild, “Orientation dependence of fluorescence lifetimes near an interface,” J. Chem. Phys. 117(20), 9430–9433 (2002).
[Crossref]

2001 (1)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

1999 (1)

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection effieciency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75(12), 1667–1669 (1999).
[Crossref]

1974 (1)

K. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt. 120, 164–232 (1974).

Agio, M.

X. W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett. 108(23), 233001 (2012).
[Crossref] [PubMed]

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008).
[Crossref]

Akiyama, H.

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection effieciency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75(12), 1667–1669 (1999).
[Crossref]

Baba, M.

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection effieciency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75(12), 1667–1669 (1999).
[Crossref]

Bigourdan, F.

Buchler, B. C.

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, “Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror,” Phys. Rev. Lett. 95(6), 063003 (2005).
[Crossref] [PubMed]

Cang, H.

H. Cang, Y. Liu, Y. Wang, X. Yin, and X. Zhang, “Giant suppression of photobleaching for single molecule detection via the Purcell effect,” Nano Lett. 13(12), 5949–5953 (2013).
[Crossref] [PubMed]

Chen, X. W.

X. W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett. 108(23), 233001 (2012).
[Crossref] [PubMed]

H. Eghlidi, K. G. Lee, X. W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
[Crossref] [PubMed]

X. W. Chen, W. C. H. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3(2), 110–117 (2007).
[Crossref]

Choy, W. C. H.

X. W. Chen, W. C. H. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3(2), 110–117 (2007).
[Crossref]

Drexhage, K.

K. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt. 120, 164–232 (1974).

Eghlidi, H.

H. Eghlidi, K. G. Lee, X. W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
[Crossref] [PubMed]

Forchel, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Frimmer, M.

M. Frimmer and A. F. Koenderink, “Spontaneous emission control in a tunable hybrid photonic system,” Phys. Rev. Lett. 110(21), 217405 (2013).
[Crossref] [PubMed]

Gerhardt, I.

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett. 387(4-6), 490–495 (2004).
[Crossref]

Götzinger, S.

H. Eghlidi, K. G. Lee, X. W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
[Crossref] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Greffet, J.-J.

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

He, S.

X. W. Chen, W. C. H. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3(2), 110–117 (2007).
[Crossref]

Hecht, B.

M. Kreiter, M. Prummer, B. Hecht, and U. P. Wild, “Orientation dependence of fluorescence lifetimes near an interface,” J. Chem. Phys. 117(20), 9430–9433 (2002).
[Crossref]

Hettich, C.

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, “Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror,” Phys. Rev. Lett. 95(6), 063003 (2005).
[Crossref] [PubMed]

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett. 387(4-6), 490–495 (2004).
[Crossref]

Hofmann, C.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Hugonin, J.-P.

Kalkbrenner, T.

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, “Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror,” Phys. Rev. Lett. 95(6), 063003 (2005).
[Crossref] [PubMed]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

Kamp, M.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Koenderink, A. F.

M. Frimmer and A. F. Koenderink, “Spontaneous emission control in a tunable hybrid photonic system,” Phys. Rev. Lett. 110(21), 217405 (2013).
[Crossref] [PubMed]

Koyama, K.

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection effieciency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75(12), 1667–1669 (1999).
[Crossref]

Kreiter, M.

M. Kreiter, M. Prummer, B. Hecht, and U. P. Wild, “Orientation dependence of fluorescence lifetimes near an interface,” J. Chem. Phys. 117(20), 9430–9433 (2002).
[Crossref]

Kühn, S.

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008).
[Crossref]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Lee, K. G.

H. Eghlidi, K. G. Lee, X. W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
[Crossref] [PubMed]

Liu, Y.

H. Cang, Y. Liu, Y. Wang, X. Yin, and X. Zhang, “Giant suppression of photobleaching for single molecule detection via the Purcell effect,” Nano Lett. 13(12), 5949–5953 (2013).
[Crossref] [PubMed]

Löffler, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Marquier, F.

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

Mori, G.

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008).
[Crossref]

Pfab, R. J.

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett. 387(4-6), 490–495 (2004).
[Crossref]

Press, D.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Prummer, M.

M. Kreiter, M. Prummer, B. Hecht, and U. P. Wild, “Orientation dependence of fluorescence lifetimes near an interface,” J. Chem. Phys. 117(20), 9430–9433 (2002).
[Crossref]

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

Reitzenstein, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Renn, A.

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett. 387(4-6), 490–495 (2004).
[Crossref]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Sandoghdar, V.

X. W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett. 108(23), 233001 (2012).
[Crossref] [PubMed]

H. Eghlidi, K. G. Lee, X. W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
[Crossref] [PubMed]

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008).
[Crossref]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, “Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror,” Phys. Rev. Lett. 95(6), 063003 (2005).
[Crossref] [PubMed]

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett. 387(4-6), 490–495 (2004).
[Crossref]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

Suemoto, T.

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection effieciency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75(12), 1667–1669 (1999).
[Crossref]

Wang, Y.

H. Cang, Y. Liu, Y. Wang, X. Yin, and X. Zhang, “Giant suppression of photobleaching for single molecule detection via the Purcell effect,” Nano Lett. 13(12), 5949–5953 (2013).
[Crossref] [PubMed]

Wild, U. P.

M. Kreiter, M. Prummer, B. Hecht, and U. P. Wild, “Orientation dependence of fluorescence lifetimes near an interface,” J. Chem. Phys. 117(20), 9430–9433 (2002).
[Crossref]

Yamamoto, Y.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

Yin, X.

H. Cang, Y. Liu, Y. Wang, X. Yin, and X. Zhang, “Giant suppression of photobleaching for single molecule detection via the Purcell effect,” Nano Lett. 13(12), 5949–5953 (2013).
[Crossref] [PubMed]

Yoshita, M.

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection effieciency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75(12), 1667–1669 (1999).
[Crossref]

Zhang, X.

H. Cang, Y. Liu, Y. Wang, X. Yin, and X. Zhang, “Giant suppression of photobleaching for single molecule detection via the Purcell effect,” Nano Lett. 13(12), 5949–5953 (2013).
[Crossref] [PubMed]

Zimmermann, J.

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett. 387(4-6), 490–495 (2004).
[Crossref]

Appl. Phys. Lett. (1)

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection effieciency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75(12), 1667–1669 (1999).
[Crossref]

Chem. Phys. Lett. (1)

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett. 387(4-6), 490–495 (2004).
[Crossref]

J. Chem. Phys. (1)

M. Kreiter, M. Prummer, B. Hecht, and U. P. Wild, “Orientation dependence of fluorescence lifetimes near an interface,” J. Chem. Phys. 117(20), 9430–9433 (2002).
[Crossref]

J. Disp. Technol. (1)

X. W. Chen, W. C. H. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3(2), 110–117 (2007).
[Crossref]

J. Microsc. (1)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[Crossref] [PubMed]

Mol. Phys. (1)

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106(7), 893–908 (2008).
[Crossref]

Nano Lett. (2)

H. Cang, Y. Liu, Y. Wang, X. Yin, and X. Zhang, “Giant suppression of photobleaching for single molecule detection via the Purcell effect,” Nano Lett. 13(12), 5949–5953 (2013).
[Crossref] [PubMed]

H. Eghlidi, K. G. Lee, X. W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (5)

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, “Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror,” Phys. Rev. Lett. 95(6), 063003 (2005).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98(11), 117402 (2007).
[Crossref] [PubMed]

X. W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett. 108(23), 233001 (2012).
[Crossref] [PubMed]

M. Frimmer and A. F. Koenderink, “Spontaneous emission control in a tunable hybrid photonic system,” Phys. Rev. Lett. 110(21), 217405 (2013).
[Crossref] [PubMed]

Prog. Opt. (1)

K. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt. 120, 164–232 (1974).

Science (1)

J.-J. Greffet, “Applied physics. Nanoantennas for light emission,” Science 308(5728), 1561–1563 (2005).
[Crossref] [PubMed]

Other (5)

M. Agio and A. Alù, Optical Antennas (Cambridge University Press, Cambridge, 2013).

P. R. Berman, Cavity Quantum Electrodynamics (Academic Press, 1994).

R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, 1996).

H. Yokoyama and K. Ujihara, eds., Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, 1995).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematics of the experiment. (a, b) Substrate materials were glass, sapphire and cubic zirconia, with refractive indices of 1.52, 1.78, and 2.2, respectively. A thin film of pT embedding terrylene molecules was formed by spin coating onto the different substrates. The lifetime of the fluorescence from a single terrylene molecule was measured with and without the GNP approached to the molecule. A tapered glass fiber holding a GNP with diameter of 80 nm was placed close to a Terrylene molecule using shear-force feedback control. (c) System parameters used in the simulation, θ: tilting angle of terrylene molecule, d: molecule depth in pT crystal, h: separation between the bottom of the GNP and the pT top surface. The refractive index of the tip shaft is 1.45, and the apex size is 200 nm.

Fig. 2
Fig. 2

(a) Emission spectrum of terrylene at room temperature (red) and the excitation laser wavelength (green). (b) Red circles are the fluorescence lifetime of single terrylene molecules in pT film formed on substrates with different n values, glass (n = 1.52), sapphire (1.78), and cubic Zirconia (2.2). Each circle represents data from a different molecule. Black circles are the inverse of the measured lifetiems, normalized to a reference (γhrad) terrylene molecule in a homogeneous host material (pT) and compared to theoretical values in black lines.

Fig. 3
Fig. 3

(a) A contour plot of the z-component (vertical) electric field enhancement. It is shown the amplitude instead of the intensity for a better visualization. (b) Measured fluorescence lifetime of a terrylene molecule with (black) and without (red) coupled to a GNP for a glass substrate. (c) Measured scattering resonance of a GNP 80 nm in diameter. (d) Calculated radiative decay rate of an emitter embedded in the dielectric medium discussed in Fig. 1 in the presence of a GNP. The values are normalized to the reference case. (e) Calculated QE of the system with GNP as a function of the emission wavelength. (f) Normalized total decay rate. QE values are given in parentheses. For each substrate 5 ~6 different tips were used.

Metrics